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Abstract—Patients in the intensive care unit (ICU) who require
mechanical ventilation due to acute respiratory failure also fre-
quently require the administration of sedative agents. The need for
sedation arises both from patient anxiety due to the loss of personal
control and the unfamiliar and intrusive environment of the ICU,
and also due to pain or other variants of noxious stimuli. While
physicians select the agent(s) used for sedation and cardiovascular
function, the actual administration of these agents is the responsi-
bility of the nursing staff. If clinical decision support systems and
closed-loop control systems could be developed for critical care
monitoring and lifesaving interventions as well as the administra-
tion of sedation and cardiopulmonary management, the ICU nurse
could be released from the intense monitoring of sedation, allowing
her/him to focus on other critical tasks. One particularly attractive
strategy is to utilize the knowledge and experience of skilled clini-
cians, capturing explicitly the rules expert clinicians use to decide
on how to titrate drug doses depending on the level of sedation. In
this paper, we extend the deterministic rule-based expert system
for cardiopulmonary management and ICU sedation framework
presented in [1] to a stochastic setting by using probability theory
to quantify uncertainty and hence deal with more realistic clinical
situations.

Index Terms—Bayesian networks, cardiopulmonary manage-
ment, decision support, expert system, intensive care unit (ICU)
sedation, respiratory management, rule-based expert system.

I. INTRODUCTION

M ODERN control technology is having a revolutionary
impact in modern medicine through medical robotics

(stereotactical brain surgery, implant fitting, and coronary pro-
cedures), electrophysiological systems (pacemakers and auto-
matic implantable defibrillators), life support (ventilators and
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artificial hearts), and medical imaging (image-guided surgery
and therapy). An additional area of medicine that can benefit
enormously from systems and control oriented ideas is clin-
ical pharmacology, in which mathematical modeling plays a
prominent role [2]–[8]. This is particularly true when dealing
with critically ill patients in the intensive care unit (ICU) or
in the operating room. These patients often require administra-
tion of drugs to regulate key physiological variables, such as
level of consciousness, heart rate, blood pressure, ventilatory
drive, etc., within desired targets. The rate of administration of
these drugs is critical, requiring constant monitoring and fre-
quent adjustments. Open-loop control by clinical personnel can
be tedious, imprecise, time-consuming, and sometimes of poor
quality. Hence, the need for closed-loop control (active control)
in medical drug delivery systems is significant, with the poten-
tial for improving the quality of medical care as well as cur-
tailing the increasing cost of health care.
One of the main drawbacks in developing active control-

based drug delivery systems is the lack of accurate mathemat-
ical models for characterizing the dynamic behavior of drugs
on physiological variables. System nonlinearities, model pa-
rameter variations from patient to patient, as well as parameter
variations within the same patient under different conditions
make it very challenging to develop models and effective con-
trol law architectures for active drug delivery systems. Standard
data-driven system identification techniques may not be appli-
cable to complex biological system modeling involving in situ
diagnostics. This challenge is even more pronounced in ICU se-
dation modeling, where sensors may not give reliable measures
of sedation levels. As an example, there have been a number of
investigations of processed electroencephalogram (EEG) mon-
itoring (all using the bispectral index (BIS) monitor) of ICU pa-
tients and the results have been inconsistent [7], [9], [10].
Patients in the ICU who require mechanical ventilation due

to acute respiratory failure also frequently require the admin-
istration of sedative agents. The need for sedation arises from
patient anxiety due to the loss of personal control and the unfa-
miliar and intrusive environment of the ICU. In addition, pain
or other variants of noxious stimuli frequently require adminis-
tration of anxiolytic and analgesic drugs for patient comfort. In
particular, the interface between the patient and the ventilator is
typically an endotracheal tube passing through the oropharynx
and into the trachea. Due to the powerful gag reflex, this tube
is very noxious. Without sedation patients can become danger-
ously agitated, risking dislodgement of life support devices in
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the worst case and, in any case, resulting in stress that is eth-
ically unacceptable and also physiologically unacceptable due
to deleterious increases in heart rate, blood pressure, and work
of breathing.
Sedation of mechanically ventilated patients in the ICU is an

