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Approximate Consensus
of Multiagent Systems
With Inaccurate Sensor
Measurements
One of the main challenges in robotics applications is dealing with inaccurate sensor
data. Specifically, for a group of mobile robots, the measurement of the exact location of
the other robots relative to a particular robot is often inaccurate due to sensor measure-
ment uncertainty or detrimental environmental conditions. In this paper, we address the
consensus problem for a group of agent robots with a connected, undirected, and time-
invariant communication graph topology in the face of uncertain interagent measurement
data. Using agent location uncertainty characterized by norm bounds centered at the
neighboring agent’s exact locations, we show that the agents reach an approximate con-
sensus state and converge to a set centered at the centroid of the agents’ initial locations.
The diameter of the set is shown to be dependent on the graph Laplacian and the magni-
tude of the uncertainty norm bound. Furthermore, we show that if the network is all-to-
all connected and the measurement uncertainty is characterized by a ball of radius r,
then the diameter of the set to which the agents converge is 2r. Finally, we also formulate
our problem using set-valued analysis and develop a set-valued invariance principle to
obtain set-valued consensus protocols. Two illustrative numerical examples are provided
to demonstrate the efficacy of the proposed approximate consensus protocol framework.
[DOI: 10.1115/1.4036031]
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1 Introduction

Modern military and national command and control infrastruc-
ture capabilities involve large-scale, multilayered network systems
placing stringent demands on controller design and implementation
of increasing complexity. In numerous large-scale network system
applications, agents can detect the location of the neighboring
agents only approximately. This problem can arise in network
defense systems involving low sensor quality, sensor failure, or
detrimental environmental conditions resulting from a large-scale
catastrophic event. This problem also arises in many robotics
applications with inaccurate sensor data as well as low-cost,
small-sized unmanned vehicles with relatively cheap sensors. In
such a setting, it is desirable that the agents reach consensus
approximately.

In this paper, we consider a multiagent consensus problem in
which agents possess sensors with limited accuracy. Specifically,
we consider a group of agents with a connected, undirected, and
time-invariant communication graph topology and develop con-
sensus control protocols for continuous- and discrete-time net-
work systems that guarantee that the agents reach an approximate
consensus state and converge to a set centered at the centroid of
the agents’ initial locations. This set is shown to be time-varying,
in the sense that only the differences between agent positions are,
in the limit, small.

For discrete-time network systems, we also use difference
inclusions and set-valued analysis to describe the inaccurate sen-
sor measurement problem formulation. Set-valued analysis has
been previously used for consensus control. In Ref. [1], the author
uses set-valued Lyapunov functions to study convergence of mul-
tiagent dynamical systems. The approach involves constructing
set-valued Lyapunov functions from convex sets that depend on

the agent states. In Refs. [1–3], the authors address stability of
each equilibrium point in the sense that the system solutions
approach an equilibrium from a neighborhood of equilibria. Lor-
enz and Lorenz [3] consider barycentric coordinate maps, whereas
Moreau [1] and Angeli and Bliman [2] consider difference equa-
tions and difference inclusions, respectively.

Necessary and sufficient conditions for semistability for multi-
agent consensus problems using set-valued Lyapunov analysis are
presented in Ref. [4]. More recently, Xiao and Wang [5] consider
an asynchronous rendezvous problem using set-valued consensus
theory. Specifically, a design strategy for multiagent consensus is
developed by requiring two consecutive way-points to be included
within a minimum convex region covering the two associated
anticipated-way-point sets.

The proposed set-valued consensus protocol builds on the
framework of Refs. [1], [4], and [6] to develop approximate con-
sensus protocols for multiagent systems with uncertain interagent
measurements. Specifically, the proposed protocol algorithm
modifies the set-valued consensus update maps of the agents by
assuming that the locations of all the agents, including the agents
calculating the update map, are within a ball of radius r. However,
since the update sets of our design protocol do not satisfy a strict
convexity assumption, our results go beyond the results of Ref.
[1] by employing a set-valued invariance principle.

This paper can be viewed as a contribution to the literature
addressing multiagent systems in the presence of adversarial
attacks. Specifically, the authors in Refs. [7–15] utilize stochastic
tools and methods to study the behavior of multiagent systems in
the presence of communication noise, transmission delays, and
packet losses, whereas the authors in Refs. [16–22] utilize nonlin-
ear and adaptive system theory to study the behavior of multiagent
systems in the presence of agent and graph topology uncertainties.
The results in this paper addressing multiagent systems with inaccu-
rate sensor measurements add to this literature by utilizing comple-
mentary analysis methods including Lyapunov theory, difference
inclusions, and set-valued analysis.
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2 Notation, Definitions, and Mathematical

Preliminaries

The notation used in this paper is fairly standard. Specifically,
R denotes the set of real numbers, Rn denotes the set of n� 1 col-
umn vectors, Rn�m denotes the set of real n�m matrices, Zþ
denotes the set of non-negative integers, and (�)T denotes trans-
pose. We write kminðMÞ (respectively, kmaxðMÞ) for the minimum
(respectively, maximum) eigenvalue of the Hermitian matrix M,
rmaxðMÞ for the maximum singular value of the matrix M, q(M)
for the spectral radius of the square matrix M, spec(M) for the
spectrum of the square matrix M including multiplicity, k � k for
the Euclidean vector norm, k � kF for the Frobenius matrix norm,
BeðaÞ; a 2 Rn; e > 0, for the open ball centered at a with radius
e, distðp;MÞ for the distance from a point p to the setM, that is,
distðp;MÞ¢ infx2M kp� xk, and xðkÞ !M as k ! 1, where
k 2 Zþ, to denote that the trajectory x(k) approaches the set M,
that is, for every e> 0 there exists N0> 0, such that
distðxðkÞ;MÞ < e for all k>N0.

Moreover, in this paper we distinguish between the set inclu-
sions � and �, namely, � denotes a strict inclusion, whereas �
denotes a nonstrict inclusion. In addition, we use the Minkowski
sum for summation of sets with an analogous definition for set
subtraction. Namely, for the sets X ;Y � Rn; X þ Y and X � Y
denote, respectively, the set of all the vectors z 2 Rn such that
z¼ xþ y and z¼ x� y, where x 2 X and y 2 Y. Finally, the
notions of openness, convergence, continuity, and compactness
that we use throughout the paper refer to the topology generated
on Rn by the norm k � k.

