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The complexity of the physiologic and inflammatory response in acute critical illness has stymied the accurate
diagnosis and development of therapies. The Society for Complex Acute Illness was formed a decade ago with
the goal of leveraging multiple complex systems approaches to address this unmet need. Two main paths of
development have characterized the society’s approach: (i) data pattern analysis, either defining the
diagnostic/prognostic utility of complexity metrics of physiologic signals or multivariate analyses of
molecular and genetic data and (ii) mechanistic mathematical and computational modeling, all being
performed with an explicit translational goal. Here, we summarize the progress to date on each of these
approaches, along with pitfalls inherent in the use of each approach alone. We suggest that the next decade
holds the potential to merge these approaches, connecting patient diagnosis to treatment via mechanism-
based dynamical system modeling and feedback control and allowing extrapolation from physiologic signals
to biomarkers to novel drug candidates. As a predicate example, we focus on the role of data-driven and
mechanistic models in neuroscience and the impact that merging these modeling approaches can have on
general anesthesia.
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1. Equal but separate: The state of complexity in acute critical illness

Acute critical illness can be defined as the constellation of acute
inflammatory and pathophysiologic consequences that occur subse-
quent to sepsis, trauma/hemorrhage, and other acute events such as
pancreatitis that can be differentiated from acute critical illnesses that
do not require critical care (such as acute psychiatric illness). Sepsis
alone is responsible for more than 215000 deaths in the United States
per year and an annual health care cost of more than $16 billion [1],
whereas trauma/hemorrhage is the most common cause of death for
young people in the United States, costing more than $400 billion
annually [2-4].

There is currently not a single drug approved by the US Food and
Drug Administration specifically for the treatment of acute critical
illness. The one drug that had previously been approved for sepsis,
recombinant human–activated protein C, was found on a Food and
Drug Administration–mandated repeat phase III clinical trial to offer
no benefit over standard of care; this drug was subsequently removed
from the market [5,6]. We suggest that inflammation and associated
cellular, tissue, and organ dysfunction form an interconnected
complex biological system whose very architecture is both robust
and fragile [7-9]; identifying the critical control points in such systems
is extremely challenging. In addition, animal models that have formed
the primary preclinical experimental platforms have often failed to
replicate the full spectrum of human responses to infection or injury
[10-12]. Together, these factors are likely to blame for the failure of
the current reductionist paradigm for discovery of novel therapeutics
for these diseases [13].

The integrated nature of inflammatory and physiologic derange-
ments that characterize acute critical illness has largely defied a
synthetic understanding of this disease, and this complexity, which
we define as emergent behaviors and outcomes that cannot be
predicted based on an understanding of the component organs,
tissues, cells, and molecules in isolation, has hampered diagnosis
and treatment. Over the period of more than two decades, multiple
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investigators have attempted to decipher this complexity through
the adoption of computational tools that colloquially fall under the
rubric of “complex systems analyses,” which, however, are in fact,
quite different in their underlying theory and methodology [14,15].
Generally speaking, these methods can be grouped broadly into
distinct but complementary investigatory approaches. Namely,
signal processing algorithms that can discern the degree of
complexity of physiologic waveforms (e.g., heart rate variability
[HRV]), data-driven analysis of patterns at the molecular level
(e.g., bioinformatics applied to changes in messenger RNA, protein,
or various metabolites), and mechanistic mathematical and com-
putational modeling of the biological processes thought to drive
acute critical illness.

The Society for Complex Acute Illness ([SCAI], originally called the
Society for Complexity in Acute Illness), was established in 2004 to
provide an organizational structure and a forum to facilitate the
integration of these complex systems methods into the field of acute
critical illness. Two recent annual international conferences on
complex acute critical illness—the 11th annual meeting in Ottawa,
Canada and the 12th annual meeting in Budapest, Hungary—
highlighted the international scope, clinical achievements, and
scientific advances made in furthering complex systems analysis in
acute critical illness (see the Journal of Critical Care, volume 28, issues
1 and 6, respectively). These conferences also demonstrated the
robustness, durability, and maturity of this field. Society for Complex
Acute Illness members have conclusively demonstrated that metrics
such as HRV can alert caregivers to impending clinical complications
of acutely ill patients; have highlighted examples of informatics-based
analyses of networks and principal drivers of outcomes in cells,
animals, and patients; and have demonstrated the potential utility of
mechanistic modeling for simulating clinical trials and predicting the
inflammatory trajectories of individuals.