important and challenging problem with ethical, clinical, and
financial implications. At the ethical level, we have a self-evi-
dent moral imperative to provide adequate anxiolysis and anal-
gesia for patients in the ICU. From the clinical perspective, it is
important that this be done without either overdosage or under-
dosage as either may have undesirable clinical effects. At the
financial level, sedation of patients in the ICU requires large in-
vestments of health care provider time, with a commensurate fi-
nancial cost, while inefficient titration of sedation and analgesia
may prolong ICU length of stay.
While physicians select the agent(s) used for sedation, the ac-

tual administration of these agents is the responsibility of the
nursing staff. The ICU nurse has one of the most task-laden jobs
in medicine and titration of the sedative drug dose to achieve the
optimal levels of sedation can be a difficult and time consuming
task. If clinical decision support systems and closed-loop con-
trol systems could be developed for critical care monitoring and
the administration of sedation, the ICU nurse could be released
from the intense monitoring of sedation, allowing her/him to
focus on other critical tasks.
In clinical practice the dose of sedative agent is varied, or

titrated, to achieve the desired level of sedation. The level of
sedation is currently based on clinical scoring systems. One ex-
ample is the Motor Activity Assessment Score (MAAS) [11] in
which patients are given an integer score of 0–6 as follows: 0)
unresponsive; 1) responsive only to noxious stimuli; 2) respon-
sive to touch or name; 3) calm and cooperative; 4) restless and
cooperative; 5) agitated; and 6) dangerously agitated.
To implement closed-loop control in an acute environment,

control of cardiovascular function also needs to be addressed
along with sedation since hemodynamic management and con-
trol of consciousness are interrelated. For example, a major side
effect of cardiac surgery is that patients can become hyperten-
sive [12], requiring treatment to prevent cardiac dysfunction,
pulmonary edema, myocardial ischemia, stroke, and bleeding
from fragile sutures. Although drugs are available for treating
postoperative hypertension, titration of these drugs to regulate
blood pressure is often difficult. Underdosing leaves the patient
hypertensive, whereas overdosing can reduce the blood pressure
to levels associated with shock.
Although blood pressure control is important, cardiovascular

function involves several other important variables, all of which
are interrelated [12]. The ICU clinician must ensure not only
that blood pressure is within appropriate limits but also that car-
diac output (i.e., the amount of blood pumped by the heart per
minute) is acceptable and that the heart rate is within reason-
able limits. Closed-loop control of blood pressure has been in-
vestigated in clinical studies [13]. However, the fact that this
framework has not been widely adopted by clinicians is not
surprising when one considers the complex interrelationships
among hemodynamic variables [6].
Since cardiovascular and central nervous system functions

are critical in the acute care environment, technologies have

Fig. 1. Closed-loop sedation control architecture.

evolved for their measurements. The challenge for extending
feedback control technology to the problem of sedation of crit-
ically ill patients, however, is finding the appropriate perfor-
mance variable for control. Hence, the first step in the devel-
opment of closed-loop control of sedation is the discovery of
an objective, continuously-measurable parameter that correlates
with clinician assessment of the level of sedation. Once such
a parameter is discovered and validated, it then becomes nec-
essary to use the measure of sedation for the titration of drug
dose. One particularly attractive strategy is to utilize the knowl-
edge and experience of skilled clinicians, capturing explicitly
the rules expert clinicians use to decide on how to titrate drug
doses depending on the level of sedation [1]. In this paper, we
extend the rule-based expert system approach for cardiopul-
monary management and ICU sedation presented in [1] to a sto-
chastic setting by using probability theory to quantify system
uncertainty and hence deal with more realistic clinical situa-
tions.