The consensus problem we address in this paper appears fre-
quently in coordination of multiagent network systems and
involves finding a dynamic algorithm that enables a group of
agents in a network to agree upon certain quantities of interest
with undirected and directed information flow [23–25]. In this
paper, we use undirected graphs to represent a static network. The
graph-theoretic notation and terminology we use in the paper are
standard [26]. Specifically, G ¼ ðV; E;AÞ denotes a weighted
directed graph (or digraph) denoting the static network (or static
graph) with the set of nodes (or vertices) V ¼ f1;…;Ng involving
a finite nonempty set denoting the agents, the set of edges E �
V � V involving a set of ordered pairs denoting the direction of
information flow between agents, and a weighted adjacency
matrix A 2 RN�N such that Aði;jÞ ¼ aij > 0; i; j ¼ 1;…;N, if
ðj; iÞ 2 E, and aij¼ 0, otherwise. The edge ðj; iÞ 2 E denotes that
agent i can obtain information from agent j, but not necessarily
vice versa. Moreover, we assume that aii¼ 0 for all i 2 V.

Note that if the weights aij, i, j¼ 1,…, N, are not relevant, then
aij is set to 1 for all ðj; iÞ 2 E. In this case, A is called a normalized
adjacency matrix. Every edge ‘ 2 E corresponds to an ordered
pair of vertices ði; jÞ 2 V � V, where i and j are the initial and ter-
minal vertices of the edge ‘. In this case, ‘ is incident into j and
incident out of i. Finally, we say that G is strongly (respectively,
weakly) connected if for every ordered pair of vertices (i, j), i 6¼ j,
there exists a directed (respectively, undirected) path, that is, a
directed (respectively, undirected) sequence of arcs, leading from
i to j.

The in-neighbors and out-neighbors of node i are, respectively,

defined as N inðiÞ¢fj 2 V : ðj; iÞ 2 Eg and N outðiÞ¢fj 2 V :
ði; jÞ 2 Eg. The in-degree deginðiÞ of node i is the number of edges
incident into i, and the out-degree degoutðiÞ of node i is the num-

ber of edges incident out of i, that is, deginðiÞ¢
PN

j¼1 aji and

degoutðiÞ¢
PN

j¼1 aij. We say that the node i of a digraph G is bal-

anced if deginðiÞ ¼ degoutðiÞ, and a graph G is called balanced if

all of its nodes are balanced, that is,
PN

j¼1 aij ¼
PN

j¼1 aji; i ¼ 1;

…;N. Furthermore, we define the graph Laplacian and Perron
matrix of G as L¢D�A and P¢I � eL, respectively, where

e> 0 and D¢diag½deginð1Þ;…; deginðNÞ�.
A graph or undirected graph G associated with the adjacency

matrix A 2 RN�N is a directed graph for which the arc set is

symmetric, that is, A ¼ AT. In this case, N inðiÞ ¼ N outðiÞ¢NðiÞ
and deginðiÞ ¼ degoutðiÞ¢degðiÞ; i ¼ 1;…;N. Furthermore, in
this case, we say that G is connected if for every ordered pair of
vertices (i, j), i 6¼ j, there exists a path, that is, a sequence of arcs,
leading from i to j. A graph is all-to-all connected if every node
of G is connected to every other node of G. Finally, we denote
the value of the node i � {1,…, N} at time t (respectively, time
step k) by xiðtÞ 2 Rn (respectively, xiðkÞ 2 Rn).

In light of the above definitions, the consensus problem
involves the design of a dynamic algorithm that guarantees system
state equipartition [23,25], that is, limt!1 xiðtÞ ¼ q 2 Rn for
i¼ 1,…, N. This problem can be characterized as a network involv-
ing trajectories of a multiagent dynamical system G given by

_xiðtÞ ¼ uiðtÞ; xið0Þ ¼ xi0; t � 0; i ¼ 1;…;N (1)

uiðtÞ ¼
X

j2N inðiÞ
ðxjðtÞ � xiðtÞÞ; i ¼ 1;…;N (2)

Here, xi(t), t� 0, represents an information state and ui(t), t� 0,
represents an information control input with a distributed consen-
sus algorithm involving neighbor-to-neighbor interaction between
agents.

In this paper, we consider the continuous-time distributed con-
sensus algorithms (1) and (2) resulting in closed-loop systems of
the form [23]

_xiðtÞ ¼
X

j2N inðiÞ
ðxjðtÞ � xiðtÞÞ; xið0Þ ¼ xi0; t � 0; i ¼ 1;…;N

(3)

as well as a discrete-time distributed consensus algorithm result-
ing in closed-loop systems of the form [25]

xiðkþ 1Þ ¼ xiðkÞþ e
X

j2N inðiÞ
ðxjðkÞ� xiðkÞÞ; xið0Þ ¼ xi0; k 2Zþ;

i¼ 1;…;N (4)

where e> 0. Even though in this paper we limit our attention to a
network involving a chain of integrator multiagent dynamical sys-
tems G, the proposed framework can be readily extended to
designing low-level feedback consensus controllers for a network
involving high-order, complex multiagent dynamical systems G
(see Example 7.2 in Sec. 7).

3 Consensus Control Problem With Uncertain

Interagent Location Measurements

In this paper, we consider a multiagent network in which N
agents with a connected, undirected, and time-invariant communi-
cation graph topology reach an approximate consensus state and
we use the terminology agent state and agent location inter-
changeably. Here, we do not consider time delays and communi-
cation losses between agents. In particular, each agent i � {1,…,
N} has a sensor with accuracy r, that is, each agent i can detect
the location of the other agents with an accuracy of up to a ball of
radius r centered at the actual location of the other agents. The
approximate location of agent i as measured by agent j is given by
the set

X i ¼ fp 2 Rn : kp� xik2 	 rg; i ¼ 1;…;N

The network consensus problem considered in this paper
involves the design of a dynamic protocol that guarantees approxi-
mate system state equipartition, that is, the difference between
any two agent states decreases to below a certain threshold that is
dependent on the sensor accuracy r. Specifically, each agent i uses
an update protocol resulting in a closed-loop system similar to
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Eq. (3) or (4). However, since only approximate information of
the location of the other agents is available at any given instant of
time, the update protocol is constructed using approximate loca-
tion information only.

In particular, for a discrete-time network system, the update
protocol for a connected graph has the form

xiðk þ 1Þ 2 F iðxðkÞÞ; xið0Þ ¼ xi0; k 2 Zþ; i ¼ 1;…;N

(5)

where

F iðxðkÞÞ¢xiðkÞ þ e
X

j2N inðiÞ
ðX jðkÞ � xiðkÞÞ

x¢½xT
1 ;…; xT

N �
T
, and X j � xi denotes the set of all the vectors z 2

Rn such that z¼ y� xi with y 2 X j. Note that for the protocol
given by Eq. (4), every agent has information of the exact location
of the other agents, whereas for the protocol given by Eq. (5) only
approximate location information of the other agents is available.

