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Is the Frobenius Matrix Norm Induced? 

Vijaya-Sekhar Chellaboina and Wassim M. Haddad 

Abstract-In this note we answer the question of whether (or not) 
there exist normed input-output vector spaces that induce the Frobenius 
matrix norm. Specifically, using the notion of dual norms we show that, 
up to a scalar multiple, the maximum singular value is the only unitarily 
invariant induced norm. As a special case of this result, it follows that 
the Frobenius matrix norm is not induced. 

I. INTRODUCTION 
A central issue in feedback control is the performance analysis of 

a control system for its ability to reject disturbances. One standard 
mathematical framework for addressing this problem is to consider 
the dynamical system 

?(t)  = Az(t)  + Bw(t),  t 2 0, (1) 
z( t )  = CZ(t) (2) 

where x ( t )  E R”, w ( t )  E Rd,  ~ ( t )  E R*, A E R”’”, B E W X d ,  
and C E R q x ” ,  where w(.) is the exogenous disturbance signal 
belonging to a class of disturbances D,  and where z( . )  is the error 
signal belonging to a class of error signals 1. Here, (1) and ( 2 )  denote 
a control system in closed-loop configuration. Hence, the standard 
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feedback control performance analysis problem is to determine the 
“size” in some specified sense of z ( . )  given that tu(.) E D. 

Several settings are generally considered for this standard feed- 
back control performance analysis problem. Specifically, in the H2 
(stochastic) case, w(.) denotes a white noise disturbance and the 
performance variable z (.) is measured by the steady-state quadratic 
performance criterion [ 13 

J H z  = A t-co lim ‘ E ~ t ~ T ( s ) s ( r ) d a  t = trCQCT (3) 

where E denotes expectation, tr is the trace operator, and Q A 
limt,, E[z(t)zT ( t )]  is the steady-state covariance satisfying the 
Lyapunov equation 

o = AQ + Q A ~  + B B ~  (4) 

or, equivalently 

Q = 1, eAtBBTeATtdt. ( 5 )  

Hence, using (3), (5) ,  and Plancherel’s theorem, it follows that 

. B B T ( - p I n  - A ) - T C T d ~  

or, equivalently [2] 
00 

Jn2 = 1 IICeAtBll$dt 

(7) 

where 1 1  . I I F  denotes the Frobenius matrix norm and G(s )  is the 
transfer function from disturbances 1u to performance variables z .  
Hence, the performance criterion (3) can be written in terms of the 
L2 norm of the impulse response or, equivalently, the H2 norm of 
the dynamic system (1) and (2). 

In the deterministic setting, if the input-output signals are con- 
strained to finite energy signals so that 2) and € are Lz spaces on 
[0, 00) and define the equi-induced signal norm 

1 -  - - - 2T 1, l lG(JW) l l~d~ = 11G(s)112’ 

then it follows that ([2]) 

were gmax(.) denotes the maximum singular value and hence J N ,  
is the H ,  norm of G ( s ) .  

Alternatively, if mixed-induced signal norms are assigned to the 
input-output spaces, then mixed input-output signals can be consid- 
ered. For example, if D is an Lp space with Euclidean spatial norm 
and € is an L ,  space with Euclidean spatial norm it follows that the 
resulting induced operator norm is ([3]) 

(10) 

where A,,,(.) denotes the maximum eigenvalue and hence J pro- 
vides a worst-case measure of amplitude errors due to finite energy 
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signals. Within the context of the standard feedback control perfor- 
mance analysis problem, several other mixed-induced signal norms 
are considered in [4]. 

A natural question that arises from the above observations is 
whether (or not) the H2 norm is an induced norm. That is, do there 
exist normed (or seminormed) input-output function spaces 2) and 
E that induce the H2 norm? As mentioned in a survey paper by 
Bernstein [5] and as can readily be seen from (7), the answer to this 
question is related to whether (or not) the Frobenius matrix norm is 
induced which, in itself, is another fundamental open problem. Since 
llInll~ = ,,h the Frobenius matrix norm is not equi-induced, that 
is, the domain and range spaces of 1, cannot be assigned the same 
spatial norm to induce the Frobenius norm. Of course, this does not 
preclude the possibility of the Frobenius matrix norm being mixed 
induced, that is, assigning different spatial norms on the domain and 
range spaces for inducing the Frobenius norm. 