II. CLOSED-LOOP SEDATION CONTROL ARCHITECTURE

In this section, we present a closed-loop feedback expert
system architecture for ICU sedation control. The closed-loop
system is composed of the controller, the plant (patient), and
the plant output measurement block (i.e., sedation assessment
block). Within our sedation control framework, the plant (pa-
tient) is a dynamical system with unknown dynamics, where the
input is the sedative drug dose and the output is the patient be-
havior. Patient behavior refers to patient’s level of sedation and
analgesia, manifested through facial expression, gross motor
movement, pain, agitation, blood pressure, and heart rate. The
goal of the sedation assessment feedback block is to monitor
the patient’s behavior, and objectively assess the sedation level
based on one of the clinical scoring systems (e.g., MAAS).
The input to the controller is the desired level of sedation, and
the objective assessment of sedation provided by the sedation
assessment block. The closed-loop system is shown in Fig. 1.
The current clinical practice in the ICU involves human expert
assessment of patient’s level of sedation (corresponding to the
sedation assessment block), and titration of the correct dose of
sedatives (corresponding to the controller).
Closed-loop control of ICU sedation is virtually nonexistent

in the literature. However, control algorithms have been de-
veloped, simulated, and implemented for the related problem
of closed-loop control of general anesthesia. The first of these
have focused on the control of inhalation anesthesia and several
adaptive control algorithms have been proposed; see [14]–[21]
and the references therein. These algorithms have been shown
to provide superior control of general inhalation anesthesia in
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simulations and animal studies. However, they are not directly
relevant to the specific problem of ICU sedation since the con-
trolled variable is the end-tidal anesthetic concentration. It is
not possible with current technology to rapidly measure the
plasma concentration of the intravenously administered drugs
commonly used for ICU sedation. Thus, drug concentration is
not a viable control variable. Furthermore, drug concentration,
even if it could be measured rapidly, is not the best control vari-
able. We are far more interested in drug effect than concentra-
tion.
One approach to closed-loop control of sedation is to design

a system that processes the information currently used by the
medical staff and mimics the human process of decision making
for ICU sedation. Such a system can be equipped with various
sensors, including the bispectral index (a derivative of the EEG
signal) monitor [22], [23], actigraph (accelerometer for mea-
suring hand and leg movement) [24], [25], and digital imaging
(for measuring facial expression and gross motor movement)
[7], [26], [27]. In a recent study, machine learning methods
have been used to assess the level of pain in patients using fa-
cial expressions and analyze the correlation between computer
and human expert pain intensity assessments [28], [29]. With
measurements provided by different viable sensors, an expert
system can be designed which mimics expert human actions and
follows a similar decision making process.
Finally, it is important to note that temporal variability in the

pharmacological response of individual patients and limitations
in the reliable and reproducible effect of the medications used
pose a significant challenge for the problem of ICU sedation
control. In point of fact, this is exactly why “fixed” sedation
dosing schemes do not work, and ongoing assessment of the
depth of sedation and, then, titration to desired effect is neces-
sary. We postulate that clinical outcomes will be improved if a
systematic probabilistic expert system framework for sedation
management is developed.

III. INSTRUMENTATION FOR CLINICAL PHARMACOLOGY

The sensors used in the ICU to monitor patient status include
those that measure hemodynamic status, respiratory status, renal
function, and central nervous function. Hemodynamic status is
most typically assessed by continuous monitoring of heart rate
and electrocardiograph (ECG). The ECGmeasures the electrical
potential difference between skin electrodes placed at various
sites on the torso and limbs, and can be analyzed to provide
continuous heart rate measurement as well as identify signs of
cardiac dysfunction. Hemodynamic function is also assessed
using blood pressure measurements. While this may be done
using noninvasive methods, it is most typically done by placing
a small plastic catheter directly into an artery (most often the
radial artery as it passes through the underside of the wrist) and
then using a pressure transducer to convert the pulse pressure
wave into an electrical signal. In a similar fashion, catheters are
also often placed into large central veins (such as the internal
jugular vein) so that their tips are situated close to the entry of
the main veins (superior vena cava or inferior vena cava) re-
turning blood to the heart. Pressure waves in these veins are then
transduced into electrical signals to provide the central venous