Despite this encouraging progress or perhaps because of it, there
has been a certain solidification of work in these distinct complex
systems arenas. Although such specialization and focus are inevitable
outcomes of the scientific endeavor, the simple recognition of this
phase of scientific development should trigger compensatory strate-
gies to integrate and unify what is certainly a common target of
investigation. Therefore, we suggest that the time nigh to begin to
unify and synthesize these distinct complex systems approaches to
acute critical illness. In fact, we assert that the different aforemen-
tioned approaches represent complementary viewpoints of the same
system, each with its distinct benefits but individually incapable of
providing the global view necessary to engineer effective control/
therapeutic strategies to positively affect human health.

In short, the various aspects of complex systems analysis can be
categorized as follows:

(i) Analyses of molecular and physiologic patterns: multidimen-
sional analysis of molecular/genetic data provide high-
resolution component characterization of system phenotypes,
that is, identification of the various molecular and genetic
configurations that are associated with different types and
phases of disease. Sophisticated analysis of physiologic signals,
such as heart rate, provides high-level physiologic phenotype
characterization of clinically relevant output behaviors of the
integrated biological system, that is, organ behavior and state.
These pattern-oriented data are analyzed and interpreted using
data-driven (statistically based) computational models.

(ii) Mechanistic modeling (at both the molecular and physiologic
control levels): dynamic linking between phenotypic states,
that is, how does one state (be it characterized as a physiologic
signal or a molecular/genetic configuration) transition to
another? This step is critical to the development of putative
clinically applicable control/therapeutic strategies to enhance
human health.
In this article, we outline the progress in each distinct field and
highlight the pitfalls inherent in maintaining the status quo. We then
describe a vision for linking data-driven and mechanistic models to
drive innovations in acute critical illness diagnosis and care. We cite a
predicate example from the field of neuroscience, in which data-
driven network models of the brain may be leveraged, via the
intermediacy of mechanistic mathematical and computational model-
ing, to yield novel insights into general anesthesia.

2. Data patterns: From molecules to physiology to models

The responses to severe infection and trauma/hemorrhage involve
a generalized activation and systemic expression of the host’s
inflammatory pathways—the so-called systemic inflammatory re-
sponse syndrome (SIRS). In parallel to, and at least in part driven by
SIRS, a profound physiologic dysfunction accompanies acute critical
illness. At the genomic level, it is now clear that most cell types and a
plethora of biological pathways are induced in acutely ill patients [16].
This dysfunction can be observed in the failure of organs to carry out
proper functions, and this progressive failure of the lungs, kidneys,
liver, and heart is known as the multiple organ dysfunction syndrome
(MODS). Systemic inflammatory response syndrome and MODS
evolve rapidly in sepsis and trauma. Treatment of existing MODS
beyond supportive therapy is quite difficult, so there has been a search
for therapeutic modalities that could be deployed as early as possible.

The search for early diagnostics as well as efficacious and safe
therapeutic options has been stymied by the complexity of the
underlying, dynamically coupled inflammatory and pathophysiologic
sequelae of acute critical illness. Furthermore, a notion has emerged
that reductionist approaches to such a complex system may be
inadequate to this task. Over the past decade, systems and
computational biology have emerged as an alternative to reductionist,
molecule-, pathway-, and physiologic end point–centric conceptual
frameworks. Two, heretofore parallel, approaches have evolved over
time in an attempt to address the diagnosis and therapy of acute
critical illness from a systems perspective, both of which use patterns
of information.

One area of active research involves the analysis of physiologic
signals retrievable from bedside monitoring devices, dealing with the
processing and interpretation of complex physiologic signals. Twenty
years of research in this area have led to the identification of metrics
representing loss of complexity of physiologic variability in heart rate
and breathing patterns; these metrics are finally being used for the
diagnosis of sepsis in a limited capacity [17-20]. These descriptive
methods have been used in an attempt to elucidate more precise and
potentially predictive metrics associated with clinical manifestations
of sepsis/MODS, with the hope that these metrics will also provide
some mechanistic insight into the control systems responsible for
their output.

