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ABSTRACT

Critical care patients undergoing surgery require drug administration to regulate physiological variables such as blood
pressure, cardiac output, heart rate, and degree of consciousness. The rate of infusion of each administered drug is critical,
requiring constant monitoring and frequent adjustments. Patients in the intensive care unit who require mechanical ventilation due
to acute respiratory failure also frequently require the administration of sedative agents. Open-loop control (manual control) by
clinical personnel can be tedious, imprecise, time-consuming, and sometimes of poor quality, depending on the skills and
judgment of the clinician. Dynamical system pharmacokinetic and pharmacodynamic modeling and closed-loop control system
design methodologies can significantly advance our understanding of the wide effects of pharmacological agents and anesthetics,
as well as advance the state-of-the-art in active control of drug delivery systems for clinical pharmacology. In this paper, we
discuss the challenges and opportunities of clinical decision support and closed-loop control for intensive care unit sedation.

Key Words: Automated sedation, adaptive control, mechanical ventilation, optimal control, expert systems, clinical decision
support.

I. INTRODUCTION

Modern control technology is having a revolutionary
impact in modern medicine through medical robotics (stere-
otactical brain surgery, implant fitting, and coronary proce-
dures), electrophysiological systems (pacemakers and
automatic implantable defibrillators), life support (ventilators
and artificial hearts), and medical imaging (image-guided
surgery and therapy). An additional area of medicine that can
benefit enormously from systems and control oriented ideas is
clinical pharmacology, in which mathematical modeling plays
a prominent role [1–5]. This is particularly true when dealing
with critically ill patients in the intensive care unit (ICU) or in
the operating room. These patients often require administra-
tion of drugs to regulate key physiological variables, such as
level of consciousness, heart rate, blood pressure, ventilatory
drive, etc., within desired targets. The rate of administration of
these drugs is critical, requiring constant monitoring and fre-

quent adjustments. Open-loop control by clinical personnel
can be tedious, imprecise, time-consuming, and sometimes of
poor quality. Hence, the need for closed-loop control (active
control) in medical drug delivery systems is significant, with
the potential for improving the quality of medical care as well
as curtailing the increasing cost of health care.

One of the main drawbacks in developing active
control-based drug delivery systems is the lack of accurate
mathematical models for characterizing the dynamic behav-
ior of drugs on physiological variables. System nonlinearities,
model parameter variations from patient to patient, as well as
parameter variations within the same patient under different
conditions make it very challenging to develop models and
effective control law architectures for active drug delivery
systems. Standard data-driven system identification tech-
niques may not be applicable to complex biological system
modeling involving in situ diagnostics.

Patients in the intensive care unit who require mechani-
cal ventilation due to acute respiratory failure also frequently
require the administration of sedative agents. The need for
sedation arises from patient anxiety due to the loss of per-
sonal control and the unfamiliar and intrusive environment of
the intensive care unit. In addition, pain or other variants of
noxious stimuli frequently require administration of anxi-
olytic and analgesic drugs for patient comfort. In particular,
the interface between the patient and the ventilator is typically
an endotracheal tube passing through the oropharynx and into
the trachea. Due to the powerful gag reflex, this tube is very
noxious. Without sedation patients can become dangerously
agitated, risking dislodgement of life support devices in the
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worst case and, in any case, resulting in stress that is ethically
unacceptable and also physiologically unacceptable due to
deleterious increases in heart rate, blood pressure, and work
of breathing.

Sedation of mechanically ventilated patients in the
intensive care unit is an important and challenging problem
with ethical, clinical, and financial implications. At the ethical
level, we have a self-evident moral imperative to provide
adequate anxiolysis and analgesia for patients in the intensive
care unit. From the clinical perspective, it is important that
this be done without either overdosage or underdosage as
either may have undesirable clinical effects. At the financial
level, sedation of patients in the intensive care unit requires
large investments of health care provider time, with a com-
mensurate financial cost, while inefficient titration of sedation
and analgesia may prolong intensive care unit length of stay.

While physicians select the agent(s) used for sedation,
the actual administration of these agents is the responsibility
of the nursing staff. The intensive care unit nurse has one of
the most task-laden jobs in medicine, and titration of the
sedative drug dose to achieve the optimal levels of sedation
can be a difficult and time consuming task. If clinical decision
support systems and closed-loop control systems could be
developed for critical care monitoring and the administration
of sedation, the intensive care unit nurse could be released
from the intense monitoring of sedation, allowing her/him to
focus on other critical tasks.

In clinical practice the dose of sedative agent is varied, or
titrated, to achieve the desired level of sedation. The level of
sedation is currently based on clinical scoring systems. One
example is the Motor Activity Assessment Score (MAAS) [6]
in which patients are given an integer score of 0–6 as follows:
0, unresponsive; 1, responsive only to noxious stimuli; 2,
responsive to touch or name; 3, calm and cooperative; 4,
restless and cooperative; 5, agitated; and 6, dangerously agi-
tated. Other examples of well known clinical scoring sedation
scales include the RichmondAgitation Sedation Scale (RASS)
[7] and the modified Ramsay sedation scale (MRSS) [8].

To implement closed-loop control in an acute environ-
ment, control of cardiovascular function needs also to be
addressed along with sedation since hemodynamic manage-
ment and control of consciousness are interrelated. For
example, a major side effect of cardiac surgery is that patients
can become hypertensive [9], requiring treatment to prevent
cardiac dysfunction, pulmonary edema, myocardial ischemia,
stroke, and bleeding from fragile sutures. Although drugs are
available for treating postoperative hypertension, titration of
these drugs to regulate blood pressure is often difficult. Under-
dosing leaves the patient hypertensive, whereas overdosing
can reduce the blood pressure to levels associated with shock.

Although blood pressure control is important, cardio-
vascular function involves several other important variables,
all of which are interrelated [9]. The intensive care unit cli-

nician must ensure not only that blood pressure is within
appropriate limits but also that cardiac output (i.e., the
amount of blood pumped by the heart per minute) is accept-
able and that the heart rate is within reasonable limits. Mean
arterial blood pressure is proportional to cardiac output, with
the proportionality constant denoting the systemic vascular
resistance, in analogy with Ohm’s law. Cardiac output is
equal to the product of heart rate and stroke volume, the
volume of blood pumped with each beat of the heart. Stroke
volume, in turn, is a function of contractility, the intrinsic
strength of the cardiac contraction; preload, the volume of
blood in the heart at the beginning of the contraction; and
afterload, the impedance to ejection by the heart.

The intensive care unit clinician must balance all of
these variables. Inotropic agent drugs, that is, drugs that
increase the strength of contraction of the heart, also have
variable effects on heart rate and afterload. There are also
vasopressor drugs, which increase afterload, and vasodilator
drugs, which decrease afterload. Finally, stroke volume can
be improved by giving the patient intravenous fluids and
increasing preload. However, too much fluid can potentially
be deleterious by impairing pulmonary function as fluid
builds up in the lungs. The fact that closed-loop control of
blood pressure has not been widely adopted by clinicians is
not surprising when one considers the complex interrelation-
ships among hemodynamic variables.

Since cardiovascular and central nervous system func-
tions are critical in the acute care environment, technologies
have evolved for their measurements. The challenge for
extending feedback control technology to the problem of
sedation of critically ill patients, however, is finding the appro-
priate performance variable for control. Hence, the first step in
the development of closed-loop control of sedation is the
discovery of an objective, continuously-measurable parameter
that correlates with clinician assessment of the level of seda-
tion. Once such a parameter is discovered and validated, it then
becomes necessary to use the measure of sedation for the
titration of drug dose. In this paper, we discuss the challenges
and opportunities of clinical decision support and closed-loop
control for intensive care unit sedation. Several closed-loop
control paradigms are investigated including adaptive control,
neuroadaptive control, expert systems, controlled active
vision, optimal control, and hybrid adaptive control for clinical
decision support and intensive care unit sedation.

II. CLOSED-LOOP CONTROL FOR
HYPNOSIS AND SEDATION

2.1 Overview, background, and significance

Critically ill patients, especially those supported with
mechanical ventilation, frequently require administration
of sedative drugs [10–12]. The magnitude of the clinical
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indication for sedation of critically ill patients is evident in the
estimate that over one billion dollars are spent in the United
States annually on drugs used for this purpose [13]. Sedation
is indicated for two compelling reasons. The first of these is
ethical. It is estimated that up to 70% of patients experience
clinically significant anxiety [14]. This is understandable
since the patients will undoubtedly have some awareness of
the critical nature of their illness and they will find them-
selves in an unfamiliar and intrusive environment. Many pro-
cedures performed in the intensive care unit, including
mechanical ventilation, are uncomfortable and in many cases
painful, requiring anxiolytic and analgesic drugs for patient
comfort.

In addition to these ethical considerations, sedation is
indicated for therapeutic reasons. Agitated patients can do
physical harm to themselves by dislodging vital life support
and monitoring devices with excessive musculoskeletal activ-
ity. Agitation due to anxiety or pain can result in excessive
metabolic and cardiopulmonary demands. Oxygen delivery
to vital organs (heart, brain, kidneys, mesentery) can be
enhanced in patients with limited cardiopulmonary reserve if
ventilatory effort and excessive musculoskeletal activity due
to agitation are minimized. In patients with acute respiratory
distress syndrome (ARDS) current evidence-based practices
of mechanical ventilation [15,16] using low tidal volumes
often result in profound dyspnea, requiring deep sedation to
prevent patients “fighting the ventilator.” In severe cases,
muscle paralysis is needed to improve oxygenation. In this
case, sedation approximates general anesthesia to avoid
having a paralyzed patient who is aware.