To further elucidate the protocol architecture given by Eq. (5),
consider an all-to-all connected network consisting of three
agents. In this case, the update protocol for agent 1 is given by

x1ðk þ 1Þ 2 F 1ðxðkÞÞ ¼ x1ðkÞ þ eðX1ðkÞ � x1ðkÞ þ X2ðkÞ
� x1ðkÞ þ X3ðkÞ � x1ðkÞÞ

x1ð0Þ ¼ x10; k 2 Zþ

where the sets X2 � x1 and X3 � x1 are depicted in Fig. 1; that is,
the measurement of the exact location of agents 2 and 3 are uncer-
tain due to sensor measurement uncertainty or detrimental envi-
ronmental conditions.

4 Continuous-Time Consensus With a Connected

Graph Topology

In this section, we consider the continuous-time consensus
problem over an undirected communication network with a con-
nected graph topology. We assume that only approximate infor-
mation of the location of neighboring agents is available at any
given instant of time with the ith agent uncertainty satisfying
kdiðtÞk2 	 r; t � 0, for i¼ 1,…, N. Here, we assume that the class
of uncertainties we consider does not affect the graph topology
(see, for example, Ref. [21] for a class of uncertainties affecting
the communication graph topology). In particular, we consider the
update protocol for agent i given by

_xiðtÞ ¼
X

j2N ðiÞ
ðzjðtÞ � ziðtÞÞ; xið0Þ ¼ xi0; t � 0; i ¼ 1;…;N

(6)

where

zjðtÞ � ziðtÞ¢ðxjðtÞ � djðtÞÞ � ðxiðtÞ � diðtÞÞ

In this case, it follows from Eq. (6) that

_xiðtÞ¼
X

j2N ðiÞ
ðxjðtÞ�xiðtÞÞþ

X
j2NðiÞ

ðdiðtÞ�djðtÞÞ; xið0Þ¼ xi0; t�0;

i¼1;…;N

or, equivalently, in compact form

_xðtÞ ¼ �~LxðtÞ þ ~LdðtÞ; xð0Þ ¼ x0; t � 0 (7)

where ~L¢In 
 L 2 RnN�nN ; L 2 RN�N denotes the graph Lapla-

cian, 
 denotes Kronecker product, x¢½x1
1;…;x1

N ;…;xn
1;…;xn

N �
T;

d¢½d1
1 ;…;d1

N ;…;dn
1 ;…;dn

N �
T
, and xj

i and dj
i denote the jth compo-

nent of xi and di, respectively.
Although our results can be directly extended to the case of Eq.

(7), for simplicity of exposition, we will focus on individual agent
states evolving in R (i.e., n¼ 1). In this case, Eq. (7) becomes

_xðtÞ ¼ �LxðtÞ þ LdðtÞ; xð0Þ ¼ x0; t � 0 (8)

For the statement of the next result, let eN¢½1;…; 1�T denote the
ones vector of order N and x¢ð1=NÞeT

Nx. Furthermore, recall that
the Laplacian of an undirected connected graph is a symmetric
positive semidefinite matrix with a single zero eigenvalue [25];
specifically, the eigenvalues of the graph Laplacian are given by
0 ¼ kminðLÞ¢k1ðLÞ < k2ðLÞ 	 k3ðLÞ 	 � � � 	 kNðLÞ¢kmaxðLÞ.
Hence, the Schur decomposition of �L is given by �L ¼ PRRPT

R,
where PR¢½p1;…; pN�1; ð1=

ffiffiffiffi
N
p
ÞeN �, with pi 2 RN ; i ¼ 1;…;

N � 1

R¢
R0 0ðN�1Þ�1

01�ðN�1Þ 0

� �

and R0 2 RðN�1Þ�ðN�1Þ is Hurwitz.
THEOREM 4.1: Consider an undirected network of N agents with

a connected graph topology given by Eq. (8). Then,

lim sup
t!1

kx tð Þ � eNx tð Þk2 	
kN Lð Þ

ffiffiffiffi
N
p

r

k2 Lð Þ

Proof. First, define dðtÞ¢xðtÞ � eNxðtÞ and note that

d

dt

1

N
eT

Nx tð Þ
� �

¼ 1

N
eT

N �Lx tð Þ þ Ld tð Þð Þ ¼ 0N

where we used the fact that LeN ¼ 0N and L ¼ LT. Hence,
xðtÞ ¼ ð1=NÞeT

NxðtÞ ¼ ð1=NÞeT
Nxð0Þ ¼ x; t � 0, which shows that

the centroid of the network does not change over time in the pres-
ence of time-varying interagent measurement uncertainties.

Next, differentiating d(t) with respect to time yields

_dðtÞ ¼ _xðtÞ � eN
_xðtÞ

¼ �LxðtÞ þ LdðtÞ
¼ �L½dðtÞ þ eNxðtÞ� þ LdðtÞ
¼ �LdðtÞ þ LdðtÞ; dð0Þ ¼ d0; t � 0 (9)

Introducing the transformation qðtÞ¢PT
RdðtÞ, it follows from Eq.

(9) that

_qðtÞ ¼ PT
R

_dðtÞ
¼ �PT

RLPRPT
RdðtÞ þ PT

RLPRPT
RdðtÞ

¼ �PT
RLPRqðtÞ þ PT

RLPRdðtÞ; qð0Þ ¼ q0; t � 0
Fig. 1 Visualization of sets X22x1 and X32x1 used in agent’s
1 update map
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where dðtÞ¢PT
RdðtÞ, and hence

_qðtÞ ¼ R0 0ðN�1Þ�1

01�ðN�1Þ 0

� �
½qðtÞ � dðtÞ�; qð0Þ ¼ q0; t � 0

(10)

Now, it follows from Eq. (10) that

_q1ðtÞ ¼ R0q1ðtÞ � R0d1ðtÞ; q1ð0Þ ¼ q10; t � 0 (11)

_q2ðtÞ ¼ 0; q2ð0Þ ¼ q20 (12)

where

q1ðtÞ¢½ IðN�1Þ�ðN�1Þ 0ðN�1Þ�1 �qðtÞ;
d1ðtÞ¢½ IðN�1Þ�ðN�1Þ 0ðN�1Þ�1 �dðtÞ

and q2 2 R. Furthermore, note that q20¼ 0 since eT
NdðtÞ ¼ eT

NxðtÞ
�ð1=NÞeT

NeNeT
NxðtÞ ¼ 0.