pressure. This gives an indirect measure of the volume of blood
in the heart which is a major determinant of cardiac output, the
volume of blood pumped by the heart per minute.
In some situations in which there is more profound cardiac

dysfunction, a pulmonary artery catheter is placed. This is a
catheter that runs through the heart into the pulmonary artery
(i.e., the artery going from the heart to the lungs) and can mea-
sure pressures in the pulmonary artery (another indirect mea-
sure of volume in the heart) as well as directly measure car-
diac output. Finally, it is important to monitor the adequacy of
blood flow to the various tissues of the body. One common tech-
nique is to measure the amount of oxygen in venous blood. If
the delivery of oxygen to tissue decreases, then there will be a
greater relative extraction of oxygen from the delivered blood
by the tissue, and hence, the venous blood returning to the heart
will have less oxygen in it. This is most typically measured as
the percentage of hemoglobin molecules (the primary carrier of
oxygen in the blood) that are bound to oxygen (referred to as
the venous saturation).
The purpose of respiration is to eliminate carbon dioxide from

and deliver oxygen to the blood. Hence, the most important
monitors of respiratory function are measures of carbon dioxide
and oxygen in the blood. With the most commonly used sensor
technologies these are not directly measurable; however, it is
possible to continuously measure hemoglobin oxygen satura-
tion, the percentage of hemoglobin in arterial blood that is bound
to oxygen, using absorbance spectroscopy and light emitting
diode technology. In addition, many ICUs use continuous anal-
ysis of gas exhaled from the lungs to measure end-tidal carbon
dioxide concentration, an indirect and approximate measure of
blood carbon dioxide concentrations. Furthermore, modern me-
chanical ventilators are equipped to measure the pressure used
to expand the lungs when the patient is undergoing mechanical
ventilation, as well as respiratory rate.
Assessment of renal function is not as sophisticated as ei-

ther hemodynamic or respiratory monitoring. Currently renal
function is most typically assessed by the continuous measure-
ment of urine output. Sensors for assessment of central nervous
system function are currently in their infancy, at least as far as
routine clinical use is concerned.

IV. PROBABILISTIC EXPERT SYSTEM FOR CARDIOPULMONARY
MANAGEMENT AND ICU SEDATION CONTROL

In this section, we introduce a probabilistic expert system
for cardiopulmonary management and ICU sedation control. A
knowledge-based system, and, in particular, an expert system, is
a computer program that is capable of making deductions based
on the information provided by the user and the information
stored in its knowledge base. In other words, a knowledge-based
system is a system which applies a “rules of thumb” approach
to a symbolic representation of knowledge [30]. The main char-
acteristic that distinguishes a knowledge-based system from a
conventional computer program is its structure [31]. Expert sys-
tems are a subclass of knowledge-based systems, where their
objective is to emulate the human expert behavior [31], [32].
Expert systems in general deal with two different types of

problems: deterministic versus stochastic. As a result, expert
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systems belong to one of the two general classes of: 1) deter-
ministic expert systems and 2) stochastic expert systems. De-
terministic expert systems are also referred to as rule-based ex-
pert systems due to the fact that in such systems the deduction
process is based on a series of rules [32]. A more challenging
set of problems is that involving uncertainty in knowledge and
in the problem variables. Stochastic expert systems specifically
deal with such problems and different frameworks exist to ad-
dress uncertainty including certainty factors [33], fuzzy logic
[34], theory of evidence [35], and, more recently, probability
theory [32]. In the probabilistic approach, a joint probability
distribution function over the set of variables is defined and the
inference is based on probability rules. Such expert systems are
referred to as probabilistic expert systems.
In [1], a rule-based expert system is introduced for cardiopul-

monary management and ICU sedation. One of the limitations
of the rule-based expert system proposed in [1] is its inability
to deal with uncertainty. More specifically, it assumes perfect
accuracy in the measurement of present and previous MAAS
scores, blood pressure, and heart rate. While current technology
allows for high accuracy measurements of blood pressure and
heart rate, the MAAS score, which quantifies the level of seda-
tion and agitation of the patient, is subjective and can result in in-
consistencies and variability in sedation administration. More-
over, in a rule-based expert system there is no uncertainty as-
sociated with the rules. A more general approach would allow
for rules with multiple conclusions, where a different level of
uncertainty is associated with each conclusion. In this section,
we use probability theory to quantify uncertainty to extend the
rule-based expert system given in [1] to deal with more realistic
situations.
In the Bayesian interpretation of probability, as opposed to the