While clinicians are well aware of the need for sedation
in critically ill patients, the challenge is how to provide
adequate sedation without oversedation. This is particularly
problematic in patients requiring mechanical ventilation due
to pulmonary or respiratory insufficiency. Sedation is
required for mechanical ventilation for the causes cited
above. However, once the cause of pulmonary insufficiency
has been corrected it is important to wean the patient from
mechanical ventilation in as timely a fashion as is safe, since
prolonged ventilation is expensive and is associated with
known risks, such as inadvertent extubation, laryngo-tracheal
trauma, and, most significantly, ventilator-associated pneu-
monia. If the patient is oversedated at this point, liberation
from mechanical ventilation and endotracheal extubation
may not be possible due to a diminished level of conscious-
ness and respiratory depression from sedative drugs.

The clinical relevance of this problem is elucidated by a
study published in [13]. The investigators in [13] demonstrate
that daily interruption of sedation with reinstitution when
patients were considered “awake” significantly decreased the
duration of mechanical ventilation and intensive care unit
stay. Daily interruption of sedation is necessary because
continuous constant rate infusions lead to accumulation of

sedative drugs as peripheral compartments saturate with the
agent over time. The problem is exacerbated by the fact that
sedation is most often administered to patients undergoing
mechanical ventilation and the most common manifestation
of overdosing with modern sedative agents is respiratory
depression. Given that the patient is typically being mechani-
cally ventilated, it is easy to fail to detect overdosing. While
daily interruption of sedation was shown to be effective in
shortening the duration of mechanical ventilation, many cli-
nicians balk at the necessity of “waking” patients, given the
compelling reasons for sedation in the first place. By using a
more objective measure of sedation and then controlling the
appropriate level of sedation, this problem may be greatly
ameliorated. The development of efficient algorithms for
closed-loop sedation control can obviate the need to prevent
oversedation by a daily interruption of sedation.

2.2 Closed-loop control for operating room hypnosis

Unlike closed-loop control of intensive care unit seda-
tion, which is virtually undeveloped in the literature, closed-
loop control algorithms for intraoperative anesthesia have
been developed, simulated, and implemented. The first of
these have focused on the control of inhalation anesthesia and
several adaptive control algorithms have been developed
[17–23]. These algorithms have been shown to provide supe-
rior control of general inhalation anesthesia in simulations
and animal studies. However, they are not directly relevant to
the specific problem of ICU sedation since the controlled
variable is end-tidal anesthetic concentration. It is not possi-
ble with current technology to rapidly measure the plasma
concentration of the intravenously-administered drugs com-
monly used for ICU sedation. Thus, drug concentration is not
a viable control variable. Furthermore, drug concentration,
even if it could be measured rapidly, is not the best control
variable. We are more interested in drug effect than drug
concentration. Far more relevant to the problem of ICU seda-
tion are several recently developed algorithms for the control
of intravenous anesthesia using a processed electroencepha-
lograph (EEG) or auditory evoked response (AER) signal as
the measurement variable for control.

EEG-based closed-loop control of anesthesia was first
proposed in [24]. Subsequently, a closed-loop, model-based
adaptive controller was developed and clinically tested in [25]
for delivering intravenous anesthesia using the median fre-
quency of the EEG power spectrum as the control variable.
The model used in [25] assumes a two-compartment pharma-
cokinetic model involving a set of patient-specific pharma-
cokinetic parameters and describes the concentration of drug
as a function of time after a single bolus dose was given. It is
also assumed that the control variable, median EEG fre-
quency is related to the drug concentration by the Hill equa-
tion [26]. Using this relationship it can be seen that the drug
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effect is a function of the pharmacokinetic as well as the
pharmacodynamic parameters. If these parameters are
known, it is straightforward to calculate the dose regimen
needed to achieve the target EEG signal. However, these
parameters are not known for individual patients, with vari-
ability estimates for some parameters being as high as 100%.

The algorithm developed in [25] assumes that the phar-
macodynamic and pharmacokinetic parameters were equal to
the mean values reported in prior studies. Using the mean
values of the pharmacokinetic parameters from prior studies
as starting values, estimates of these parameters were refined
by analyzing the difference between the target and observed
EEG signal. This algorithm was implemented for the intrave-
nous anesthetic agents methohexital and propofol but did not
appear to offer great advantage over standard manual control
[25,27]. The observed performance might have been due
to the approximations of the algorithm or the deficiencies of
the median EEG frequency as a measure of the depth of
anesthesia.

Since the work of [27], alternative EEG measures of
depth of anesthesia have been developed. Possibly the most
notable of these is the bispectral index or BIS [28]. The BIS
is a single-composite EEG measure, which appears to be
closely related to the level of consciousness [29]. In [30] the
authors present a closed-loop controller of the delivery of the
intravenous anesthetic propofol using a model-based adaptive
control algorithm with the BIS as the measurement and per-
formance variable. The algorithm is similar to the one devel-
oped in [27] in that it is based on a pharmacokinetic model
predicting the drug concentration as a function of infusion
rate and time, and a pharmacodynamic model analogous to
that used in [27] relating the BIS signal to concentration.
However, in contrast to [27], it is assumed in [30] that the
pharmacokinetic parameters are always correct and that any
variability in individual patient response is due to pharmaco-
dynamic variability.

More specifically, the approach of [30] predicts the
anesthetic concentration using the pharmacokinetic model
and then constructs a BIS-concentration curve using the
observed BIS during induction and the predicted propofol
concentration. During each time epoch, the difference
between the target BIS signal and the observed BIS signal is
used to update the pharmacodynamic parameters relating
concentration and BIS signal for the individual patient.
However, this algorithm is also only partially adaptive in the
sense that it does not update the pharmacokinetic parameters.

The results in [30] demonstrated excellent performance
as measured by the difference between the target and
observed BIS signals. However, as pointed out in [31], the
excellent performance of the system may have been because
the system was not fully stressed. In [30], a high dose of the
opioid remifentanil, a neurotransmitter inhibitor resulting in
significant analgesic effect, was administered in conjunction

with propofol. Consequently, central nervous system excita-
tion due to surgical stimulus was blunted and, thus, the need
to adjust the propofol dose as surgical stimulus varied was
diminished. It is unknown whether the control system would
have been effective in the absence of deep narcotization.

In contrast to the model-based adaptive controllers in
[25,27,30], a proportional-integral-derivative (PID) control-
ler using the BIS signal as the variable to control the infusion
of propofol is considered in [32]. The median absolute per-
formance error of this system was good (8.0%), although in
three out of ten patients, oscillations of the BIS signal around
the set point were observed, and anesthesia was deemed clini-
cally inadequate in one of the ten patients. The same system
was used in [33], with an auditory evoked potential as the
control variable. Intravenous propofol anesthesia has also
been delivered by a closed-loop controller that uses both
auditory evoked responses and cardiovascular responses as
the control variables with a fuzzy-logic algorithm in [34].
This system has had only very minimal clinical testing. More
recently, the authors in [35] consider model-based controllers
for inhalation anesthetic agents that attempt to control the
BIS signal or mean arterial blood pressure, while keeping
end-tidal anesthetic concentrations within prespecified limits.

To address the uncertainties in the pharmacokinetic and
pharmacodynamic parameters due to interpatient variability,
the authors in [36–38] developed and clinically tested adap-
tive controllers that can be implemented using the processed
EEG as a performance variable. Using compartmental
models, a Lyapunov-based direct adaptive control framework
was developed in [36,37] that guarantees partial asymptotic
setpoint stability of the closed-loop system, that is, asymp-
totic setpoint stability with respect to part of the closed-loop
system states associated with the physiological state vari-
ables. Furthermore, the remaining states associated with the
adaptive controller gains are shown to be bounded. In addi-
tion, the adaptive controllers, which are constructed without
requiring knowledge of the system pharmacokinetic and
pharmacodynamic parameters, provide a nonnegative control
input for stabilization with respect to a given setpoint in the
nonnegative orthant of the state space. Clinical evaluation
trials of these controllers are reported in [3,39,40].

In [39], the authors present a neural network adaptive
control framework that accounts for combined interpatient
pharmacokinetic and pharmacodynamic variability. In par-
ticular, a framework for adaptive setpoint regulation of non-
linear uncertain compartmental systems is developed. The
formulation in [39] addresses adaptive output feedback con-
trollers for nonlinear compartmental systems with unmodeled
dynamics of unknown order while guaranteeing ultimate
boundedness of the error signals corresponding to the physi-
cal system states, as well as the neural network weighting
gains. Extensions of adaptive and neuroadaptive controllers
for drug delivery systems with actuator saturation constraints,
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measurement noise, and system time delays are discussed in
[41–45].

2.3 Closed-loop control for ICU sedation

The challenge for extending feedback control technol-
ogy to the problem of sedation of critically ill patients, in
contrast to the control of intraoperative anesthesia, is finding
the appropriate performance variable for control. While there
is a considerable body of literature demonstrating that the
processed EEG can be a viable measure of the level of con-
sciousness, the goal in the sedation of critically ill patients is
not necessarily depression of consciousness. As discussed in
the Introduction, sedation is typically assessed using subjec-
tive ordinal scales that distinguish between patients who are
unresponsive or responsive only to noxious stimuli and those
who respond to voice and are calm and cooperative in this
response.