In this note we answer one of these fundamental questions, namely, 
the Frobenius matrix norm is not induced, and provide further 
insight to the question of whether (or not) the H2 norm is induced. 
Specifically, using the notion of dual norms we show that a class 
of unitarily invariant norms and consequently all singular value 
norms (up-norms) with the exception of the spectral norm (maximum 
singular value) are not induced. Since 1 1  . 1Ir2 = 11 . [ I F ,  it follows 
that the Frobenius matrix norm is not induced. Hence, if a necessary 
condition for inducing the H2 norm is that the Frobenius matrix 
norm is an induced norm then it would follow that the H Z  norm is 
not induced. 

Real numbers, complex numbers. 
m x n real matrices. 
m x n complex matrices. 
Complex conjugate transpose of -4. 
Determinant of A, trace of A. 
Euclidian norm of vector z(= m) . 
ith singular value of A. 
Maximum singular value of A. 
Frobenius norm of A (= (trAA*)'/'). 
( i , j ) th  element of A. 
m x n elementary matrix with unity in the 
( 1 , l )  position and zeros elsewhere. 
[E,'=, U P ( A ) ] ~ / ~ ,  1 5 p < 00, T = rank A. 

11. MATHEMATICAL. PRELIMINARIES 
In this section we give certain definitions and lemmas concerning 

matrix norms. A matrix norm 1 1  . 1 )  on Cmxn is unitarily invariant 
if 1)UAVI) = 11All for all A E CmX" and for all unitary matrices 
li E C" " and V E C" n. Furthermore, a unitarily invariant matrix 
norm 1 1  . ( 1  on C m x n  is normalized if IlAll = a,,,(.4) for all rank 
one matrices A E C m x n .  

Next, let I (  . ( 1 '  and 11 . ( ( "  denote vector norms on C" and C", 
respectively, where m, n > 1. Then 1 1  . 1 1 :  CmXn + R defined by 

is the matrix norm induced by I (  . 1 1 '  and 11 . 11".  A matrix norm 11 . 11 
is not induced on C"'" if there do not exist vector norms 11 . 1 1 '  and 
I ( .  1 1 "  on C" and C", respectively, such that 11 . 11 is the matrix norm 
induced by ( 1  . 1 ) '  and 1 1  . 1 1 " .  

Finally, let 1 1  . I /  denote a vector norm on C". Then we define the 
dual norm 1 1  .  ID of 1 1  . 1 1  by 
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where g E C" [6]. The following key lemmas are needed for the 
main results of this paper. 

Lemma 2.1: Let I] . 1 1  denote the matrix norm on C m x n  induced 
by vector norms 11 . 11' and 1 1  . 11" and let z E C", y E C". Then 

Proo) It need only be noted that lIzy*ll = maxllzll/,l IIzy*zl]" 
U 

Lemma 2.2: Let 11 . 1 )  denote a unitarily invariant matrix norm on 
cmxn . Then there exists c > 0 such that I)Al) = cumax(A) for all 
rank one matrices A E CmXn. 

Pro08 Note that for all rank one matrices A E C" ", it follows 
from the singular value decomposition that there exist unitary matri- 
ces U E CmX" and V E C n x n  such that A = um,(A)UE1lV. 
Next, it follows from unitary invariance of 1 1  . 1 1  that llAl1 = umax 

0 
Remark 2.1: Special cases of Lemmas 2.1 and 2.2 for equi- 

llzY*II = l l ~ l l ' ' l l ~ l l ~ ~  

- "llzII'=l l l 4 l " I Y * 4  = I I ~ l I ~ ' / I Y I l I D .  - 

(A)llE1lll. The result is now immediate with c = IIE1111. 

induced norms are given in [7]. 

m. THE FROBENIUS MATRIX NORM 

In this section we show that the Frobenius matrix norm is not 
induced. Noting that the Frobemus matrix norm IS a normalized 
unitarily invariant norm, we first present a result that gives necessary 
and sufficient conditions for a unitarily invariant norm to be induced. 
In what follows, we assume m and n are integers greater than one. 