classical interpretation, the probability of an event is an indica-
tion of the uncertainty associated with the event rather than its
frequency [36]. In the probabilistic approach to expert systems,
the system variables are regarded as random variables and, in
contrast to rule-based expert systems, probabilistic expert sys-
tems do not possess “if-then” rules but rather the relationship
between the variables is defined using a joint probability dis-
tribution [32]. If the joint probability distribution of a proba-
bilistic model is known, probabilities associated with different
situations can be computed using marginalization and proba-
bility conditioning [37].
A drawback of the probabilistic approach to expert systems

is computational complexity. The computational complexity in-
creases with the increase in the number of random variables and
the number of possible values they can take. This increase is ex-
ponential in the number of random variables.Bayesian networks
[38] (also known as belief networks) is a graphical framework in
machine learning which exploits the conditional independence
between variables to reduce the computational complexity of
the probabilistic model.
Before stating the main results of this section, we need the

following definitions.
Definition 4.1 [39], [40]: A directed graph is a pair ,

where is the set of vertices and
is the set of edges. Every edge

, corresponds to an ordered pair of vertices

, where and are the initial and terminal
vertices of the edge . In this case, is incident into and
incident out of is the parent of and is the child of
. Moreover, is the set of all

parents of . A directed path from to is a set of
distinct vertices such that

. A directed path is closed if . A cycle
is a nontrivial closed path where all the vertices (except for the
first and last) are distinct. A directed acyclic graph is a directed
graph containing no cycles.
For the next definition, and denote the probability

density function and the conditional probability density function
operators, respectively.
Definition 4.2 [38]: Let , where

, is a random variable and takes on values from a
set . A Bayesian network is an ordered
pair , where is a directed acyclic graph,

is the set of edges, and is the set characterizing
the probabilistic relationship between the vertices (random vari-
ables) and is defined by

(1)

where is the parent index set of
, and is the cardinality operator.

Note that a Bayesian network defines a unique
joint probability distribution over given by

(2)

where , and where, for simplicity of expo-
sition, we denote the conditional probability density function

by .
Moreover, a Bayesian network represents the causal relation-
ships between different random variables. More specifically, if

, then directly influences
(causes) . This interpretation of an edge between two ver-
tices is crucial in the construction of the Bayesian network. Each
random variable is either observed (i.e., its value is known), or
hidden (i.e., its value is unknown). In the graphical represen-
tation of a Bayesian network, the vertices corresponding to the
observed random variables are shaded. Given a Bayesian net-
work and the set of observed random variables, the inference
involves finding the posterior probability distribution of any set
of random variables given the observed random variables by
marginalizing the joint probability distribution. An advantage of
Bayesian networks is that they reduce the computational com-
plexity of the inference stage. For a more comprehensive dis-
cussion on Bayesian networks, see [36]–[38].
In this section, we use a Bayesian network framework

to design a probabilistic expert system for cardiopulmonary
management and ICU sedation control. We first start by con-
structing a Bayesian network for ICU sedation control. Next,
we extend the Bayesian network to control patient hemody-
namics. Let represent the Bayesian network and
let the patient’s current MAAS score, previous MAAS score,
blood pressure, heart rate, and required drug dose for sedation
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Fig. 2. Graph of a Bayesian network capturing the relationships between the
current MAAS score , previous MAAS score , blood pressure ,
heart rate , and required drug dose .