Next, consider the Lyapunovlike function V : RðN�1Þ ! R
given by Vðq1Þ ¼ qT

1 Sq1, where S ¼ ST > 0; S 2 RðN�1Þ�ðN�1Þ,
satisfies

0 ¼ RT
0 Sþ SR0 þ Q (13)

with Q¼QT> 0 and Q 2 RðN�1Þ�ðN�1Þ. Now, note that the deriv-
ative of V(q1) along the trajectories of Eq. (11) is given by

_Vðq1ðtÞÞ¼�qT
1 ðtÞQq1ðtÞ�2qT

1 ðtÞSR0d1ðtÞ
	�kminðQÞkq1ðtÞk2

2þ2rmaxðSR0Þ
�rmaxð½ IðN�1Þ�ðN�1Þ 0ðN�1Þ�1 �Þ
�rmaxðPT

RÞkdðtÞk2kq1ðtÞk2

	�kminðQÞkq1ðtÞk2
2þ2rmaxðSR0Þ

ffiffiffiffi
N
p

rkq1ðtÞk2

¼�kq1ðtÞk2½kminðQÞkq1ðtÞk2�2rmaxðSR0Þ
ffiffiffiffi
N
p

r�; t� 0

(14)

where we used the fact that rmaxð½ IðN�1Þ�ðN�1Þ 0ðN�1Þ�1 �Þ
¼ 1; rmaxðPT

RÞ ¼ 1, and kdðtÞk2 	
ffiffiffiffi
N
p

r; t � 0.
Next, it follows from Eq. (14) that _Vðq1ðtÞÞ 	 0 for kq1ðtÞk2 �

ðð2rmaxðSR0Þ
ffiffiffiffi
N
p

rÞ=ðkminðQÞÞÞ¢b and t� 0, and hence, q1(t),
t� 0, is decreasing for kq1ðtÞk2 > b. Moreover, since _q2ðtÞ ¼ 0;
t � 0, and q2(0)¼ 0, q2(t)¼ 0 for all t� 0. Hence, it follows from
the definition of q(t) and Eq. (14) that

kdðtÞk2 ¼
q1ðtÞ
q2ðtÞ

� �����
����

2

¼ kq1ðtÞk2 	 b

as t ! 1. Now, setting Q¼�R0 it follows from Eq. (13) that
S ¼ ð1=2ÞIðN�1Þ, and hence, kq1ðtÞk2 ¼ kxðtÞ � eNxk2 	 b; t � 0,
where

b ¼ 2rmax 1=2ð ÞR0ð Þ
ffiffiffiffi
N
p

r

kmin �R0ð Þ ¼ kN Lð Þ
ffiffiffiffi
N
p

r

k2 Lð Þ
(15)

�
Remark 4.1. It is of importance to note that if all the sensor

uncertainties are identical, that is, di(t)¼ d0(t) for all i¼ 1,…, N,
then it follows from Theorem 4.1 that all the agents reach exact
agreement since in this case LdðtÞ ¼ LeNd0ðtÞ ¼ 0 in Eq. (8).

Note that since, by Theorem 4.1, lim supt!1 kxðtÞ � eNxðtÞk2

	 ððkNðLÞ
ffiffiffiffi
N
p

rÞ=ðk2ðLÞÞÞ, it follows that as the number of agents
increases the uncertainty plays a prominent effect on the system.
It is also important to note that the bound ððkNðLÞ

ffiffiffiffi
N
p

rÞ=ðk2ðLÞÞÞ
depends on the ratio of kNðLÞ and k2ðLÞ. For example, consider
a set of agents on a line graph. In this case, lim supt!1

kxðtÞ � eNxðtÞk2 	 1:41r for N¼ 2, lim supt!1 kxðtÞ � eNxðtÞk2

	 5:19r for N¼ 3, lim supt!1 kxðtÞ � eNxðtÞk2 	 11:66r for
N¼ 4, lim supt!1 kxðtÞ � eNxðtÞk2 	 21:17r for N¼ 5, and
lim supt!1 kxðtÞ � eNxðtÞk2 	 34:77r for N¼ 6. Now, consider
a set of agents on an all-to-all graph. In this case,
lim supt!1 kxðtÞ � eNxðtÞk2 	 1:41r for N¼ 2, lim supt!1 kxðtÞ
�eNxðtÞk2 	 1:73r for N¼ 3, lim supt!1 kxðtÞ � eNxðtÞk2 	
2:00r for N¼ 4, lim supt!1 kxðtÞ � eNxðtÞk2 	 2:23r for N¼ 5,
and lim supt!1 kxðtÞ � eNxðtÞk2 	 2:44r for N¼ 6.

It is clear from the previous examples that lim supt!1
kxðtÞ � eNxðtÞk2 increases with the size of the network. It is also
interesting to note that a network designer can introduce addi-
tional connectivity between of agents to keep the bound on
lim supt!1 kxðtÞ � eNxðtÞk2 small as the size of the network is
increased. This is clearly demonstrated in the above examples,
wherein less conservative bounds are obtained for an all-to-all
graph topology, which has a higher degree of connectivity
between agents as compared to agents with a line graph topology.

Next, we apply Theorem 4.1 to an all-to-all connected graph
network. Note that in this case, L ¼ NIN � EN , where EN¢eNeT

N
denotes the ones matrix of order N�N. Since rank EN¼ 1, EN has
only one nonzero eigenvalue equal to N with corresponding eigen-
vector eN. Next, note that

det½kIN � L� ¼ det½kIN � ðNIN � ENÞ� ¼ det½ðk� NÞIN þ EN �

Hence, the eigenvalues of L are the eigenvalues of �EN shifted
by N, that is, spec(�EN)¼ {0, N,…, N}. Now, with k2ðLÞ
¼ � � � ¼ kNðLÞ ¼ N, it follows from Theorem 4.1 that
lim supt!1 kxðtÞ � eNxk2 	

ffiffiffiffi
N
p

r.
Alternatively, we can arrive at the same result directly by con-

sidering the update protocol for the ith agent given by

_xi tð Þ ¼ 1

N

XN

j¼1

xj tð Þ � dj tð Þ
� 	

� xi tð Þ � di tð Þð Þ

 �

¼ x tð Þ � xi tð Þ � d tð Þ þ di tð Þ
xi 0ð Þ ¼ xi0; t � 0; i ¼ 1;…;N

(16)

where xðtÞ¢ð1=NÞ
PN

j¼1 xjðtÞ � x and dðtÞ¢ð1=NÞ
PN

j¼1 djðtÞ.
First, note that it can be shown that lim supt!1 kxiðtÞ � xjðtÞk2 	
2r for every i, j¼ 1,…, N.