Theorem 3. I : Let ( 1  . [ 1 denote a unitarily invariant matrix norm on 
. Then there exist vector norms Ij.11' and II.11" on C" and C", 

respectively, such that 11 . 11 is the matrix norm induced by 1 1  . 1 1 '  and 
11 .11"  if and only if there exists IC > 0 such that IlAll = ka,,,(A) for 
all A E CmXn.  Furthermore, if ((A[[ = kumax(A) for all A E CmXn 
then k = l)EllII. 

Proofi If there exists k > 0 such that l)All = ku,,,(A) for all 
A E Cm then 11 . ) I  is the matrix norm induced by the vector norms 
11 . 11' = 1 1  . 112 and 11 . 11" = kII . 112. Conversely, suppose there exist 
vector noms II.11' and I] . 11" on 63" and C", respectively, such that 
11 . 11 is the matrix n o m  induced by I /  . 1 1 '  and I/ . 1 1 " .  Then, for all 
z E C" and y E C", it follows from Lemma 2.2 that there exists 
c > 0 such that c11z112llyll~ = camax(zy*) = llzg*ll. Furthermore, 
it follows from L e m a  2.1 that I)zy*l\ = IIzll"llyllb, and hence 

CmXn 

CI I z I12 I IY 112 = I1 z 11'' I I Y I IL (1 1) 

for all z E C" and y E C". Now, letting y = ?J where 5 E C" 
is a constant, (11) implies that there exists k l  > 0 such that 
llzll" = k111z112. Similarly, letting z = 5 where E E C" is a 
constant, (11) implies that ~ ~ y ~ ~ ~ / ~ ~ y ~ ] ~  is a constant for all y E C". 
Next noting that )Igyll&~ = [lyll ' and I ( y ( ( m  = ((y(( /2 for all y E C", 
it follows that there exists k2 > 0 such that llyll' = k211y112. Hence, it 
follows that IlAll = (kl/k2)amax(A) for all A E Cmxn as required. 
Finally, if IlAll = kcmax(A) for all A E C""" then it follows from 

0 
Remark3.1: In the case where 1 1  . 1 1  is assumed to be an equi- 

induced matrix norm, Theorem 3.1 specializes to Corollary 5.6.35 
of [7]. 

Lemma 2.2 that k = IIE1lll. 

The following corollary is now immediate. 
Corollary 3.1: Let 1 1  . 1 1  denote a normalized unitarily invariant 

matrix norm on Cmxn and let 1 5 p < CO. Then the following 
statements hold. 

i) There exist vector norms I/ . 1 1 '  and 1 1  . 1 1 "  on C" and C", 
respectively, such that 1 ) .  I/ is the matrix norm induced by 1 ) .  1 ) '  
and 1 1  1 1 "  if and only if IlAll = amax(A) for all A E Cmxn. 

ii) 1 )  . l i m p  is not induced. 
iii) The Frobenius matrix norm is not induced. 



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40, NO. 12, DECEMBI !R 1995 2139 

Proo) If )I . 1 1  is a normalized unitarily invariant matrix norm 
then IlAll = omax(A) for all rank one A E C m x n  and hence if 
there exists k > 0 such that llAll = ka,,,(A) for all A E Cmxn 
then IC = 1. Now i) is a direct consequence of Theorem 3.1. Next 
note that 1 1  . I ( v p  is a normalized unitarily invariant matrix norm 
for all 1 5 p < 03. Furthermore, since there exists A E C m x n  
such that llAllop # amax(A) ii) follows from i). Finally, noting that 