be given by the random variables , and ,
respectively, where

,
where denotes the set of positive scalars, and, for a given
function . Note that there are 12
distinct actions (primary action) given in the first part of the
conclusion of each rule in Table I in [1], and hence, we have
assigned a unique number to each distinct action. The graph
for this Bayesian network is given in Fig. 2. The current and
previous MAAS scores, blood pressure, and heart rate, which
constitute the inputs to the expert system and directly influence
the required drug dose, are observed and their corresponding
vertices are shaded in Fig. 2.
A potential problem associated with the Bayesian network

given in Fig. 2 is its inability to capture the uncertainty associ-
ated with the measurement of the MAAS scores. In particular,
in order to perform a meaningful inference, the exact values of
the current and previous MAAS scores should be known (ob-
served). However, as discussed earlier, the assessment process
is highly subjective, and the assessed scores can involve a high
degree of uncertainty. A closer examination of the current and
previous MAAS scores reveals that these random variables are
essentially hidden variables, that is, they are “driven” by other
factors. The MAAS score reflects the patient’s agitation and se-
dation level, which can be observed through facial expressions,
gross motor movement, guarding (i.e., a response in which the
patient withdraws from a potentially noxious stimulus), heart
rate and blood pressure stability, noncardiac sympathetic sta-
bility, and nonverbal pain scale. These observed factors can be
regarded as random variables taking on values from appropriate
sets. For example, machine learning techniques can be used to
classify photographs based on the patient’s facial expressions
into pain and non-pain classes, which in turn can be used to as-
sess pain intensity on a scale from 0 to 100 [28], [29]. Hence, a
more complete model for the probabilistic expert system should
include these observed random variables as well.
Let the random variables represent the cur-

rent objective assessment of the facial expression, gross
motor movement, guarding, heart rate and blood pres-
sure stability, noncardiac sympathetic stability, and non-
verbal pain scale, respectively, and let repre-
sent the previous objective assessment of these variables.
Moreover, let ,

Fig. 3. More general graph of a Bayesian network capturing the relationship
between the MAAS score and other observable factors; namely, current and
previous objective assessments of facial expression , gross motor move-
ment , guarding , heart rate and blood pressure stability ,
non-cardiac sympathetic stability , and non-verbal pain scale .

where 0, 1, and 2 denote, respectively, a relaxed face, gri-
macing and moaning face, and grimacing and crying face;

, where 0, 1, and 2 denote,
respectively, lying quietly, cautious movement, and restless
withdrawal; , where 0, 1,
and 2 denote, respectively, lying quietly, splinting and tense, and
rigid and stiff; , where 0, 1,
and 2 denote, respectively, stable, moderate change, and marked
change; , where 0, 1, and 2
denote, respectively, warm and dry skin, flushed and sweaty, and
pale and sweaty; and ,
where 0 and 10 denote, respectively, no pain and extreme pain.
The graph of the Bayesian network which includes these new

random variables is given in Fig. 3. Note that the current and
previous MAAS scores are no longer observed, and hence, are
not shaded. It is worth noting here that the graph represented
in Fig. 3 corresponds to a Bayesian network of a probabilistic
expert system and it is not aimed at modeling the interactions
between the variables involved in ICU sedation. The Bayesian
network capturing the actual interaction of these variables has
a different dependency structure, and hence, its corresponding
graph would be different from the graph given in Fig. 3.
The Bayesian network corresponding to the graph given

in Fig. 3 can be used to determine the proper drug dose
for ICU sedation. Specifically, the joint probability dis-
tribution , where

, and , can
be computed using the relationship given in (2); namely

(3)
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The probability distribution of the drug dose suggested by the
Bayesian network is given by

(4)

where we use marginalization to eliminate and , and
, and from the probability density functions in the

numerator and denominator of (4), respectively. Note that
, which captures the drug dosing pattern

of the medical staff, can be determined through statistical
techniques (e.g., maximum likelihood estimates [37]) and
clinical data collection. In addition, the probability distribu-
tions and capture
the relationship between the facial expression, gross motor
movement, guarding, heart rate and blood pressure stability,
noncardiac sympathetic stability, and nonverbal pain scale and
the MAAS score, which also requires clinical data collection.
The prior probability distributions over , and
denoted by , and , respectively,
as well as the conditional probability distributions