To see this, for i, j¼ 1,…, N, it follows from Eq. (16) that

d

dt

1

2
kxi tð Þ�xj tð Þk2

2

� �

¼ xi tð Þ�xj tð Þ
� 	T d

dt
xi tð Þ�xj tð Þ
� 	

¼ xi tð Þ�xj tð Þ
� 	T

x�xi tð Þ�d tð Þþdi tð Þ� x�xj tð Þ�d tð Þþdj tð Þ
� 	
 �

¼�kxi tð Þ�xj tð Þk2
2þ xi tð Þ�xj tð Þ
� 	T

di tð Þ�dj tð Þ
� 	

	�kxi tð Þ�xj tð Þk2
2þ2rkxi tð Þ�xj tð Þk2

xi 0ð Þ�xj 0ð Þ¼xi0�xj0; t�0

where the last inequality follows from the fact that

kdiðtÞ � djðtÞk2 	 kdiðtÞk2 þ kdjðtÞk2 	 2r; t � 0

Hence, kxiðtÞ � xjðtÞk2 is a decreasing function of time as long as
kxiðtÞ � xjðtÞk2 > 2r; t � 0. Now, it follows that kxiðtÞ � xjðtÞk2

	 2r as t!1 for all i, j¼ 1,…, N.
Next, since xðtÞ � x, it follows that kxiðtÞ � xk2 	 r as t!1

for all i¼ 1,…, N. Furthermore, since

kxðtÞ � eNxk2
2 ¼

XN

i¼1

kxiðtÞ � xk2
2 	 Nr2
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as t!1, it follows that lim supt!1 kxðtÞ � eNxk2 	
ffiffiffiffi
N
p

r, which
is identical to the result obtained by applying Theorem 4.1 directly.

5 Discrete-Time Consensus With a Connected

Graph Topology

In this section, we consider the discrete-time consensus prob-
lem over an undirected network with a connected graph topology.
Once again, we assume that only approximate information of the
location of neighboring agents is available at any given instant of
time with the ith agent uncertainty satisfying kdiðkÞk2 	 r;
k 2 Zþ, for i¼ 1,…, N. In particular, we consider the update pro-
tocol for agent i given by

xiðkþ 1Þ ¼ xiðkÞ þ e
X

j2NðiÞ
ðzjðkÞ � ziðkÞÞ; xið0Þ ¼ xi0; k 2 Zþ;

i ¼ 1;…;N (17)

where

zjðkÞ � ziðkÞ¢ðxjðkÞ � djðkÞÞ � ðxiðkÞ � diðkÞÞ
and e> 0. In this case, it follows from Eq. (17) that

xiðk þ 1Þ ¼ xiðkÞ þ e
X

j2N ðiÞ
ðxjðkÞ � xiðkÞÞ

þ e
X

j2N ðiÞ
ðdiðkÞ � djðkÞÞ; xið0Þ ¼ xi0;

k 2 Zþ; i ¼ 1;…;N

or, equivalently, in compact form

xðk þ 1Þ ¼ ~PxðkÞ þ e~LdðkÞ; xð0Þ ¼ x0; k 2 Zþ (18)

where ~L¢In 
 L 2 RnN�nN ; ~P¢In 
 P 2 RnN�nN ; L 2 RN�N

denotes the graph Laplacian, P¢IN � eL 2 RN�N denotes the

Perron matrix, x¢½x1
1;…; x1

N ;…; xn
1;…; xn

N �
T; d¢½d1

1 ;…; d1
N ;…;

dn
1 ;…; dn

N �
T
, and xj

i and dj
i denote the jth component of xi and di,

respectively.
Although our results can be directly extended to the case of Eq.

(18), once again, for simplicity of exposition, we will focus on
individual agent states evolving in R (i.e., n¼ 1). In this case, Eq.
(18) becomes

xðk þ 1Þ ¼ PxðkÞ þ eLdðkÞ; xð0Þ ¼ x0; k 2 Zþ (19)

For the statement of the next result, define Dmax¢maxi2f1;…;Ng
degðiÞ.

THEOREM 5.1. Consider an undirected network of N agents with
a connected graph topology given by Eq. (19) and let
e 2 ð0; ð1=ðDmaxÞÞÞ. Then,

lim sup
k!1

kx kð Þ � eNx kð Þk2 	
ekmax Lð Þ

ffiffiffiffi
N
p

r

1� q P � 1
N eNeT

N

� 	
Proof. First, define dðkÞ¢xðkÞ � eNxðkÞ and note that xðk þ

1Þ ¼ ð1=NÞeT
Nxðk þ 1Þ ¼ ð1=NÞ eT

NðxðkÞ þ eð�LxðkÞ þ LdðkÞÞ
¼ xðkÞ, where we used the fact that LeN ¼ 0N and L ¼ LT.
Hence, xðkÞ ¼ ð1=NÞeT

NxðkÞ ¼ ð1=NÞeT
Nxð0Þ ¼ x; k 2 Zþ, which

shows that the centroid of the network does not change over time in
the presence of time-varying interagent measurement uncertainties.
Next, evaluating dðk þ 1Þ; k 2 Zþ, yields

d k þ 1ð Þ ¼ x k þ 1ð Þ � eNx k þ 1ð Þ

¼ Px kð Þ þ eLd kð Þ � 1

N
eNeT

N Px kð Þ þ eLd kð Þ½ �

¼ P x kð Þ � 1

N
eNeT

Nx kð Þ
� �

þ I � 1

N
eNeT

N

� �
eLd kð Þ

¼ P � 1

N
eNeT

N

� �
d kð Þ þ eLd kð Þ; d 0ð Þ ¼ d0; k 2 Zþ

(20)

Now, considering a Lyapunovlike function V : RðN�1Þ ! R
given by VðdÞ ¼ kdk2 and recalling that qðMÞ ¼ kMk2 for an
arbitrary symmetric matrix M, it follows from Eq. (20) that