For example, MODS has been viewed as a decoupling of the
oscillatory systems manifest in intact organ-to-organ feedback [21].
Both experimental and clinical studies have suggested that one
measure of this disrupted oscillatory coupling is reduced variability
(or increased regularity) in various physiologic signals, chief among
them being heart rate [22-24]. Time-domain analysis of HRV has
subsequently evolved as a potentially noninvasive diagnostic modal-
ity for sepsis [23,25-33]. In addition to HRV, examination of other
physiologic parameters using a complex systems approach has also
yielded valuable insights into the physiology of sepsis [34,35]. There
have been some attempts to establish anatomical correlates to the
control systems involved in organ-to-organ oscillatory coupling. In
particular, HRV data have been used indirectly to detect variability
attributed to sympathetic and parasympathetic branches of the
autonomic nervous system as well as other physiologic processes
that affect heart rate, including respiration, blood pressure, and
temperature [25].
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However, despite the demonstrated validity and usefulness of
these types of biological patterns and physiologic signal analyses,
these methods remain primarily phenomenologic in nature, in
essence connecting physiologic patterns with clinical outcome
through the use of statistical methods [36]. As in HRV, inflammation
in acute critical illness manifests in patterns evident at the genomic
[37-40], proteomic [41-44], and metabolomic [43-45] levels. The
growing number of these studies has resulted in a “data deluge [46].”
Researchers are being overwhelmed by data in large part because the
methods of choice for analysis of these data are invariably based on
statistical associations [47-54]. Such analyses may suggest principal
drivers of inflammation and MODS [54,55] and may define the
interconnected networks of mediators and signaling responses that
underlie the pathobiology of acute critical illness [56,57]. However, to
gain mechanistic insights necessary for the rational design and
development of therapeutics and potentially also for the next
generation of diagnostic applications, a precise dynamic characteri-
zation of the cellular and molecular mechanisms responsible for
generating the acute critical illness phenotype is required [58-61].

A second area of active research involves data-based or data-
driven modeling approaches that do not rely on a priori knowledge of
the internal state of the system but rather on input-output data
measured directly on the system [62-64]. Frequently used data-driven
approaches applied to biological system analysis include input-output
transfer function models [65-68], autoregressive time series analysis
[69,70], nonlinear time series, and Voltera integral series analysis
methods (such as principal component analysis [54,55,71,72]), and
network-centric models [54]. For monitoring of biological systems,
these data-driven approaches have several advantages. Because these
data-driven modeling methods are based on data and not on a priori
knowledge reflecting the complexity of the system, they only describe
the dominant (dynamic) modes as present in the data, which results
in compact model structures that can be easily implemented in
process hardware [73]. These can include, for example, intelligent
machines such as computer hardware and signal processors as well as
computer software algorithm execution. Furthermore, several time-
efficient, recursive parameter estimation methods allow these data-
driven approaches to be applied in real-time and model parameter
values to beupdated frequently,which allows for quantification of time-
varying nonlinear dynamic features of biological systems [74,75].

Models based on data-driven techniques such as principal
component analysis can suggest independent drivers of complex
biological phenomena [54,55,71,72], and there are examples in the
literature of using principal component analysis to derive key
modules of mechanistic mathematical models [72], which we discuss
in greater detail below. Network-based models can suggest how
multiple, ostensibly related variables interact with each other across
individuals, across time, or both [54,56,57,76]. Finally, in applications,
where sensors and/or measuring techniques are available for
capturing data on individuals, these data-drivenmodeling approaches
allow modeling and monitoring dynamic changes (in real time) on an
individual basis, in essence comprising a novel class of biomarkers [77].

However, there are also important limitations to be taken into
account when applying these data-driven modeling approaches.
These approaches, by definition, rely on available data and as such
are dependent on the quality of the sampled data [78]. More
specifically, measurement problems can occur on different levels. In
particular, the selection of the relevant system variables to be
measured can, in certain applications, be nontrivial. In several
applications, the system cannot be sampled at high sampling rates
resulting in aliasing or loss of dynamic information [79]. For proper
parameter estimation and model structure selection, it is important
that themeasured data contain sufficient dynamic information, which
under field or clinical conditions is not always the case. In many
applications, system data measurements are collected in real time,
and the system cannot be perturbed dynamically [70]. In certain cases,
sampling too quickly can influence the biological response of the
system [79]. Because of sensor constraints, measurement artifacts can
influence the quality of the model parameter estimation significantly
[62]. Furthermore, because datameasurements are often corrupted by
noise, appropriate preprocessing techniques and/or parameter esti-
mation is needed for reliable model estimation [64].