There have been a number of investigations of proc-
essed EEG monitoring (all using the BIS monitor) of inten-
sive care unit patients and the results have been inconsistent
[46–51]. Considerable variability in BIS scores in patients
with the same apparent degree of sedation (by subjective
scoring systems) has been observed, although there appears to
be more consistency in deeply sedated patients [51]. High
BIS scores have been observed in patients who were coma-
tose. This discrepancy may be attributed to the “noisy” envi-
ronment of the intensive care unit. It is widely appreciated
that BIS monitoring, or for that matter, any EEG monitoring,
can be fraught with error due to the potential for outside
interference to produce an unfavorable signal-to-noise ratio
yielding spurious results [52]. Nonphysiologic artifactual
signals can be generated from sources external to the patient
that include lights, electric cautery devices, ventilators, pace-
makers, patient warming devices, and electrical noise related
to the many different kinds of monitors normally found in an
operating room or an ICU. Physiologic movements such as
eye movements, myogenic activity, perspiration, and ventila-
tion can also produce artifactual increases in the BIS score. In
particular, it is apparent that electromyographic (EMG) activ-
ity can spuriously increases the BIS score [52].

The latest version of the Bispectral Index monitor has
been designed to filter EMG noise; however, it remains to be
seen whether this improves the correlation between clinician
assessment of sedation and the BIS score. The key obstacle to
the use of the processed EEG for sedation assessment could
well be that the goal for the critically ill patient is not simply
depression of level of consciousness. It has been suggested
that “the anesthetized patient in the operating room is a dif-
ferent creature from that of the critically ill and injured” [50].
While this may yet prove to be the case, it is worthwhile to
investigate closed-loop control of sedation using the proc-
essed EEG as the performance variable for control.

The latest version of the BIS monitor, which more
effectively filters EMG noise, has not yet been fully investi-
gated as a tool for intensive care unit sedation. While there are
other sources of electrical noise in the intensive care unit,
EMG signals are an important noise source. Furthermore,
spurious but time-limited BIS values that may contribute to
the poor correlation between the BIS score and clinician-
generated sedation scores may have minimal effect on the
titration of sedation using adaptive and neuroadaptive control
algorithms.

In a subset of critically ill patients a deeper level of
sedation, more closely approximating general anesthesia is
appropriate. Patients with acute respiratory distress syndrome
who are ventilated with low tidal volumes rather than large
tidal volumes have a lower mortality [15]. However, low tidal
volume ventilation is uncomfortable, creating a sense of
dyspnea and requiring deep sedation. Patients being venti-
lated in this manner should be unconscious, especially if they
also require muscle paralysis to maintain oxygenation. The
processed EEG is a plausible control variable for ICU seda-
tion in this situation.

An alternative performance variable for closed-loop
control of sedation involves respiratory parameters. As men-
tioned in the Introduction, one of the most common reasons
for administering sedation is to facilitate mechanical venti-
lation, and patient discomfort or anxiety is often manifested
as fighting the ventilator or patient-ventilator dyssynchrony.
Excessive work of breathing is deleterious to patient
outcome and a key scenario is the administration of sedation
to prevent fighting the ventilator. Patient-ventilator dyssyn-
chrony is clinically identified as use of accessory muscles,
nasal flaring, active expiration, and tachypnea. However,
dyssynchrony can be quantified by measuring patient work
of breathing using an esophageal balloon [53,54]. Patient-
ventilator dyssynchrony can also be identified using pressure
and flow waveforms in the graphics available on almost all
ventilators [55]. A novel approach to sedation of mechani-
cally ventilated patients can involve measures of dyssyn-
chrony, either work of breathing or patient breath rate, as
performance variables for closed-loop control. This will
necessitate the development of optimal control algorithms
for clinical pharmacology.

The performance measure for an optimal drug dosing
control algorithm can include a measure of the system oper-
ating error, a measure of the control effort, or any other
characteristic that is important to the clinician using the
control system. For example, propofol can be used to induce
general anesthesia with concomitant apnea, and hence, elimi-
nate ventilator-patient dysynchrony. However, the price may
be excessive hemodynamic compromise or a totally unre-
sponsive and oversedated patient. Hence, optimal control
algorithms can maximize patient-ventilator synchrony while
preserving acceptable hemodynamic function.
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While advances in understanding sedation, and its
appropriate measure, are inevitable, it remains a fact that
currently the clinical standard is an ordinal scoring system
[56–59]. Feedback control algorithms using the sedation
score as a partial performance variable for control would
require simultaneously exhibiting continuous-time dynamics
as well as logic commands, discrete events, and resetting
events. We envision a system in which the clinician (nurse or
physician) evaluates the patient, enters the score into the
controller, which then adjusts the dosing regimen to maintain
sedation at the desired score. The unique characteristics of
this problem are noteworthy. The performance variable is
discontinuous in the sense that clinical evaluation of sedation
is done intermittently. Thus, issues of embedded control
architectures become paramount and the development of an
efficient hierarchical hybrid control algorithm [60] could sig-
nificantly improve the outcome for drug administration in the
ICU [4].

III. MEASUREMENT SENSORS FOR
CLINICAL PHARMACOLOGY

The sensors used in the intensive care unit to monitor
patient status include those that measure hemodynamic
status, respiratory status, renal function, and central nervous
function. Hemodynamic status is most typically assessed by
continuous monitoring of heart rate and electrocardiograph
(ECG). The ECG measures the electrical potential difference
between skin electrodes placed at various sites on the torso
and limbs, and can be analyzed to provide continuous heart
rate measurement as well as identify signs of cardiac dysfunc-
tion. Hemodynamic function is also assessed using blood
pressure measurements. While this may be done using non-
invasive methods, it is most typically done by placing a small
plastic catheter directly into an artery (most often the radial
artery as it passed through the underside of the wrist) and then
using a pressure transducer to convert the pulse pressure wave
into an electrical signal.

In a similar fashion, catheters are also often placed into
large central veins (such as the internal jugular vein) so that
their tips are situated close to the entry of the main veins
(superior vena cava or inferior vena cava) returning blood to
the heart. Pressure waves in these veins are then transduced
into electrical signals to provide the central venous pressure.
This gives an indirect measure of the volume of blood in the
heart which is a major determinant of cardiac output, the
volume of blood pumped by the heart per minute.

In some situations in which there is more profound
cardiac dysfunction, a pulmonary artery catheter is placed.
This is a catheter that runs through the heart into the pulmo-
nary artery (i.e., the artery going from the heart to the lungs)
and can measure pressures in the pulmonary artery (another

indirect measure of volume in the heart) as well as directly
measure cardiac output. Finally, it is important to monitor the
adequacy of blood flow to the various tissues of the body. One
common technique is to measure the amount of oxygen in
venous blood. If the delivery of oxygen to tissue decreases,
then there will be a greater relative extraction of oxygen from
the delivered blood by the tissue, and hence, the venous blood
returning to the heart will have less oxygen in it. This is
most typically measured as the percentage of hemoglobin
molecules (the primary carrier of oxygen in the blood) that
are bound to oxygen (referred to as the venous saturation).

The purpose of respiration is to eliminate carbon
dioxide from, and deliver oxygen to, the blood. Hence, the
most important monitors of respiratory function are measures
of carbon dioxide and oxygen in the blood. With the most
commonly used sensor technologies these are not directly
measurable; however, it is possible to continuously measure
hemoglobin oxygen saturation, the percentage of hemoglobin
in arterial blood that is bound to oxygen, using absorbance
spectroscopy and light emitting diode technology. In addition,
many intensive care units use continuous analysis of gas
exhaled from the lungs to measure end-tidal carbon dioxide
concentration, an indirect and approximate measure of
blood carbon dioxide concentrations. Furthermore, modern
mechanical ventilators are equipped to measure the pressure
used to expand the lungs when the patient is undergoing
mechanical ventilation, as well as respiratory rate.

Assessment of renal function is not as sophisticated as
either hemodynamic or respiratory monitoring. Currently
renal function is most typically assessed by the continuous
measurement of urine output. Sensors for assessment of
central nervous system function are currently in their infancy,
at least as far as routine clinical use is concerned.

IV. PAIN, AGITATION, AND SEDATION
ASSESSMENT AND CONTROL USING

DIGITAL IMAGING

Pain assessment in patients who are unable to verbally
communicate with the medical staff is a challenging problem
in patient critical care. This problem is most prominently
encountered in sedated patients in the ICU recovering from
trauma and major surgery, as well as infant patients and
patients with brain injuries [61–63]. Current practice in the
ICU requires the nursing staff to assess the pain and agitation
experienced by the patient, and take appropriate action to
ameliorate the patient’s anxiety and discomfort.

The fundamental limitations in sedation and pain
assessment in the ICU stem from subjective assessment cri-
teria, rather than quantifiable, measurable data for ICU seda-
tion. This often results in poor quality and inconsistent
treatment of patient agitation from nurse to nurse. Recent
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advances in computer vision techniques can assist the
medical staff in assessing sedation and pain by constantly
monitoring the patient and providing the clinician with quan-
tifiable data for ICU sedation. An automatic pain assessment
system can be used within a decision support system which
can also provide automated sedation and analgesia in the ICU
[4]. In order to achieve closed-loop sedation control in the
ICU, a quantifiable feedback signal is required that reflects
some measure of the patient’s agitation. A non-subjective
agitation assessment algorithm can be a key component in
developing closed-loop control algorithms for ICU sedation.