0 
Alternatively, to show iii) in Corollary 3.1 for the case m = 7~ > 1, 

suppose that the Frobenius matrix norm 1 1  . / I F  is induced on C“ ”, 
that is, suppose there exist vector norms 1 1  . 11’ and II.11” on C” such 
that IlAll~ = maxllzll’=l  ax^^'', for all A E Cmxm. Then, for all 
x E C” it follows that 

11 - \ I F  = )I . 1l02 iii) follows from ii). 

which implies that 11x11“ 5 IJzIJI for all z E 43”. Hence, f i  = 
l lI l l~ = m a x z E p  11z11”/11x11‘ 5 1 is a contradiction. 

Remark 3.2: Note that Corollary 3.1-iii) answers one of the ques- 
tions posed in [ 5 ] ,  specifically, whether (or not) the submultiplicative 
property (IlABll 5 IlAll 11B11) ofamatrixnormimpliesthatthenorm 
is induced. Since the Frobenius matrix norm is a submultiplicative 
matrix norm and as shown in Corollary 3.1-iii) is not induced, it 
follows that the submultiplicative property does not imply that the 
matrix aorm is induced. More generally, the same can be said for 
matrix norms satisfying a mixed submultiplicative property ( 1 1  AB 1 1  5 
ll AI I t  I I B I I”). 
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Connections Between Local Stability in 
Lyapunov and Input/Output Senses 

Jinhoon Choi 

Abstract-The concept of gain over set was recently introduced as a tool 
for local inputloutput analysis of nonlinear systems. In this setting, the 
finiteness of the gain over set defines a local stability in the inputloutput 
sense. In this note, we show that the finite gain over ball stability is related 
to the local stability in the sense of Lyapunov. 

I. INTRODUCTION 
There have been two paradigms in the analysis and design of 

control systems: the inputloutput and the state-space approaches. The 
classical control theory was mainly concemed with the inputloutput 
approaches to linear systems in frequency domain. The advent of 
state-space theory due to Kalman revolutionized the control theory 
and launched the age of so-called modem control. During the age of 
modern control, there have been great advances in state-space theory 
of linear and nonlinear systems as well as input/output approaches 
to linear and nonlinear systems in time domain. The connections 
between these two theories in linear systems are also well established 
during this period. These well-established connections between two 
theories in linear systems have been very powerful in addressing 
the linear system problems in the so-called post-modern control. For 
instance, the H ,  optimization formulated in inputloutput theory has 
been solved very efficiently using the state-space theoretic tools [4]. 
This example shows that we can have much more powerful control 
theory when the state-space and inputloutput theories are combined. 
For nonlinear systems, however, the connections between the two 
theories are far beyond the completion, although both the input/output 
and the state-space theories are well developed in their own right. 

One of the most important problems in control systems is sta- 
bility, because the first concern in the design of control systems 
is to guarantee the stability of the closed-loop systems. Each of 
the two approaches to control systems has its own corresponding 
notion of stability. The state-space theory is based on the Lyapunov 
stability and the input/output approach on the finite gain or bounded- 
inputhounded-output (BIBO) stability. The connections between 
stability in these two approaches are well established for linear 
systems [ 2 ] ,  although they are still under development for nonlinear 
systems. 

There have been several attempts to establish the relationships 
between inputloutput and Lyapunov stability for nonlinear systems. 
The first attempt in this direction traces back to early 1970’s when 
Willems [lo] studied the problem of finding the Lyapunov functions 
for inputloutput stable systems and identified conditions under which 
finite gain or BIBO stability implies global asymptotic Lyapunov 
stability. Hill and Moylan [6] extended Willems’ result by finding 
conditions under which finite gain implies local asymptotic stability 
and established a theorem in reverse direction for a class of nonlinear 
systems by proving that global exponential stability implies finite gain 
stability under some assumptions. The application of these global 
results is restrictive because large portions of nonlinear systems are 
only locally stable in Lyapunov or inputloutput sense. Thus, it is very 
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