One of the key drawbacks of purely data-driven modeling
techniques for monitoring of biological processes is their input-
output nature, which does not provide any knowledge of the internal
state of the process. In most physical systems, the output of the
system also depends on the system’s initial state. In addition, an
input-output system description cannot deal with physical system
interconnections [80]. Hence, these methods do not provide any
direct mechanistic information about the system; rather, they are
based on association among data variables in some fashion or another
[63,81]. This concern may not present a problem when these models
are used for predicting future system behavior when a large amount
of data is available regarding the behavior of the system. However, for
monitoring the status of a system, it becomes more difficult when the
quantified model features cannot be interpreted in a biologically/
physiologicallymeaningful way [82]. As such, data-drivenmodels alone
should not be used to determine means for controlling biological
systems because the lack of biological knowledge in these models can
potentially result in control actions that harm the system [83].

Finally, it should be noted that the black-box, input-output nature
of data-driven models for biological systems can form an important
obstacle when introducing these models into practical applications
because the users (e.g., health care providers) ofmodel-based decision
software are often convinced to use the model when they understand
the biological/physiologic principles that form the basis of the models
[82]. However, despite these limitations, the results of data-driven
modeling provide a necessary link toward mechanistic modeling by
adding inference of potential causal relationships onto the molecular
configurations identified in high-throughput data.

3. Applications of mechanistic models to acute critical illness

The ultimate translational goal of biomedical research is to be able
to affect control on the biosystem to positively affect human health,
and this requires the construction of mechanistic knowledge-based
models. Dynamical systems modeling predicated on mechanistic
models, wherein an internal state model is used to describe the
system dynamics using biological and physiologic laws and system
interconnections, is of fundamental importance in the description of
physical dynamical systems. Toward this end, comprehensive com-
plex systems analysis in the study of sepsis involvesmathematical and
computational dynamical modeling at the cellular and molecular
level. In the setting of acute critical illness, we suggest that the
development of novel treatment strategies for acute critical illness
must be driven by mechanistic computational modeling [84] because
inevitably, data must be integrated to predict higher-order system
properties in a clinically relevant manner.

There are predicate examples of the utility of mechanistic models
in science. The physical sciences over the last century have made
significant progress, in large part, due to scientific investigation that
relied heavily on mathematical models of physicochemical processes
[64]. Translating that success to the biological arena, however,
presents a different level of challenge. Biological reality is very
complex, involving multiple feedback loops, nonlinear interactions,
system uncertainty, and dependence on system initial conditions as
well situation-specific rates of reactions that often necessitate large-
scale stochastic modeling. The literature contains many reports of
simplified (reduced-order) mechanistic models, including those
focused on aspects of acute inflammation, which have yielded useful
insights into the mechanisms and pathophysiology of acute critical
illness [85-88]. However, such models are at best only capable of
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general, high-level predictions, which are not sufficiently specific so as
to be testable in individual patients or in in vitro/in vivo experiments.

Alternatively, modeling biological systems in a realistic fashion
often necessitates complex, large-scale models describing the under-
lying system dynamics [89]. An important advantage of such
mechanistic models is that they represent the state-of-the-art
knowledge of the considered system [7,90-3] and are particularly
useful in the general scientific process of connecting biophysical
findings to psychophysical phenomena, generating new hypotheses
and developing new assertions [94], and improving reliability of drug
development and drug dosing [13]. However, in terms of direct
translational utility in terms of clinical decision making (monitoring
and/or controlling of systems), these models are either too unwieldy
[95,96] or contain too much uncertainty [94].

Nevertheless, mechanistic modeling has made key contributions
to the study of acute critical illness. For example, mechanistic models
have helped suggest the central role of damage-associated molecular
pattern molecules in acute critical illness, specifically in establishing
and perpetuating the positive feedback loop of inflammation-
damage-inflammation [8,9,58,77,84,93,97]. Mechanistic modeling
has also helped decipher inflammatory preconditioning, namely, the
different inflammatory responses that ensue when multiple stimuli
are given in succession [88,98-103]. Other applications of mechanistic
modeling involve the understanding of multifactorial therapies for
critical illness, suggesting specific ways by which they reprogram and
recompartmentalize the inflammatory response [55,104]. Key trans-
lational applications such as in silico clinical trials based on
mechanistic models of inflammation and damage/dysfunction were
pioneered in the arena of critical illness [105,106]. These models have
grown in sophistication and are beginning to show the potential for
predicting the inflammatory responses of individual human subjects
[107,108] and large, outbred animals [13,72,109].