Individuals in pain manifest their condition through
“pain behavior” [64], which includes facial expressions. Cli-
nicians regard the patient’s facial expression as a valid indi-
cator for pain and pain intensity [65]. Hence, correct
interpretation of the facial expressions of the patient and its
correlation with pain is a fundamental step in designing an
automated pain assessment system. Of course, other pain
behaviors including head movement and the movement of
other body parts, along with physiological indicators of pain,
such as heart rate, blood pressure, and respiratory rate
responses should also be included in such a system.

As discussed in the Introduction, the current clinical
standard in the ICU for assessing the level of sedation is an
ordinal scoring system, such as the motor activity and assess-
ment scale (MAAS) [6] or the Richmond agitation-sedation
scale (RASS) [7], which includes the assessment of the level
of agitation of the patient as well as the level of conscious-
ness. Assessment of the level of sedation of a patient is,
therefore, subjective and limited in accuracy and resolution,
and hence, prone to error which in turn can lead to overseda-
tion. In particular, oversedation increases risk to the patient
since liberation from mechanical ventilation may not be pos-
sible due to a diminished level of consciousness and respira-
tory depression from sedative drugs resulting in prolonged
length of stay in the ICU. Prolonged ventilation is expensive
and is associated with known risks, such as inadvertent extu-
bation, laryngo-tracheal trauma, and ventilator-associated
pneumonia. Alternatively, undersedation leads to agitation
and can result in dangerous situations for both the patient and
the intensivist. Specifically, agitated patients can do physical
harm to themselves by dislodging their endotracheal tube
which can potentially endanger their life. In addition, an
intensivist who must restrain a dangerously agitated patient
has less time for providing care to other patients, making their
work more difficult.

Digital imaging and computer vision can be used to
quantify agitation in sedated ICU patients [66–70]. In par-
ticular, digital video image processing and computer vision
can be used to develop objective agitation measurements
from patient motion. In the case of paraplegic patients, whole
body movement is not available, and hence, digital imaging
of whole body motion is not a viable sensor. In this case,

measuring head motion and facial grimacing for quantifying
patient agitation in critical care can be a viable alternative.

Although there is a vast potential for using computer
vision for agitation and pain assessment, there are very few
articles in the computer vision literature addressing this issue.
The authors in [71] have used computer vision for pain
assessment in demented elderly patients. In [67], an agitation
assessment scheme is proposed for patients in the ICU. The
approach of [67] is based on the hypothesis that facial grim-
acing induced by pain results in additional “wrinkles”
(equivalent to edges in the processed image) on the face of the
patient, and this is the only factor they use in assessing pain.
Although this approach is computationally inexpensive and
especially appealing for a real-time decision support system,
it can be limiting since it does not account for other facial
actions (e.g., smiling, crying, etc.), which may not necessarily
correspond to pain. The authors in [63,72–74] use various
face classification techniques including support vector
machines (SVM) and neural networks (NN) to classify facial
expressions in neonates into “pain” and “non-pain” classes.
Such classification techniques were shown to have reasonable
accuracy.

In [75] and [76], the authors extend the classification
technique addressed in [63,72–74] to distinguish pain from
non-pain as well as assess pain intensity using a relevance
vector machine (RVM) classification technique [77]. The
RVM classification technique is a Bayesian extension of SVM
which achieves comparable performance to SVM while pro-
viding posterior probabilities for class memberships and a
sparser model. In a Bayesian interpretation of probability, as
opposed to the classical interpretation, the probability of an
event is an indication of the uncertainty associated with the
event rather than its frequency [78]. If data classes represent
“pure” facial expressions, that is, extreme expressions that an
observer can identify with a high degree of confidence, the
posterior probability of the membership of some intermediate
facial expression to a class can provide an estimate of the
intensity of such an expression. This, along with other pain
behaviors, can be translated into one of the scoring systems
currently being used for assessing sedation (e.g., MAAS or
RASS).

Pain and agitation assessment using digital imaging
involves tracking the patient through a video sequence,
observing the patient behavior, and inferring the patient’s
pain and agitation levels. Particle filters are ideal in process-
ing video information for real-time detection, tracking, and
recognition [79,80]. Due to the temporal nature of the data
involved in pain and agitation detection, filtering theory (e.g.,
Kalman and nonlinear filtering) becomes very relevant. Spe-
cifically, filtering theory is concerned with recovering infor-
mation given a time sequence of noise corrupted data.
However, traditional filtering techniques apply to rather ide-
alized situations. Given the nonlinear and uncertain nature of
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the observations for pain and sedation assessment, continu-
ous state hidden Markov models (HMM) [81,82] are needed
to model the uncertain dynamics (i.e., patient behavior) from
a video sequence. It is important to emphasize that even in the
presence of linear dynamics, which is certainly not the case
for the problem at hand, a nonlinear filtering procedure is
required. This is due to the fact that the image at a given time
forms the observation and a series of data extraction tech-
niques need to be employed before the information is fed to
the filter. Particle filters are then used to track the HMM, that
is, estimate the hidden state given the observations.

Another important problem in critical care monitoring
is abnormality detection. Alarm algorithms can greatly
benefit from reliable frameworks for detecting abnormality in
the ICU patient. Particle filtering methods also apply to iden-
tification as well as change and abnormality detection. In this
case, problems arise from the presence of clutter, noise, and
occlusions, as well as the classification and correlation of
relevant information. Significant changes can be easily
detected using the increase in tracking error or the negative
log of the observation likelihood. However, slow changes
usually get missed. Particle filters can be used to estimate the
posterior probability distribution of the state at a given time
given the observations up to that time. As in [83], one can use
a simple statistic, namely the expected log-likelihood, to
detect slow changes. Furthermore, since the particle filter can
be used as the basis for a simultaneous tracking/recognition
system, it is ideal for the data association problem as well
[84]. In addition, since particle filtering is used in a Bayesian
framework [79,80] for tracking, identification, and detection,
it fits into the Bayesian learning framework discussed above.

Finally, since critical care monitoring, and in particular,
agitation and sedation assessment involves the use of multiple
sensors, efficient data fusion frameworks can also be devel-
oped for automatic agitation and sedation assessment. Multi-
sensor data fusion is concerned with combining information
from multiple sources in order to improve the accuracy of
information provided by individual sensors [85,86]. Specifi-
cally, multi-sensor data fusion frameworks can combine
patient data obtained from different sensors (e.g., EEG,
digital imaging, etc.) and provide the clinician with an objec-
tive measure of agitation and sedation. Clearly, such frame-
works are inherently more robust to error and failure as
compared to single-sensor based assessments.

V. CLOSED-LOOP CONTROL DESIGN
PARADIGMS AND METHODS

In this section, we discuss several paradigms and
methods for cardiopulmonary management, sedation control,
active mechanical ventilation control, and drug dosing in the
ICU.

5.1 Feedback control using expert systems

A closed-loop expert system is composed of the con-
troller, the plant (patient), and the plant output measurement
block (i.e., sedation assessment block). Within a sedation
control framework, the plant (patient) is a dynamical system
with unknown dynamics, where the input is the sedative
drug dose and the output is the patient behavior. Patient
behavior refers to patient’s level of sedation and analgesia,
manifested through facial expression, gross motor move-
ment, pain, agitation, blood pressure, heart rate, etc. The
goal of the sedation assessment feedback block is to
monitor the patient’s behavior, and objectively assess the
sedation level based on one of the clinical scoring systems
(e.g., MAAS). The input to the controller is the desired level
of sedation, and the objective assessment of sedation pro-
vided by the sedation assessment block. The closed-loop
system is shown in Fig. 1. The current clinical practice in
the ICU involves human expert assessment of patient’s level
of sedation (corresponding to the sedation assessment
block), and titration of the correct dose of sedatives (corre-
sponding to the controller).

One approach to closed-loop control of sedation is to
design a system that processes the information currently
used by the medical staff and mimics the human process of
decision making for ICU sedation [87,88]. Such a system
can be equipped with various sensors, including the bispec-
tral index monitor [28,29], actigraph (accelerometer for
measuring hand and leg movement) [89,90], and digital
imaging (for measuring facial expression and gross motor
movement) [4,66,67]. In a recent study, machine learning
methods have been used to assess the level of pain in
patients using facial expressions and analyze the correlation
between computer and human expert pain intensity assess-
ments [75,76]. With measurements provided by different
viable sensors, an expert system can be designed which
mimics expert human actions and follows a similar decision
making process.

In [87] and [88], a knowledge-based system, and, in
particular, an expert system is considered for clinical decision
support and closed-loop control for cardiopulmonary man-
agement and intensive care unit sedation. A knowledge-based
system is a computer program that is capable of making

Plant (Patient)

Sedation Assessment

Desired Level of Sedation

Controller

Fig. 1. Closed-loop sedation control architecture.
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deductions based on the information provided by the user and
the information stored in its knowledge base. In other words,
a knowledge-based system is a system which applies a
“rules of thumb” approach to a symbolic representation of
knowledge [91]. The main characteristic that distinguishes a
knowledge-based system from a conventional computer
program is its structure [92]. In conventional computer
programs, the knowledge and the computational/analytical
components of the program are coupled. Knowledge-based
systems, however, have two main independent components;
namely, the knowledge base, which stores the information,
and the inference engine, which makes assertions based on
the available knowledge. Expert systems are a subclass of
knowledge-based systems, where their objective is to emulate
the human expert behavior [92,93].