, and can
also be determined by statistical techniques.
Given the probability distribution of the drug dose suggested

by the Bayesian network , dif-
ferent strategies for choosing the drug dose can be used. One
such strategy involves selecting the drug dose corresponding to
the mode of the distribution given by

(5)

where denotes the drug dose suggested by the
Bayesian network.
Finally, note that the Bayesian network can also be used

to compute the probability distribution of the drug dose (and
hence, the suggested drug dose) when only partial observations
are available. In particular, the posterior probability distribution
on the drug dose can be computed when the observed variables
are a subset of the observed variables in Fig. 3. Partial observa-
tion can result from sensor failure, where a particular state of the
patient is unavailable at the time of a decision. For example, if
only the blood pressure, heart rate, facial expression, and gross
motor movement data is available,
gives the probability distribution for the drug dose based on
these partial observations.
The same probabilistic methodology can be used to account

for a secondary action (see Table I in [1]) in the Bayesian net-
work. In this case, appropriate random variables have to be de-
fined and the graph given in Fig. 3 should be modified accord-
ingly. Alternatively, a hybrid probabilistic-deterministic expert
system can be defined, where the primary actions given by the
first part of the conclusions in Table I in [1] are described by
a Bayesian network and the secondary action is given by Table

Fig. 4. Gsraph of a hybrid probabilistic-deterministic Bayesian network where
the random variable controls the activation of the hemodynamic control expert
system.

II in [1]. Specifically, define the switching random variable ,
where . The random variable acts as a
switch, where denotes that the hemodynamic control
expert system (HDCES) (see Tables I and II of [1]) is off-line
and denotes that the HDCES is activated. The acti-
vation could be probability-based where the HDCES is acti-
vated if , where

is the conditional probability operator, and
is a threshold value. Note that based on Table I in [1], the

activation of the HDCES depends on the current and previous
MAAS scores, blood pressure, heart rate, and the required drug
dose for ICU sedation. The graph of the hybrid Bayesian net-
work is shown in Fig. 4.

V. PROBABILISTIC ALARM ALGORITHM FOR CRITICAL
CARE MONITORING

A potentially key application of the probabilistic expert
system developed in Section IV is its applicability to clinical
decision support, critical care monitoring, and lifesaving in-
terventions. A clinical decision support system is a computer
program that can directly provide the medical staff with assess-
ments and recommendations in the clinical decision making
process [41]. A clinical decision support system can be coupled
to a closed-loop control system to provide a hierarchical hybrid
control architecture characterized by continuous-time control
algorithms at the lower-level units and logical decision-making
units at the higher-level of the hierarchy. In particular, a
hybrid controller would involve the clinician evaluating the
patient through a decision support system and an autonomous
closed-loop controller adjusting the desired regimen to maintain
sedation at a desired level. This controller architecture allows
for the expert system to directly aid in clinical decision making
as well as critical care monitoring and lifesaving interventions.
In this section, we use the framework presented in Section IV

to design an alarm algorithm for agitation detection in ICU pa-
tients. An alarm system refers to an automatic warning system
that constantly monitors a specific state of the patient and no-
tifies the medical staff in case of an abnormality [42]. An ag-
itation detection alarm system can reduce the medical staff’s
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Fig. 5. Graph of a Bayesian network of an alarm algorithm for critical care
monitoring.

workload as well as safeguard against life-threatening situations
in the ICU.
To design an alarm algorithm for agitation detection, let

the patients’s facial expression, gross motor movement,
guarding, heart rate and blood pressure stability, noncardiac
sympathetic stability, nonverbal pain scale, and patient agi-
tation be given by the random variables , and ,
respectively, where

, and . Here,
and denote, respectively, absence of agitation

corresponding to an MAAS score of 0–3 and presence of rest-
lessness and agitation corresponding to an MAAS score of 4–6.
The graph of the Bayesian network for the alarm algorithm is
given by Fig. 5. Note that the random variables are
considered as observed variables, and hence, are shaded.
The joint probability distribution for this network is given by

(6)

where , and
. In addition, the posterior probability of the patient’s

agitated state is given by

(7)