4. Conceptualizing data with mechanism: An example from
neuroscience and general anesthesia

The foregoing sections have delineated the benefits and challenges
inherent in purely data-driven and mechanistic modeling in the
setting of acute critical illness. Thus, neither method is ideal, although
it may be argued that both approaches offer complementary value to a
purely reductionist approach. In multiple fields of biomedical science,
there is a growing recognition of the need to link purely data-driven
models with mechanistic models to retain the advantages while
minimizing the disadvantages of these 2 modeling approaches
[110,111]. As mentioned above, there have been rare examples of
this type of synthesis in acute critical illness. One such example [72]
involved using principal component analysis to define the key
inflammatory mediators involved is the lung and blood responses to
Gram-negative bacterial endotoxin in swine and then using that
information to construct a 2-compartment, mechanistic dynamical
model of inflammation and pathophysiology in these animals.

However, such examples are the exception rather than the rule.
There is a great deal of “activation energy” required to drive this type
of synthesis, and a key barrier that must be overcome is the cost
versus benefit of investing this effort. Thus, we discuss general
anesthesia as a useful example of how complex dynamical mecha-
nistic models can interact with data-driven modeling of a complex
physiologic system to provide an integrating conceptual framework of
value to the critical care community.

Although general anesthesia has been used in the clinical practice
of medicine for more than 150 years, the mechanism of action for
inducing general anesthesia is still not fully understood [112] and is
still under considerable investigation [113-117]. With advances in
biochemistry, molecular biology, and neurochemistry, there has been
impressive progress in the understanding of the molecular properties
of anesthetic agents. However, despite these advances, we still do not
understand how anesthetic agents affect the properties of neurons
that translate into the induction of general anesthesia at the
macroscopic level. In fact, to date, no single unifying receptor
mediating general anesthesia has been identified. We suggest that the
most likely explanation for themechanisms of action of anesthetics lies
in the network properties of the brain, where the fundamental unit in
the brain is the excitable neuron. These network properties are being
discovered largely through data-driven modeling [118,119].

In fact, it has been known for a long time that general anesthesia
has profound effects on the spectrum of oscillations in the
electroencephalograph [120,121]. In both animal and human studies,
it has been observed that with increased doses of anesthetic agents,
the transition from consciousness to unconsciousness or from
responsiveness to nonresponsiveness in individual subjects is very
sharp, almost an all-or-none transition [122], confirming the clinical
observations of generations of clinicians. There is also extensive
experimental verification that collections of neurons may function as
oscillators [123-125] and that synchronization of oscillators may play
a key role in the transmission of information within the central
nervous system.

More recently, the authors in [117] have suggested that thalamo-
cortical circuits function as neural pacemakers and that alterations in
the thalamic oscillations are associated with the induction of general
anesthesia. Furthermore, it is well known that anesthetic drugs
frequently induce epileptiform activity as part of the sharp progres-
sion to the state of unconsciousness [126]; epileptiform activity
implies synchronization of oscillators. This leads to the possibility that
synchronization of these oscillators is involved in the transition to the
anesthetic state, in a manner similar to the aforementioned concept of
oscillators in organ-organ coupling [21].

One fascinating possibility in understanding how the molecular
properties of anesthetic agents lead to the behavior of the intact
organism exhibiting nearly discontinuous transitions from conscious-
ness to unconsciousness as the concentration of anesthetic drugs
increases, is to develop mechanistic models that capture phase
transitions of the neural network that resemble a thermodynamic
phase change [127]. By merging the two universalisms of thermody-
namics and dynamical systems theory—both of which are aspects of
mechanistic modeling—with neuroscience, the authors in [128-130]
provide insights to the theoretical foundation for understanding the
network properties of the brain by rigorously addressing large-scale
interconnected biological neuronal network models that govern the
neuroelectronic behavior of biological excitatory and inhibitory
neuronal networks. As in thermodynamics, neuroscience is a theory
of large-scale systems, wherein graph theory [131]—a form of data-
driven modeling—can be used in capturing the connectivity proper-
ties of system interconnections, with neurons represented by nodes,
synapses represented by edges or arcs, and synaptic efficacy captured
by edge weighting.