Expert systems in general deal with two different types
of problems: deterministic versus stochastic. As a result,
expert systems belong to one of the two general classes of:
(i) deterministic expert systems; and (ii) stochastic expert
systems. Deterministic expert systems are also referred to as
rule-based expert systems due to the fact that in such systems
the deduction process is based on a series of rules [93]. A
more challenging set of problems is that involving uncer-
tainty in knowledge and in the problem variables. Stochastic
expert systems specifically deal with such problems and dif-
ferent frameworks exist to address uncertainty including cer-
tainty factors [94], fuzzy logic [95], theory of evidence [96],
and, more recently, probability theory [93]. In the probabilis-
tic approach, a joint probability distribution function over
the set of variables is defined and the inference is based on
probability rules. Such expert systems are referred to as
probabilistic expert systems.

5.1.1 A rule-based expert system for cardiopulmonary
management and ICU sedation control

In [87] and [88], the authors introduce a simple rule-
based expert system for cardiopulmonary management and
ICU sedation control. They assume a sedation protocol with
the drugs propofol (as the primary agent) and fentanyl (as the
secondary agent) with sedation assessment using the MAAS
scale to illustrate a rule-based system for control of ICU
sedation. Propofol, or 2,6-diisopropylphenol, is an intrave-
nous hypnotic agent that in low doses can produce anxiolysis
and in higher doses, hypnosis (i.e., lack of responsiveness and
lack of consciousness). Propofol is widely used for ICU seda-
tion because of this spectrum of pharmacodynamic effects
and also because of its pharmacokinetics. It is typically
administered as a continuous infusion and it is a short acting
drug that can be readily titrated, that is, if the infusion rate is
increased the blood level increases relatively quickly. Hence,
the pharmacological effect of the drug can be quickly varied
by varying the infusion rate.

While propofol has primary pharmacodynamic and
pharmacokinetic effects that suit it well for ICU sedation,
there are some serious side effects that may limit its useful-
ness. Specifically, it causes dilation of both arteries and veins,
as well as mild depressant effects on the heart, that can cause
in turn excessive drops in blood pressure. Furthermore, it
does not have analgesic effects, and thus, is ineffective in
treating pain. Since pain often results in increases in heart rate
and blood pressure, propofol can be paradoxically associated
with either hypotension (at excessive doses) or hypertension
(when the patient has untreated pain).

Because of the hypotensive effects of propofol, and since
it does not treat pain-induced hypertension, the rule-based
expert system proposed in [88] also uses fentanyl as a second-
ary agent for sedation. Fentanyl is a synthetic opioid and potent
analgesic. It can be quite effective in the treatment of pain-
induced hypertension. At the same time, it has mild sedative
effects (although even in high doses it does not reliably
produce hypnosis). Since it does not have the pronounced
hypotensive effects of propofol, it can be used for its sedative
effects in hypotensive patients. While it can be employed as a
primary agent for sedation, the authors in [88] illustrate their
rule-based expert system by assuming it is a second-line agent.
This is motivated largely by the fact that it is not quite as
fast-acting as propofol and not as easily titrated.

The rule base of a simple ICU sedation control expert
system is summarized in Table I. The desired level of sedation
corresponds to an MAAS score of 3. The premise of each rule
involves the current (M) and previous (M′) MAAS scores,
blood pressure (BP), and heart rate (HR). The conclusion of
each rule consists of primary action and secondary action.
The required dose of drugs, denoted by primary action in the
table, is given in the first part of the conclusion of each rule.
The symbols “↑” and “↓” denote increase and decrease in the
infusion rate of the drug, respectively. Furthermore, “+/↑
fentanyl” stands for “if the patient is already on fentanyl, then
increase the fentanyl infusion rate by 1 mcg/kg/hr after a
2 mcg/kg bolus dose and, if not, then start fentanyl at 1 mcg/
kg/hr after a 2 mcg/kn bolus dose.” Finally, the authors in [88]
assume that, for a given MAAS score, the previous MAAS
score is within its �1 range. This is not a limiting assumption
if the sedation assessment is performed frequently so that we
capture the dynamics of the MAAS score.

The second part of the conclusion of each rule, denoted
by secondary action, involves activating a secondary expert
system, namely, the hemodynamic control expert system
(HDCES). Depending on the blood pressure and the heart rate
of the patient, the ICU sedation control expert system can
activate the hemodynamic control expert system to regulate
patient cardiovascular function. The rule base of a hemody-
namic control expert system is summarized in Table II.

The most obvious monitor of cardiovascular function in
the intensive care unit is blood pressure, and treatment of
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blood pressure is a very common activity in the intensive
care unit. The hemodynamic expert system presented
in [88] is based on the treatment of blood pressure. To a first
approximation, the circulation can be described as a very
simple direct-current system conforming with a hemody-
namic version of Ohm’s law. Specifically, the relationship
between mean arterial blood pressure (the hemodynamic
equivalent of voltage) and cardiac output (the hemodynamic
equivalent of current) can be described by [97]

MAP CO SVR CVP( ) ( ) ( ) ( ), ,t t t t t= × + ≥ 0 (1)

where MAP(t) is mean arterial blood pressure, CO(t) is
cardiac output (the volume of blood the heart pumps per
minute), SVR(t) systemic vascular resistance (an index of
arteriolar compliance or constriction throughout the body),
and CVP(t) is central venous pressure (the venous pressure of
the right atrium of the heart). Since CVP(t) is typically much
less significant than CO(t) ¥ SVR(t), we can see that any

Table I. The rule base of a simple ICU sedation control expert system, which involves the current MAAS score (M), previous MAAS
score (M′), and patient’s blood pressure (BP) and heart rate (HR).

M M′ BP/HR Primary Action Secondary Action

0 & 1 — BP � 150 or HR � 120 discontinue fentanyl & propofol activate HDCES
90 < BP < 150 discontinue fentanyl & propofol —
BP � 90 discontinue fentanyl & propofol activate HDCES

2 1 BP � 150 or HR � 120 +/↑ fentanyl if on fentanyl activate HDCES
90 < BP < 150 — —
BP � 90 25% ↓ propofol —

2 BP � 150 or HR � 120 25% ↓ propofol, +/↑ fentanyl if on fentanyl activate HDCES
90 < BP < 150 25% ↓ propofol —
BP � 90 25% ↓ propofol —

3 BP � 150 or HR � 120 25% ↓ propofol, +/↑ fentanyl if on fentanyl activate HDCES
90 < BP < 150 25% ↓ propofol —
BP � 90 50% ↓ propofol —

3 2 BP � 150 or HR � 120 +/↑ fentanyl —
90 < BP < 150 — —
BP � 90 — activate HDCES

3 BP � 150 or HR � 120 +/↑ fentanyl —
90 < BP < 150 — —
BP � 90 — activate HDCES

4 BP � 150 or HR � 120 +/↑ fentanyl —
90 < BP < 150 — —
BP � 90 — activate HDCES

4 3 BP � 150 or HR � 120 50% ↑ propofol —
90 < BP < 150 25% ↑ propofol —
BP � 90 25% ↓ propofol, +/↑ fentanyl —

4 BP � 150 or HR � 120 50% ↑ propofol —
90 < BP < 150 25% ↑ propofol —
BP � 90 25% ↓ propofol, +/↑ fentanyl —

5 BP � 150 or HR � 120 +/↑ fentanyl —
90 < BP < 150 — —
BP � 90 — activate HDCES

5 4 BP � 150 or HR � 120 50% ↑ propofol, +/↑ fentanyl —
90 < BP < 150 50% ↑ propofol —
BP � 90 +/↑ fentanyl activate HDCES

5 BP � 150 or HR � 120 50% ↑ propofol, +/↑ fentanyl —
90 < BP < 150 50% ↑ propofol —
BP � 90 +/↑ fentanyl activate HDCES

6 BP � 150 or HR � 120 25% ↑ propofol, +/↑ fentanyl —
90 < BP < 150 25% ↑ propofol —
BP � 90 +/↑ fentanyl activate HDCES

6 — BP � 150 or HR � 120 100% ↑ propofol, +/↑ fentanyl —
90 < BP < 150 100% ↑ propofol —
BP � 90 +/↑ fentanyl activate HDCES
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analysis of blood pressure perturbation should focus on
whether the change in blood pressure is due to a change in
cardiac output or a change in systemic vascular resistance.

For hypotensive patients (systolic blood pressure
< 90 mm Hg or mean blood pressure < 60 mm Hg) the expert
system algorithm first entails an evaluation of cardiac output.
This can be done by direct measurement or by indirect means.
There are a number of technologies for the measurement of
cardiac output, including thermodilution, lithium dilution, and
analysis of the contour of the arterial pulse wave. Since these
technologies are not that frequently employed, the adequacy of
cardiac output is often assessed by measurement of central
venous hemoglobin oxygen saturation as described in Section
III. In some situations it is necessary to assess the adequacy of
cardiac output using clinical findings such as poor peripheral
circulation, acidosis, or poor urine output.