V d k þ 1ð Þð Þ ¼ kd k þ 1ð Þk2

	 P � 1

N
eNeT

N

� �
d kð Þ

����
����

2

þ keLd kð Þk2

	 q P � 1

N
eNeT

N

� �
kd kð Þk2 þ ekmax Lð Þ

ffiffiffiffi
N
p

r

¼ q P � 1

N
eNeT

N

� �
þ ekmax Lð Þ

ffiffiffiffi
N
p

r

kd kð Þk2

 !
V d kð Þð Þ;

k 2 Zþ ð21Þ

Hence, it follows from Eq. (21) that Vðdðk þ 1ÞÞ < VðdðkÞÞ
for qðP � ð1=NÞeNeT

NÞ þ ððekmaxðLÞ
ffiffiffiffi
N
p

rÞ=ðkdðkÞk2ÞÞ < 1 and
k 2 Zþ. Now, recalling that all the eigenvalues of the Perron
matrix of an undirected connected graph with e 2 ð0; ð1=ðDmaxÞÞÞ
are located in the unit circle and only one eigenvalue has an abso-
lute value of 1 [27], it follows that qðP � ð1=NÞeNeT

NÞ < 1.
Hence, it follows from Eq. (21) that

kd kð Þk2 	
ekmax Lð Þ

ffiffiffiffi
N
p

r

1� q P � 1
N eNeT

N

� 	
as k!1. �

Remark 5.1. Note that

det kIN � P � 1

N
EN

� �� �
¼ det kIN � IN � eL � 1

N
EN

� �� �

¼ det k� 1ð ÞIN � �eL � 1

N
EN

� �� �
(22)

Now, since EN has only one nonzero eigenvalue equal to N with
the corresponding eigenvector eN and L has only one zero eigen-
value with the corresponding eigenvector eN, it follows that
specð�eL � ð1=NÞENÞ ¼ f�1;�ek2ðLÞ;…;�ekNðLÞg. Thus, it
follows from Eq. (22) that specðP � ð1=NÞENÞ ¼ f0;
ð1 � ek2ðLÞÞ;…; ð1 � ekNðLÞÞg. Hence, qðP � ð1=NÞeNeT

NÞ ¼
maxfjð1 � ek2ðLÞÞj; j ð1 � ekNðLÞÞjg.

Next, we apply Theorem 5.1 to an all-to-all connected graph
network. Note that in this case, L ¼ NIN � EN . Now, recall that
k2ðLÞ ¼ � � � ¼ kNðLÞ ¼ N, and hence, for e 2 ð0; ð1=NÞÞ, it fol-
lows from Theorem 5.1 and Remark 5.1 that

lim sup
k!1

kx kð Þ � eNx kð Þk2 	
ekmax Lð Þ

ffiffiffiffi
N
p

r

1� q P � 1
N eNeT

N

� 	 ¼ eN
ffiffiffiffi
N
p

r

1� 1� eNð Þ

¼
ffiffiffiffi
N
p

r

Alternatively, we can arrive at the same result directly by con-
sidering the update protocol for the ith agent given by

xi kþ1ð Þ2a
1

N

XN

j¼1

X j kð Þþ 1�að Þxi kð Þ¼Bar ax kð Þð Þþ 1�að Þxi kð Þ

xi 0ð Þ¼ xi0; k2Zþ; i¼1;…;N

(23)

where a � (0, 1] and xðkÞ¢ð1=NÞ
PN

i¼1 xiðkÞ � x. First, note that
it can be shown that lim supk!1 kxiðkÞ � xjðkÞk2 	 2r for every i,
j¼ 1,…, N.

To see this, for i, j¼ 1,…, N, it follows from Eq. (23) that

xiðk þ 1Þ � xjðk þ 1Þ 2 BarðaxaveðkÞÞ � BarðaxaveðkÞÞ
þ ð1� aÞðxiðkÞ � xjðkÞÞ; k 2 Zþ (24)

Journal of Dynamic Systems, Measurement, and Control SEPTEMBER 2017, Vol. 139 / 091003-5

Downloaded From: http://dynamicsystems.asmedigitalcollection.asme.org/ on 06/15/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



which implies

kxiðk þ 1Þ � xjðk þ 1Þk2 	 ð1� aÞkxiðkÞ � xjðkÞk2 þ 2ra (25)

Hence, since kxiðkþ1Þ� xjðkþ1Þk2	kxiðkÞ� xjðkÞk2 for kxiðkÞ
�xjðkÞk2� 2r, it follows that kxiðkÞ�xjðkÞk2	 2r as k ! 1 for
all i, j¼1,…, N. Now, using identical arguments as in Sec. 4, it
follows that limsupk!1kxðkÞ�eNxk2	

ffiffiffiffi
N
p

r, which is identical
to the result obtained by using Theorem 5.1 directly.

6 A Set-Valued Analysis Approach to Discrete-Time

Consensus

In this section, we present a set-valued approach for the
discrete-time consensus protocol considered in Sec. 5. Due to its
mathematical generality, set-valued analysis can prove beneficial
for generalizing our results to nonlinear network architectures
with a dynamic network topology. Before presenting the main
results of this section, we require some additional notation and
definitions. Specifically, consider the difference inclusion

xðk þ 1Þ 2 FðxðkÞÞ; xð0Þ ¼ x0; k 2 Zþ (26)

where, for every k 2 Zþ; xðkÞ 2 Rn; F : Rn ! 2Rn

is a set-
valued map that assigns sets to points, and 2Rn

denotes the collec-
tion of all the subsets of Rn. The set-valued map F has a non-
empty value at x if FðxÞ 6¼1. It is assumed that F has nonempty
values for ever x 2 Rn. Hence, maximal solutions to Eq. (26) are
complete, and consequently, by a solution of Eq. (26) with initial
condition x(0)¼ x0 we mean a function x : Zþ ! Rn that satisfies
Eq. (26).

The set-valued map F : Rn ! 2Rn

is outer semicontinuous at x
if, for every sequence fxig1i¼0 such that limi!1 xi ¼ x, every con-

vergent sequence fyig1i¼0 with yi 2 FðxiÞ satisfies limi!1 yi

2 FðxÞ. F is continuous at x if F is outer semicontinuous at x
and, for every y 2 FðxÞ and every convergent sequence fxig1i¼0,
there exists yi 2 FðxiÞ such that limi!1 yi ¼ y. FðxÞ is locally
bounded at x if there exists a neighborhood N of x such that
FðN Þ ¼ [z2NFðzÞ is bounded. If F has compact values and is
locally bounded at x, then F is upper semicontinuous at x, that is,
for every e> 0, there exists d> 0 such that, for all z 2 Rn satisfy-

ing kz� xk < d; FðzÞ � FðxÞ þ Beð0Þ, where Beð0Þ denotes the
closure of Beð0Þ.