In current clinical practice, potent drugs are administered, which
profoundly influence levels of consciousness and vital respiratory
(ventilation and oxygenation) and cardiovascular (heart rate, blood
pressure, and cardiac output) functions. These variation patterns of
the physiologic parameters (i.e., ventilation, oxygenation, heart rate,
blood pressure, and cardiac output) and their alteration with levels of
consciousness can potentially provide scale-invariant fractal temporal
structures to characterize the degree of consciousness in sedated
patients. In particular, the degree of consciousness reflects the
adaptability of the central nervous system and is proportional to the
maximum work output under a fully conscious state divided by the
work output of a given anesthetized state [132]. The fractal nature
(i.e., complexity) of conscious variability enables the central nervous
system, as a large-scale interconnected neuronal network, to
maximize entropy production and optimally dissipate energy gradients.
A fully conscious healthy patient would exhibit rich fractal patterns in
space (e.g., fractal vasculature) and time (e.g., cardiopulmonary
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variability) that optimize the ability for oxygenation and ventilation.
Within the context of aging and acute illness, variation of physiologic
parameters and their relationship to system complexity, fractal
variability, and system thermodynamics have been explored in
[21,132-136].

Merging system thermodynamics with neuroscience can provide
the theoretical foundation for understanding the mechanisms of
action of general anesthesia using the network properties of the
brain. Developing a mechanistic, dynamical systems framework for
neuroscience [128-130] and merging it with system thermodynamics
[137-139] by embedding thermodynamic state notions (i.e., entropy,
energy, free energy, chemical potential, etc) in theorywould allow us to
directly address the otherwise mathematically complex and computa-
tionally prohibitive large-scale neural populationmodels that havebeen
developed in the literature. In particular, a thermodynamically
consistent neuroscience model would emulate the clinically observed
self-organizing, spatiotemporally fractal structures that dissipate energy
optimally and optimize entropy production in thalamocortical circuits
of fully conscious patients. This thermodynamically consistent neuro-
science framework can provide the necessary tools involving semi-
stability [130], synaptic drive equipartitioning (i.e., synchronization
across time scales) [130], energy dispersal, and entropy production
for connecting biophysical findings to psychophysical phenomena
for general anesthesia.

In particular, we hypothesize that as the model dynamics
describing the cortical neural network transition to an anesthetic
state, the system will involve a reduction in system complexity—
defined as a reduction in the degree of irregularity across time scales—
exhibiting semistability and synchronization of neural oscillators (i.e.,
thermodynamic energy equipartitioning) [129,140]. In addition,
connections among thermodynamics, neuroscience, and the arrow
of time [137-139] can be explored by developing an understanding of
how the arrow of time is built into the very fabric of our conscious
brain. Connections between thermodynamics and neuroscience are
not limited to the study of consciousness in general anesthesia; they
can also be seen in biochemical systems, ecosystems, gene
regulation, and cell replication as well as numerous medical
conditions (eg, seizures, epilepsy, schizophrenia, hallucinations,
etc), which are obviously of great clinical importance but have been
lacking rigorous theoretical frameworks.

5. Conclusions and future prospects

The unmet need for new treatments and diagnostic modalities
for acute critical illness is, in a word, acute. Although decades of
work have led to many novel insights from the molecular to the
physiologic level, the net result has been disappointing. We suggest
that this is not because the effort has not been worthwhile or
because promising candidate approaches were not pursued. Rather,
it is our contention that what has not taken place is the process of
synthesis of these insights into a larger whole. Computational
modeling is a promising avenue for such synthesis; however, the
current approach is based purely on statistical tools by which to
associate multiple variables to outcomes. Mechanistic mathematical
modeling based on dynamic measurements can circumvent many of
the pitfalls of data pattern analysis, but what is needed is a synthesis
of these 2 approaches.

In this article, we have attempted to present this perspective, with
an example from the arena of anesthesia with which we hope
members of the critical care community will be acquainted.
Researchers in the neurosciences are attempting to synthesize data-
driven concepts of neural circuits with mechanistic models of brain
function and general anesthesia, although this effort is still ongoing.
The anticipated payoff is the development of anesthetic models that
can significantly advance our understanding of pharmacologic agents
and anesthetics as well as advance the state-of-the-art of drug
delivery for general anesthesia. We suggest the need for similar efforts
in the setting of acute critical illness. The payoff for this community
would be personalized (or precision) medicine using known drugs
but driven by quantitative data via predictive, mechanistic models.
Ultimately, such models could be used to design completely new
drugs or feedback control devices (or combinations thereof) that
would modulate inflammation and physiology to reduce morbidity
and mortality from acute critical illness. Although this vision is also a
ways off, early steps in this direction are promising and merit further
effort. We hope that members of the SCAI will lead the way in this
endeavor and take the advantage of the undeniable opportunities
offered bybringing together these two complexity-inspired approaches.
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