It follows from the basic equation for hemodynamics
given by (1) that if cardiac output is inadequate, then efforts
to correct hypotension should be directed toward improving
cardiac output. Cardiac output equals stroke volume (i.e., the
amount of blood pumped by the heart each time it beats)
multiplied by heart rate. If the heart rate is exceptionally low,
then one can administer drugs to speed up the heart. More
frequently, the focus is on increasing stroke volume. Stroke
volume is determined by preload, the term used in the hemo-
dynamic literature to refer to the amount of blood volume in
the heart at the onset of each contraction, contractility, the
strength of the contraction, and, to a lesser degree, afterload,
roughly the load the heart faces in order to pump blood. The
first step is to ensure adequate preload. This is evaluated by
consideration of the central venous pressure, or pulmonary
artery wedge pressure if a pulmonary artery catheter is in
place, or by analysis of how the peak systolic arterial pressure
changes with inspiration if the patient is undergoing mechani-
cal ventilation, by using echocardiography to visualize the
heart, or by simply giving the patient a bolus of intravenous
fluids and observing the blood pressure response. If preload is
adequate but stroke volume is assessed as inadequate, then
the only recourse is to administer drugs (positive inotropes)
that increase the contractility of the heart.

In many situations, especially in patients with infec-
tions, the cardiac output is adequate or higher than normal but

the blood pressure is still low. Referring again to the basic
equation of hemodynamics (1), one must conclude that sys-
temic vascular resistance is low. In this case, we administer
drugs (vasopressors) that increase systemic vascular resist-
ance. The hypotension protocol flow chart is given in Fig. 2.

The treatment of hyerptension (systolic blood
pressure > 150 mm Hg) follows somewhat similar considera-
tions. If the patient has an elevated heart rate as well as an
elevated blood pressure, the usual cause is increased contrac-
tility. Since high heart rates potentially can cause myocardial
ischemia (i.e., inadequate matching of oxygen delivery to the
heart to the demand) it is most appropriate to treat the patient
with beta-blockers, that is, drugs that decrease both heart rate
and contractility. However, if the heart rate is not elevated,
then the most likely cause of the hypertension is elevated
systemic vascular resistance and the best treatment would be
vasodilaotors, that is, drugs that decrease systemic vascular
resistance.

5.1.2 A rule-based expert system for ICU
respiratory management

In [88], the authors additionally introduce a rule-based
expert system for ICU respiratory management. The respira-
tory management expert system and the cardiopulmonary
management and ICU sedation control expert system are two
independent control systems running concurrently. In respi-
ratory management, the goal is to control the arterial partial
pressure of CO2 (carbon dioxide) denoted by PaCO2(t) and the

Table II. The rule base of a simple hemodynamics control
expert system, which involves the patient’s blood
pressure (BP) and heart rate (HR).

BP HR Action

BP � 150 HR � 110 Beta-Blocker
HR < 110 Vasodilator

90 < BP < 150 HR � 110 Beta-Blocker
HR < 110 —

BP < 90 — See Hypotension Protocol

Patient
hypovolemic?

Adequate
perfusion?

Vasopressor

Inotropic agent

Administer fluids

Yes

No

Yes

No

Fig. 2. Hypotension protocol flow chart.
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pH of arterial blood. The means to do this are embodied in
two equations; one relating PaCO2(t) to alveolar ventilation
(i.e., the volume of gas exchange in the lungs in a given unit
of time), and the other, the Henderson-Hasselbalch equation
[98], relating blood pH to PaCO2(t) and the concentration of
bicarbonate in the blood denoted by [ ]( )HCO3

− t .
The relationship between PaCO2(t) and ventilation is

given by [98]

P t
V

V t
ta

a

CO
CO

2
20 863 0( ) .

( )
, ,= ≥ (2)

where VCO2 is the total body production of CO2 per minute
and is approximately 259 ml/min in healthy subjects, 0.863 is
a constant to reconcile units, and Va(t) is alveolar ventilation.
In patients who are totally dependent on mechanical
ventilation (and not taking any independent breaths) Va(t) is
given by [98]

V t TV t V RR t ta d( ) ( ( ) ) ( ), ,= − ≥ 0 (3)

where TV(t) denotes the volume of each breath set on the
ventilator, RR(t) denotes the respiratory rate set on the
ventilator, and Vd denotes the dead space of the lungs. The
product TV(t)RR(t) is referred to as the minute ventilation
[98] and Vd is approximately 1/3 of minute ventilation in
healthy subjects. Changes in Va and Vd are very gradual and
these variables can be regarded as constants.

In actual practice, the clinical staff set the value of TV(t)
≡ TV and RR(t) ≡ RR on the ventilator and, using (3), we can
see that these are the only variables that the clinician can
manipulate to control PaCO2(t). In modern critical care prac-
tice, TV is set to 6 ml/kg. As a result, the primary variable to
control PaCO2(t) is RR(t). The other variables in the above
equation (i.e., Vd and VCO2) are specific to the patient and
her/his physiology, or rather, pathophysiology.

In addition to controlling PaCO2(t), the clinician can
control blood pH levels. In particular [98],
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where [ ]( )HCO3
− t is the bicarbonate ion concentration in

arterial blood and 0.03 is a constant to reconcile units. This
equation reflects the fact that dissolved carbon dioxide reacts
with water to form carbonic acid, which will lower the pH of
blood. Once the desired PaCO2(t) is attained by manipulating
RR(t) (or, less commonly, TV(t)), control of the desired pH
can only then be achieved by manipulating [ ]( )HCO3

− t . This
is done by either administering bicarbonate in the case of
acidosis or, less commonly, by administering an acidifying
agent such as the drug acetazolamide or dilute hydrochloric
acid. Since the deleterious effects of acidosis are more

immediate and readily apparent than alkalosis, most
clinicians administer acidifying agents only within specific
clinical contexts.

The first step in respiratory management involves meas-
uring the arterial gas. This is done intermittently by taking a
small sample of blood from an artery and sending it to a
laboratory where the partial pressure of carbon dioxide in the
blood PaCO2(t) is measured using electrochemical methods.
In many clinical settings, the arterial PaCO2(t) can be approxi-
mated by end-tidal CO2, the concentration of CO2 in exhaled
gas at the end of expiration. This is conveniently measured
using near infrared spectroscopy of exhaled gas collected by
sampling from the endotracheal tube, the interface between
the patient and the mechanical ventilator. This can be done on
a breath-by-breath basis.

In most cases involving ventilation control the primary
goal is to normalize pH so that PaCO2(t) is controlled to
facilitate achieving a normal pH. However, in the case of
increased intracranial pressure it is important to maintain a
normal carbon dioxide level as well as normal pH level. The
brain is enclosed in a closed vault (i.e., the skull). If the brain
becomes edematous (i.e., excessive accumulation of serous
fluid), then this will increase the pressure (the intracranial
pressure) inside this closed vault. If the intracranial pressure
becomes too great, then the brain will be compressed and this
can result in serious injury if not death. In cases of intracra-
nial pathology (e.g., brain tumors, traumatic injury to the
brain, and bleeding in the brain) there will be increased
edema, and hence, increased intracranial pressure. This is
exacerbated by increased carbon dioxide as this increases
blood flow to the brain and increases the edema fluid load.

On the other hand, a markedly decreased carbon dioxide
can lower cerebral blood flow and, if severe, can result in
cerebral ischemia (i.e., inadequate blood flow to the brain).
Hence, it is important to not only control pH(t) but also
PaCO2(t) in patients with intracranial pathology who require
mechanical ventilation. The rule base of a simple respiratory
management expert system is summarized in Table III.

One of the limitations of the rule-based expert systems
proposed in this section and Section 5.1.1 is their inability to
deal with uncertainty. More specifically, the rule-based
expert system in Section 5.1.1 assumes perfect accuracy in
the measurement of present and previous MAAS scores,
blood pressure, and heart rate. While current technology
allows for high accuracy measurements of blood pressure
and heart rate, the MAAS score, which quantifies the level
of sedation and agitation of the patient, is subjective and can
result in inconsistencies and variability in sedation adminis-
tration. Moreover, in a rule-based expert system there is
no uncertainty associated with the rules. A more general
approach would allow for rules with multiple conclusions,
where a different level of uncertainty is associated with each
conclusion.
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In [87], the authors use probability theory to quantify
uncertainty to extend the rule-based expert system discussed
in Section 5.1.1 to deal with more realistic situations. The
rule-based respiratory management expert system discussed
in Section 5.1.2 mainly uses PaCO2 and blood pH data for
decision making. The same framework can be used to con-
struct a probabilistic expert system for respiratory manage-
ment. For details, see [87].

5.2 Closed-loop control for mechanical ventilation of
critical care patients

The lungs are particularly vulnerable to acute, critical
illness. Respiratory failure can result not only from primary
lung pathology, such as pneumonia, but also as a secondary
consequence of heart failure or inflammatory illness, such as
sepsis or trauma. When this occurs it is essential to support
patients while the fundamental disease process is addressed.
For example, a patient with pneumonia may require mechani-
cal ventilation while the pneumonia is being treated with
antibiotics that will eventually effectively “cure” the disease.
Since the lungs are vulnerable to critical illness, and respira-
tory failure is common, support of patients with mechanical
ventilation is very common in the intensive care unit.

The goal of mechanical ventilation is to ensure
adequate ventilation, which involves a magnitude of gas
exchange that leads to the desired blood level of carbon
dioxide, and adequate oxygenation, which involves a blood
concentration of oxygen that will ensure organ function.
Achieving these goals is complicated by the fact that
mechanical ventilation can actually cause acute lung injury,
either by inflating the lungs to excessive volumes or by using

excessive pressures to inflate the lungs. The challenge to
mechanical ventilation is to produce the desired blood levels
of carbon dioxide and oxygen without causing further acute
lung injury.