The patient’s agitation state is based on the observation of fa-
cial expression, gross motor movement, guarding, heart rate and
blood pressure stability, noncardiac sympathetic stability, and
nonverbal pain scale and is given by

(8)

where we select the agitation state with the highest probability.
To elucidate the efficacy of our proposed approach we apply

our framework to a retrospective study involving recorded se-
dation and agitation data for 366 patients admitted to the ICU in
Northeast Georgia Medical Center, Gainesville, GA, over the
period of May 6, 2009 to April 27, 2010. The patient’s age
ranged from 18 to 90 years. The length of stay in the ICU ranged
from 1 to 93 days. In addition, the available data set included

TABLE I
COMPARISON OF THE HUMAN-ASSESSED PATIENT AGITATION WITH THE
PREDICTED AGITATION STATE GIVEN BY THE ALARM ALGORITHM

15 052 measurements of facial expressions, gross motor move-
ment, guarding, heart rate and blood pressure stability, noncar-
diac sympathetic stability, nonverbal pain scale, and agitation
state. We used the hold-out method [36] for validation of the
alarm algorithm, where 12 000 measurements of the random
variables and were used to train the Bayesian net-
work. The algorithmwas tested on the remaining 3052measure-
ments of .
We used the MATLAB version R2008a and the Bayesian

Network MATLAB Toolbox [43] to compute the posterior
probability distributions of the patient’s agitation state. In the
training stage, we used the maximum likelihood estimates ap-
proach to estimate the probability distributions in (6) and used
a uniform Dirichlet prior to avoid zero conditional probabilities
for cases not present in the training data set [37]. In addition, in
the testing stage, we used the junction-tree inference algorithm
[36]. Table I gives the predicted agitation state given
by (8) as compared to the human-assessed patient agitation.
Based on the results, when the algorithm predicted the presence
of patient agitation, in 18.9% of the test cases the patient was
not agitated (false positive rate of 18.9% with a 95% confidence
interval of 14.4% to 24.4%). In addition, when no agitation was
reported by the algorithm in 4.5% of the test cases the patient
was experiencing agitation (false negative rate of 4.5% with
a 95% confidence interval of 3.8% to 5.4%). The confidence
interval is calculated based on the framework presented in
[44]. In 45 cases out of a total of 3 052 cases the algorithm
was undecided; that is, the posterior probability of the patient’s
agitation state was uniform.

VI. CONCLUSION

In this paper, we presented an approach for designing clinical
decision support and closed-loop control systems for cardiopul-
monary management and sedation control in an ICU using ex-
pert systems. It is important to note that expert systems are al-
ready in widespread use in other branches of medicine, more
prominently in disease diagnosis, where the system inputs are
the patient’s details and symptoms, and the system outputs are
probable diagnoses, recommended treatments or drugs which
may be prescribed. Such systems are typically open-loop and
may be regarded as rule-based search engines to help the clini-
cian in his/her mapping of a given set of symptoms to a possible
cause (disease).
Here, we are proposing to close the loop in a very specific

sedation and cardiovascular function scenario using a set of
heuristics in combination with Bayesian networks. A major
challenge is the system identification aspect of the problem,
that is, identifying a reasonable system model in case the plant
is the patient. In contrast to more conventional identification
techniques (e.g., sine sweeps), here the result must be more
subjective but still very useful. Nevertheless, putting problems



1350 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 20, NO. 5, SEPTEMBER 2012

in drug administration in a closed-loop control framework has
the strong potential for making the therapies more robust and
thus much less amenable to human error.
The framework proposed here is just the first step in such a

program. Future work will involve the development of objective
assessments for ICU sedation using gross motor movement, fa-
cial expression, and responsiveness to stimuli. In particular, we
will explore the relationship between gross motor movement,
facial expression, and responsiveness to stimuli, and the MAAS
score in the form of probability distributions which are best de-
termined by clinical data collection. In addition, the drug dosage
suggested by the expert system will be compared to the drug
dose prescribed by various experienced clinicians.
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