Given the function c : Zþ ! Rn, the positive limit set of c is
the set X(c) of points y 2 Rn for which there exists an increasing
divergent sequence fkng1n¼0 satisfying limn!1 cðknÞ ¼ y. We
denote the positive limit set of a solution w(�) of Eq. (26) by X(w).
The positive limit set of a bounded solution of Eq. (26) is non-
empty, compact, and weakly forward invariant with respect to Eq.
(26) [28].

The following theorem gives a general set-valued invariance
principle using the set-valued analysis tools developed in Ref. [4]
and is necessary for the main result of this section.

THEOREM 6.1. Consider the difference inclusion given by Eq.
(26). Assume that F : Rn ! 2Rn

is outer semicontinuous and
locally bounded with nonempty values for all x 2 Rn. Let V :
Rn ! 2Rn

be a continuous set-valued map and letM� Rn be a
closed set such that the following statements hold:

(i) VðFðxÞÞ � VðxÞ for every x 2 Rn and
(ii) if V (y)¼V(x) for some y 2 FðxÞ, then x 2M.

Then every bounded solution x : Zþ ! Rn of Eq. (26) con-
verges toM, that is, limk!1 distðxðkÞ;MÞ ¼ 0.

Proof. It follows from (i) that Vðwðk þ 1ÞÞ � VðwðkÞÞ for every

solution wðkÞ; k 2 Zþ, of Eq. (26). Thus, the sequence of closed

sets fVðwðkÞg1k¼0 is nonincreasing, and hence, limk!1 VðwðkÞÞ ¼
\1k¼0VðwðkÞÞ¢V [28]. Next, note that since wðkÞ; k 2 Zþ, is
bounded, X(w) is nonempty. Now, for all x � X(w), it follows

from the definition of X(w) and the continuity of V that VðxÞ ¼ V.
Moreover, the outer semicontinuity of F ensures that X(w) is
weakly positively (and negatively) invariant. Specifically, for
every x � X(w), there exists y 2 FðxÞ such that y � X(w). Thus,
for every x � X(w), there exists y 2 FðxÞ such that VðxÞ
¼ VðyÞ ¼ V, and hence, XðwÞ � M. Finally, since distðwðkÞ;
XðwÞÞ ! 0 as k! 0, it follows that wðkÞ !M as k!1. �

Next, we illustrate Theorem 6.1 by applying it to the network
system given by Eq. (23). The conclusions of the proposition
below are weaker than the results obtained in Sec. 5. However, as
noted above, the set-valued approach can prove beneficial for non-
linear network architectures where direct computation relying on
a linear structure is not possible as well as for partial graph con-
nectivity structures with directed information flow.

PROPOSITION 6.1. Consider a network of N agents with an all-to-
all graph connectivity given by Eq. (23) and let x(�) be a bounded
solution of Eq. (23). Then, lim supk!1 kxiðkÞ � xjðkÞk2 	 4r for
every i, j¼ 1, …, N.

Proof. Let the set-valued map V : Rn ! 2Rn

be given by

VðxÞ ¼ Bd1ðxÞðxaveÞ � � � � � BdNðxÞðxaveÞ

where, for every i � {1,…, N}

Fig. 2 Initial network configuration of ten agents with sensor
accuracy of radius r 5 1

Fig. 3 Network configuration of ten agents with sensor accu-
racy of radius r 5 1 at t 5 3.5 s
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diðxÞ ¼
kxi � xavek2; kxi � xavek2 � 2r

2r; kxi � xavek2 	 2r

�

and “�” denotes Cartesian product. Note that V is continuous and
has closed and bounded values. Next, it can be shown using a sim-
ilar argument as in Sec. 5 that

xiðkþ1Þ�xaveðkþ1Þ2BarðaxaveðkÞÞ�BarðxaveðkÞÞþð1�aÞxiðkÞ;
k2Zþ

which implies

kxiðk þ 1Þ � xaveðk þ 1Þk2 	 ð1� aÞkxiðkÞ � xaveðkÞk2 þ 2ra

Hence, the function di(�) decreases for kxi � xavek2 > 2r and
remains constant for kxi � xavek2 	 2r; i 2 f1;…;Ng, and hence,
conditions (i) and (ii) of Theorem 6.1 are satisfied. Now, it follows
from Theorem 6.1 that every bounded solution xi(�), i � {1,…, N},
converges to B2rðxaveÞ. Hence, kxiðkÞ � xjðkÞk2 	 4r as k ! 1
for all i, j¼ 1,…, N. �

7 Illustrative Numerical Examples

In this section, we present two illustrative numerical examples
to demonstrate the efficacy of the proposed framework.

Example 7.1. In this example, we consider a random network of
ten agents with connected, undirected, and time-invariant

communication graph network topologies and with agent dynam-
ics given by Eq. (8). Furthermore, we assume that the ith agent
uncertainty is modeled as a standard white noise process. Figures
2–5 show the initial, intermediate, and final network configura-
tions, as well as kxðtÞ � eNxk2 versus time, of the network of
agents when the agents have sensor accuracy of radius 1,
k2ðLÞ ¼ 1:5568, and kNðLÞ ¼ 7:5704. The circle indicates the
location of the initial centroid of the agents. Note that
lim supt!1 kxðtÞ � eNxk2 	 ððkNðLÞ

ffiffiffiffi
N
p

rÞ=ðk2ðLÞÞÞ ¼ 15:3775.
Alternatively, Figs. 6–9 show the initial, intermediate, and final

network configurations, as well as kxðtÞ � eNxk2 versus time, of
the network of agents when the agents have sensor accuracy of
radius 1, k2ðLÞ ¼ 0:1172, and kNðLÞ ¼ 4:3721. Once again, the
circle indicates the location of the initial centroid of the agents.
Note that lim supt!1 kxðtÞ � eNxk2 	 ððkNðLÞ

ffiffiffiffi
N
p

rÞ=ðk2ðLÞÞÞ
¼ 117:9675.

Finally, Figs. 10–12 show the initial, intermediate, and final
configurations, respectively, of the network of ten agents when
agents have sensor accuracy of radius 0.5 and the network is all-
to-all connected. The simulation shows that the agents reach a
consensus set with diameter less than 2r¼ 1. The circle indicates
a set with diameter 1 centered at the initial centroid of the agents.