The earliest primary modes of ventilation can be clas-
sified, approximately, as volume-controlled or pressure-
controlled [99]. In volume-controlled ventilation, the lungs
are inflated (by the mechanical ventilator) to a specified
volume and then allowed to passively deflate to the baseline
volume. The mechanical ventilator controls the volume of
each breath and the number of breaths per minute. In
pressure-controlled ventilation, the lungs are inflated to a
given peak pressure. The ventilator controls this peak pres-
sure as well as the number of breaths per minute. In early
ventilation technology negative pressure ventilation was
employed, wherein a patient’s thoracic area is enclosed in an
airtight chamber and the volume of the chamber is expanded
inflating the patient’s lungs. Such ventilator devices include
tank ventilators, jacket ventilators, and cuirassess [100].

The primary determinant of the level of carbon dioxide
in the blood is minute ventilation, which is defined as the tidal
volume (the volume of each breath) multiplied by the number
of breaths per minute [101,102]. With volume-controlled ven-
tilation both tidal volume and the number of breaths are
determined by the machine (the ventilator) and typically the
tidal volumes and breaths per minute are selected by the
clinician caring for the patient. In pressure-controlled venti-
lation, the tidal volume is not directly controlled. The venti-
lator determines the pressure that inflates the lungs and the
tidal volume is proportional to this driving pressure and
the compliance, or “stiffness,” of the lungs. Consequently, the
minute ventilation is not directly controlled by the ventilator

Table III. Rule base of a simple respiratory management expert system: (a) absence of intracranial pathology; (b) presence of
intracranial pathology.

(a)

pH Action

pH < 7.32 ↑ RR, wait 30 min., repeat arterial blood gas measurement
7.32 < pH < 7.45 —
pH > 7.45 ↓ RR, wait 30 min., repeat arterial blood gas measurement

(b)

pH PaCO2 Action

pH < 7.32 PaCO2 > 40 Increase RR, wait 30 min., repeat arterial blood gas measurement
30 � PaCO2 � 40 Administer [ ]HCO3

− per base deficit
PaCO2 < 30 ↓ RR, administer [ ]HCO3

−

7.32 � pH � 7.49 PaCO2 < 30 ↓ RR, wait 30 min., repeat arterial blood gas measurement
30 < PaCO2 < 40 No action
PaCO2 > 40 ↑ RR, wait 30 min., repeat arterial blood gas measurement

pH > 7.49 30 < PaCO2 ↓ RR, repeat arterial blood gas measurement
30 < PaCO2 < 40 consider acidifying agent, if given, repeat arterial blood gas measurement
PaCO2 > 40 ↑ RR, consider acidifying agent
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and any change in lung compliance (such as improvement or
deterioration in the underlying lung pathology) can result in
changes in tidal volume, minute ventilation, and ultimately
the blood concentration of carbon dioxide.

In respiratory management, the goal is to control arte-
rial partial pressure of CO2 (carbon dioxide) in the blood
denoted by PaCO2(t). The means to do this is reflected in the
equation relating PaCO2(t) to the volume of gas exchange in
the lungs in a given unit of time, the alveolar ventilation.
The relationship between PaCO2(t) and ventilation is given by
(2). In patients who are totally dependent on mechanical
ventilation (and not taking any independent breaths) Va(t) is
given by (3). During mechanical ventilation TV(t) ∈ [400,
700] ml and RR(t) ∈ [12,25]. The tidal volume is the differ-
ence between the lung volume at the start of expiration
and the lung volume at the end of expiration. Specifically,
TV = V(Tin) - V(Tin + Tex) = V(Tin) - V(0), where V(t) denotes
the delivered air volume at time t, Tin is the inspiration time,
and Tex is the expiration time.

The concentration of oxygen in the blood is determined
by the underlying lung pathology, the concentration of
oxygen in the gas delivered by the mechanical ventilator, and
also by the pressure that is used to inflate the lungs. In very
general terms, oxygenation can be improved by higher mean
pressures in the lungs, although higher peak pressures during
the inflation-deflation cycle are associated with lung injury
[103,104].

With the increasing availability of micro-chip technol-
ogy, it has been possible to design mechanical ventilators
that have control algorithms that are more sophisticated
than simple volume or pressure control. Examples are
proportional-assist ventilation [105,106], adaptive support
ventilation [107], SmartCare ventilation [108], and neurally
adjusted ventilation [109]. In proportional assist ventilation
the ventilator measures the patient’s volume and rate of
inspiratory gas flow, and then applies pressure support in
proportion to the patient’s inspiratory effort [110]. In this
mode of ventilation, inspired oxygen and positive end-
expiratory pressure are manually adjusted by the clinician.

In adaptive support ventilation, tidal volume and respi-
ratory rate is automatically adjusted [111]. In particular,
minute ventilation (TV(t)RR(t)) is calculated from a %MinVol
parameter and the patient’s ideal body weight. The patient’s
respiratory pattern is measured point-wise in time and fed
back to the controller to provide the required (target) tidal
volume and patient respiratory rate. Adaptive support venti-
lation does not provide continuous control of minute ventila-
tion, positive end-expiratory pressure, and inspired oxygen;
these parameters need to be adjusted manually.

SmartCare ventilation monitors tidal volume, respira-
tory rate, and end-tidal pressure of carbon dioxide to maintain
the patient in a respiratory “comfort” zone by automatically
adjusting the level of pressure support [112,113]. SmartCare

ventilators do not account for patient respiratory variations
and do not generally guarantee adequate minute ventilation
during weaning. In addition, positive end-expiratory pressure
and inspired oxygen need to be manually adjusted.

Neurally adjusted ventilation is fundamentally different
from the aforementioned automatic ventilation technologies
in the sense that it uses the patient’s respiratory neural drive
as a measurement signal to the ventilator [114]. In this mode
of ventilation, rather than controlling pressure, the patient’s
respiratory neural drive signal to the diaphragmatic electro-
myogram is controlled using electrodes placed on an
oesophageal catheter [115]. Even though this approach has
been shown to be effective in some recent clinical studies
[116,117], its effectiveness is affected if the patient is highly
sedated. In addition, as in the aforementioned ventilator tech-
nologies, positive end-expiratory pressure and inspired
oxygen need to be manually controlled.

The common theme in modern ventilation control algo-
rithms is the use of pressure-limited ventilation while also
guaranteeing adequate minute ventilation. One of the chal-
lenges in the design of efficient control algorithms is that the
fundamental physiological variables defining lung function,
the resistance to gas flow and the compliance of the lung
units, are not constant but rather vary with lung volume. This

is particularly true for compliance, strictly defined as
d

d

V

P
,

where V is the lung unit volume and P is the pressure driving
inflation. More simply, lung volume is a nonlinear function of
driving pressure. In addition, these physiological variables
vary from patient to patient, as well as within the same patient
under different conditions making it very challenging to
develop models and effective control law architectures for
active mechanical ventilation.

In [118], the authors develop an adaptive control archi-
tecture to control lung volume and minute ventilation with
input pressure constraints that also accounts for spontaneous
work-of-breathing by the patient. Specifically, a pressure- and
work-limited neuroadaptive controller for mechanical venti-
lation is developed based on a nonlinear multi-compartmental
lung model. The control framework does not rely on any
averaged data and is designed to automatically adjust the
input pressure to the patient’s physiological characteristics
capturing lung resistance and compliance modeling uncer-
tainty. Moreover, the controller accounts for input pressure
constraints as well as work-of-breathing constraints. Finally,
the effect of spontaneous breathing is incorporated within the
lung model and the control framework.

5.2.1 Closed-loop control of sedation using
respiratory parameters

Since sedation is often administered to prevent the
patient from fighting the ventilator it seems plausible to use
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respiratory parameters as a performance variable for closed-
loop control. Calculation of patient work of breathing
requires measurement of a patient-generated pressure/volume
loop or work of breathing. Since work of breathing can be
measured using a commercially available esophageal balloon
[53], work of breathing can serve as a performance variable
for closed-loop control of sedation. Furthermore, patient-
ventilator dyssynchrony can be identified by analysis of
pressure/flow wave forms [55].

Dyssynchrony can be divided into three major
categories—trigger dyssynchrony, flow dyssynchrony, and
cycle (breath termination) dyssynchrony. Whereas there are
several components of the pressure/flow wave forms that
indicate dyssynchrony, possibly the simplest is the patient
respiratory rate [55]. And it is certainly true that there is a
correlation between patient work-of-breathing and patient-
generated respiratory rate. If the goal of sedation is to reduce
patient work of breathing, then one can target a spontaneous
respiratory rate less than some threshold value. While specu-
lative, this offers the possibility of closed-loop control using
respiratory rate as a viable performance variable.

Closed-loop control algorithms can use either work-of-
breathing as measured by an esophageal balloon or patient
respiratory rate as a performance variable for closed-loop
control of sedation. The need for optimal control algorithms
is necessary for achieving a target performance value while
satisfying certain constraints. For example, we could seek to
design a control algorithm that seeks to minimize the patient
respiratory rate (above the set ventilator rate) but which does
not result in hypotension or which does not result in a MAAS
score of 0 or 1. This requires the development of a con-
strained optimal control framework that seeks to minimize a
given performance measure (e.g., patient respiratory rate)
within a class of fixed-architecture controllers satisfying
internal controller constraints (e.g., controller order, control
signal nonnegativity, etc.) as well as system constraints (e.g.,
blood pressure, system state nonnegativity, etc.).

To develop closed-loop feedback controllers for allevi-
ating patient-ventilator dyssynchrony, mathematical models
of pressure-limited respirator and lung mechanics system
need to be developed. Numerous mathematical models of
respiratory function have been developed in the hope of better
understanding pulmonary function and the process of
mechanical ventilation [119–123]. However, the models that
have been presented in the medical and scientific literature
have typically assumed homogenous lung function. For
example, in analogy to a simple electrical circuit, the most
common model has assumed that the lungs can be viewed as
a single compartment characterized by its compliance (the
ratio of compartment volume to pressure) and the resistance
to air flow into the compartment [119,120,123].

While a few investigators have considered two-
compartment models, reflecting the fact that there are two

lungs (right and left), there has been little interest in more
detailed models [124–126]. However, the lungs, especially
diseased lungs, are heterogeneous, both functionally and ana-
tomically, and are comprised of many subunits, or compart-
ments, that differ in their capacities for gas exchange.
Realistic models should take this heterogeneity into account.
While more sophisticated models entail greater complexity,
since the models are readily presented in the context of
dynamical systems theory, sophisticated mathematical tools
can be applied to their analysis [127]. Compartmental lung
models are described by a state vector, whose components are
the volumes of the individual compartments. Using the multi-
compartment model of a pressure-limited respirator and a
lung mechanics systems developed in [127], a model refer-
ence adaptive controller is also proposed in [127]. This adap-
tive feedback controller stabilizes a given limit cycle (i.e.,
periodic signature) corresponding to a respiratory pattern
identified by a clinician as a plausible breathing pattern in the
face of full lung compliance and resistance uncertainty.

5.2.2 Optimal determination of respiratory airflow patterns

Early work on the optimality of respiratory control
mechanisms using simple homogenous lung models dealt with
the frequency of breathing. In particular, the authors in [128–
130] predicted the frequency of breathing by using a minimum
work-rate criterion. This work involves a static optimization
problem and assumes that the airflow pattern is a fixed sinu-
soidal function.The authors in [130,131] developed optimality
criteria for the prediction of the respiratory airflow pattern with
fixed inspiratory and expiratory phases of a breathing cycle.
These results were extended in [132] by considering a two-
level hierarchical model for the control of breathing, in which
the higher-level criterion determines values for the overall
control variables of the optimal airflow pattern derived from
the lower-level criteria, and the lower-level criteria determine
the airflow pattern with the respiratory parameters chosen by
minimizing the higher-level criterion.

Although the problem for identifying optimal respira-
tory patterns has been addressed in the literature (see [128–
132] and the references therein), the models on which these
respiratory control mechanisms have been identified are
predicated on a single compartment lung model with constant
respiratory parameters. However, as noted in Section 5.2.1,
the lungs, especially diseased lungs, are heterogeneous, both
functionally and anatomically, and are comprised of many
subunits, or compartments, that differ in their capacities for
gas exchange. Realistic models should take this heterogeneity
into account. In addition, the resistance to gas flow and the
compliance of the lung units are not constant but rather vary
with lung volume. This requires the development of optimal
respiratory airflow patterns predicated on nonlinear multi-
compartment models for a lung-rib-cage system.
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In [133], the authors extend the work of [130,131] to
develop optimal respiratory airflow patterns using a nonlinear
multi-compartment model for a lung-rib-cage system. Spe-
cifically, the linear multi-compartment lung model given in
[127] is extended to address system model nonlinearities.
Then, the performance functionals developed in [130,131]
are extended for the inspiratory and expiratory breathing
cycles to derive an optimal airflow pattern using classical
calculus of variations techniques. In particular, the physi-
ological interpretation of the optimality criteria involve the
minimization of work-of-breathing and lung volume accel-
eration for the inspiratory breathing phase, and the minimi-
zation of the elastic potential energy and rapid airflow rate
changes for the expiratory breathing phase. This model
allows for the development of model reference adaptive
control algorithms for fully automating mechanical ventila-
tion to ensure adequate ventilation and oxygenation for criti-
cal care patients in intensive care units.

5.3 Optimal control for drug dosing

In clinical ICU practice sedative/analgesic agents are
titrated to achieve a specific level of sedation. The goal of the
clinician is to find the drug dose that maintains the patient at
a moderately sedated state. This is typically done empirically,
administering a drug dose that usually is in the effective range
for most patients, observing the patient’s response, and then
adjusting the dose accordingly. Drug dosing can be made
more precise by using pharmacokinetic and pharmacody-
namic modeling [134]. Pharmacokinetics is the study of the
concentration of drugs in tissue as a function of time and dose
schedule, while pharmacodynamics is the study of the rela-
tionship between drug concentration and drug effect. By
relating dose to resultant drug concentration (pharmacokinet-
ics) and concentration to effect (pharmacodynamics), a
model for drug dosing can be generated.

Pharmacokinetic compartmental models typically
assume that the body is comprised of multiple compartments.
Within each compartment the drug concentration is assumed
to be uniform due to perfect, instantaneous mixing. Transport
to other compartments and elimination from the body occur
by metabolic processes. For simplicity, the transport rate
is often assumed to be proportional to drug concentration.
Although the assumption of instantaneous mixing is an ide-
alization, it has little effect on the accuracy of the model as
long as we do not try to predict drug concentrations immedi-
ately after the initial drug dose.

Although pharmacokinetics of sedative and anesthetic
drugs can be adequately modeled by nonnegative and com-
partmental dynamical systems [5], the pharmacodynamics of
these drugs are not well understood and drug effect predic-
tions usually involve probabilities [4,135,136]. Specifically,
when considering sedative agents, drug effect is closely

related to patient sedation level. As discussed in [135,136],
the corresponding sedation level of the ICU patient is related
to drug concentration in the effect-site compartment using an
empirical probabilistic model.

In [87] and [137], the authors model the pharmacoki-
netics and pharmacodynamics of a general sedative agent
using a hybrid deterministic-stochastic model involving
deterministic pharmacokinetics and stochastic pharmacody-
namics. Then, using this hybrid model, the authors consider
the sedative drug propofol and use nonnegative and compart-
mental modeling to model the drug pharmacokinetics and a
stochastic process to represent the patient’s sedation score
and model the drug pharmacodynamics. The first-order dis-
tribution of the stochastic process is a function of the states of
the compartmental dynamical system.

Finally, the aforementioned hybrid deterministic-
stochastic model is used to develop an open-loop optimal
control policy for ICU sedation. Specifically, first the optimal
effect-site drug concentration corresponding to a high prob-
ability for the desired sedation score and a low probability for
all other sedation scores is identified. Then, optimal control
theory is used to drive the effect-site drug concentration to the
optimal value found in the previous step while minimizing a
given cost functional. The cost functional captures control
effort constraints as well as probability constraints associated
with different sedation scores.

Optimal control for drug administration (bolus and
infusion) for nonnegative and compartmental dynamical
systems for the specific problem of closed-loop control of
intensive care unit sedation is critical. To address the special-
ized structure of compartmental and nonnegative systems,
nonnegative state and control constraints need to be enforced.
The optimal (nonnegative) control law needs to be designed
as to maintain desired drug concentrations in the plasma
dictated by therapeutic effects while minimizing drug dosage
to reduce side effects.

In [138], the authors use an optimal fixed-structure
control framework to develop optimal output feedback non-
negative controllers that guarantee that the trajectories of the
closed-loop physiological system states remain in the non-
negative orthant of the state space for nonnegative initial
conditions. The proposed optimal fixed-structure control
framework is a constrained optimal control methodology that
does not seek to optimize a performance measure per se, but
rather seeks to optimize performance within a class of
fixed-structure controllers satisfying internal controller con-
straints that guarantee the nonnegativity of the closed-loop
plant physiological states. Furthermore, since unconstrained
optimal controllers are globally optimal but may not guaran-
tee nonnegativity of the closed-loop physiological system
states, the authors additionally characterize domains or
regions of attraction contained in the nonnegative orthant of
the state space for unconstrained optimal output feedback
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controllers that guarantee nonnegativity of the closed-loop
physiological system trajectories.

VI. CONCLUSION

The potential clinical applications of clinical decision
support and active control for pharmacology in general, and
anesthesia and critical care unit medicine in particular, are
clearly apparent. Specifically, monitoring and controlling the
depth of anesthesia in surgery and the intensive care unit is of
particular importance. In critical care medicine it is current
clinical practice to administer potent drugs that profoundly
influence levels of consciousness, respiratory, and cardiovas-
cular function by manual control based on the clinician’s
experience and intuition.

In this paper, we discussed the challenges and opportu-
nities of the specific problem of clinical decision support and
closed-loop control for intensive care unit sedation. Such
an integrated control design methodology for automating
anesthesia and analgesia can significantly advance our under-
standing of a broad spectrum of problems in clinical pharma-
cology. In addition to delivering sedation to critically ill
patients in an acute care environment, potential applications
of closed-loop control include glucose, heart rate, and blood
pressure regulation [139,140]. Payoffs will arise from
improvements in medical care, health care, reliability of drug
dosing equipment, and reduced health-care costs.
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