Example 7.2. In this example, we use the proposed framework
for pitch rate consensus of a set of commercial airplanes in the
presence of inaccurate sensor measurements, which are modeled
as a standard white noise process coupled with sinusoidal time-

Fig. 4 Network configuration of ten agents with sensor accu-
racy of radius r 5 1 at t 5 7.5 s

Fig. 5 Plot of kxðtÞ2eN x k2 versus time

Fig. 6 Initial network configuration of ten agents with sensor
accuracy of radius r 5 1

Fig. 7 Network configuration of ten agents with sensor accu-
racy of radius r 5 1 at t 5 3.5 s
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varying exogenous disturbances. Specifically, consider the multi-
agent system representing the controlled longitudinal motion of
three Boeing 747 airplanes linearized at an altitude of 40 kft and a
velocity of 774 ft/s [29] given by

_niðtÞ ¼ AniðtÞ þ B�iðtÞ; nið0Þ ¼ ni0 ; i ¼ 1; 2; 3; t � 0

(27)

where

niðtÞ ¼ ½vxi
ðtÞ; vzi

ðtÞ; qiðtÞ; hei
ðtÞ�T 2 R4; t � 0 (28)

is a state vector of agent i, i¼ 1, 2, 3, with vxi
ðtÞ; t � 0, represent-

ing the x-body-axis component of the velocity of the airplane center
of mass with respect to the reference axes (in ft/s); vzi

ðtÞ; t � 0,
representing the z-body-axis component of the velocity of the air-
plane center of mass with respect to the reference axes (in ft/s);
qi(t), t� 0, representing the y-body-axis component of the angular
velocity of the airplane (pitch rate) with respect to the reference
axes (in crad/s); hei

ðtÞ; t � 0, representing the pitch Euler angle of
the airplane body axes with respect to the reference axes (in crad);
�i(t), t� 0, representing the elevator control input (in crad); and

A¼

�0:003 0:039 0 �0:332

�0:065 �0:319 7:74 0

0:020 �0:101 �0:429 0

0 0 1 0

2
664

3
775; B¼

0:010

�0:180

�1:16

0

2
664

3
775
(29)

Here, we utilize the two-level hierarchical controller proposed
in Ref. [30], which is composed of a lower-level controller for
command following and a higher-level controller for pitch rate
consensus of the three airplanes given by Eq. (27). To address the
lower-level controller design, let xi(t), i¼ 1, 2, 3, t� 0, be a com-
mand generated by Eq. (6) (i.e., the guidance command) and let
si(t), i¼ 1, 2, 3, t� 0, denote the integrator state satisfying

Fig. 8 Network configuration of ten agents with sensor accu-
racy of radius r 5 1 at t 5 7.5 s

Fig. 9 Plot of kxðtÞ2eN x k2 versus time

Fig. 10 Initial network configuration of ten agents with sensor
accuracy of radius r 5 0.5

Fig. 11 Network configuration of ten agents with sensor accu-
racy of radius r 5 0.5 at t 5 3.5 s

Fig. 12 Network configuration of ten agents with sensor accu-
racy of radius r 5 0.5 at t 5 7.5 s
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Fig. 13 Agent guidance state (xi(t), t�0), kxðtÞ2eN x k2, pitch rate (qi(t), t�0), guidance input
(ui(t), t�0), and elevator control (mi(t), t�0) responses for the three airplanes on a line graph
in the presence of inaccurate sensor measurements (solid, dashed, and dotted lines denote
the responses for the first, second, and third airplanes, respectively)

Fig. 14 Agent guidance state (xi(t), t�0), kxðtÞ2eN x k2, pitch rate (qi(t), t�0), guidance input
(ui(t), t�0), and elevator control (mi(t), t�0) responses for the three airplanes on an all-to-all
graph in the presence of inaccurate sensor measurements (solid, dashed, and dotted lines
denote the responses for the first, second, and third airplanes, respectively)
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_siðtÞ ¼ EniðtÞ � xiðtÞ; sið0Þ ¼ si0
; i ¼ 1; 2; 3; t � 0 (30)

where E¼ [0, 0, 1, 0]. Now, defining the augmented state
nðtÞ¢½nTðtÞ; siðtÞ�T, Eqs. (27) and (30) give

_niðtÞ¼AniðtÞþB1�iðtÞþB2xiðtÞ; nið0Þ¼ ni0 ; i¼ 1;2;3; t� 0

(31)

where

A¢
A 0

E 0

� �
; B1¢

B
0

� �
; B2¢

0

�I

� �
(32)

Furthermore, let the elevator control input be given by

�ðtÞ ¼ �KnðtÞ;
K ¼ ½�0:0157; 0:0831;�4:7557;�0:1400;�9:8603�; t � 0

(33)

which is designed using an optimal linear-quadratic regulator.
For the higher-level controller design, we use Eq. (6) to gener-

ate xi(t), t� 0, that has a direct effect on the lower-level controller
design to achieve pitch rate consensus. Specifically, the lower-
level controller for each agent allows for the tracking of xi(t),
t� 0, whereas the higher-level controllers allow for the imple-
mentation of Eq. (6). Figures 13 and 14 present the results for
all the initial conditions set to zero and x1(0)¼ 10, x2(0)¼ 2.5,
and x3(0)¼ 5. In particular, Fig. 13 shows that the three airplanes
on a line graph achieve approximate pitch rate consensus in
the presence of inaccurate sensor measurements with r¼ 1, where
the collective behavior of these airplanes satisfies lim supt!1
kxðtÞ � eNxk2 	 ððkNðLÞ

ffiffiffiffi
N
p

rÞ=ðk2ðLÞÞÞ ¼ 5:1962. Figure 14
shows a similar collective behavior performance for the airplanes
for an all-to-all connected graph with r¼ 1, where lim supt!1
kxðtÞ � eNxk2 	 ððkNðLÞ

ffiffiffiffi
N
p

rÞ=ðk2ðLÞÞÞ ¼ 1:7321 holds.

8 Conclusion

In this paper, we considered the problem of approximate con-
sensus for multiagent systems with a connected, undirected, and
time-invariant communication graph topology with uncertain
interagent measurements, wherein the agents can detect the loca-
tion of the neighboring agents only up to an accuracy of a ball of
radius r. In addition, we presented a formulation of the problem
using set-valued maps and a set-valued invariance principle. Since
the agent dynamics are an element of a set-valued convex map,
the set to which the agents converge is time-varying unless a colli-
sion avoidance strategy or a stopping criteria is enforced. Future
extensions will focus on using the proposed set-valued framework
to develop control design protocols for static and dynamic nonlin-
ear networks with directed graph topologies and uncertain inter-
agent measurements. Furthermore, we will identify multiagent
network nodes that are more prone to uncertainties using compu-
tational analysis tools.
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