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A Universal Feedback Controller
for Discontinuous Dynamical
Systems Using Nonsmooth
Control Lyapunov Functions
The consideration of nonsmooth Lyapunov functions for proving stability of feedback dis-
continuous systems is an important extension to classical stability theory since there exist
nonsmooth dynamical systems whose equilibria cannot be proved to be stable using
standard continuously differentiable Lyapunov function theory. For dynamical systems
with continuously differentiable flows, the concept of smooth control Lyapunov functions
was developed by Artstein to show the existence of a feedback stabilizing controller. A
constructive feedback control law based on a universal construction of smooth control
Lyapunov functions was given by Sontag. Even though a stabilizing continuous feedback
controller guarantees the existence of a smooth control Lyapunov function, many systems
that possess smooth control Lyapunov functions do not necessarily admit a continuous
stabilizing feedback controller. However, the existence of a control Lyapunov function
allows for the design of a stabilizing feedback controller that admits Filippov and Kra-
sovskii closed-loop system solutions. In this paper, we develop a constructive feedback
control law for discontinuous dynamical systems based on the existence of a nonsmooth
control Lyapunov function defined in the sense of generalized Clarke gradients and
set-valued Lie derivatives. [DOI: 10.1115/1.4028593]

1 Introduction

Numerous engineering applications give rise to discontinuous
dynamical systems. Specifically, in impact mechanics the motion
of a dynamical system is subject to velocity jumps and force dis-
continuities leading to nonsmooth dynamical systems [1,2]. In
mechanical systems subject to unilateral constraints on system
positions [3], discontinuities occur naturally through system–
environment interaction. Alternatively, control of networks and
control over networks with dynamic topologies also give rise to
discontinuous systems [4]. For these systems, the vector field
defining the dynamical system is a discontinuous function of the
state, and system stability can be analyzed using nonsmooth
Lyapunov theory involving concepts such as weak and strong sta-
bility notions, differential inclusions, and generalized gradients of
locally Lipschitz continuous functions and proximal subdifferen-
tials of lower semicontinuous functions [5].

The consideration of nonsmooth Lyapunov functions for prov-
ing stability of feedback discontinuous systems is an important
extension to classical stability theory since, as shown in Ref. [6],
there exist nonsmooth dynamical systems whose equilibria cannot
be proved to be stable using standard continuously differentiable
Lyapunov function theory. For dynamical systems with continu-
ously differentiable flows, the concept of smooth control Lyapu-
nov functions was developed by Artstein [7] to show the existence
of a feedback stabilizing controller. A constructive feedback con-
trol law based on smooth control Lyapunov functions was given
in Ref. [8].

Even though a stabilizing continuous feedback controller guar-
antees the existence of a smooth control Lyapunov function, many
systems that possess smooth control Lyapunov functions do not
necessarily admit a continuous stabilizing feedback controller

[7,9]. However, as shown in Ref. [9], the existence of a control
Lyapunov function allows for the design of a stabilizing feedback
controller that admits Filippov and Krasovskii closed-loop system
solutions. Furthermore, Rifford [10] addresses the problem of sta-
bilization of globally asymptotically controllable systems wherein
the system vector field is locally Lipschitz continuous in the state
and uniformly in the control. For the aforementioned class of sys-
tems, Rifford [10] constructs a discontinuous control law using
semiconcave control Lyapunov functions in the sense of proximal
subdifferentials. However, we will not need to consider semicon-
cavity in what follows. Finally, the work in Ref. [11] also provides
discontinuous controllers using a Filippov solution framework;
however, Hirschorn [11] uses a special closed lower bounded
control Lyapunov function which we also do not require here.

In this paper, we build on the results of Refs. [9–12] to develop
a constructive universal feedback control law for discontinuous
dynamical systems based on the existence of a nonsmooth control
Lyapunov function defined in the sense of generalized Clarke gra-
dients [13] and set-valued Lie derivatives [14]. Specifically, we
address the problem of discontinuous stabilization for dynamical
systems with Lebesgue measurable and locally essentially
bounded vector fields characterized by differential inclusions
involving Filippov set-valued maps and admitting Filippov solu-
tions with absolutely continuous curves.

2 Notation and Mathematical Preliminaries

The notation used in this paper is fairly standard. Specifically,
R denotes the set of real numbers, Rn denotes the set of n� 1

real column vectors, Zþ denotes the set of non-negative integers,

and (�)T denotes transpose. We write @S and S to denote the
boundary and the closure of the subset S � Rn, respectively. Fur-
thermore, we write k � k for the Euclidean vector norm on Rn,
BeðaÞ; a 2 Rn; e > 0, for the open ball centered at a with radius e,
distðp;MÞ for the distance from a point p to the set M, that is,

distðp;MÞ ¼D infx2M k p� x k, and xðtÞ !M as t ! 1 to
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denote that x(t) approaches the setM, that is, for every e> 0 there
exists T> 0 such that distðxðtÞ;MÞ < e for all t>T. Finally, the
notions of openness, convergence, continuity, and compactness
that we use throughout the paper refer to the topology generated
on Rn by the norm k � k.

In this paper, we consider nonlinear dynamical systems G of the
form

_xðtÞ ¼ FðxðtÞ; uðtÞÞ; xðt0Þ ¼ x0; a:e: t � t0 (1)

where for every t � t0; xðtÞ 2 D � Rn; uðtÞ 2 U � Rm;F :
D� U ! Rn is Lebesgue measurable and locally essentially
bounded [15] with respect to x (i.e., F is bounded on a bounded
neighborhood of every point x), continuous with respect to u, and
admits an equilibrium point at xe 2 D for some ue � U; that is,
F(xe, ue)¼ 0. The control u(�) in Eq. (1) is restricted to the class of
admissible controls consisting of all measurable and locally essen-
tially bounded functions u(�) such that u(t) � U, t� 0. For each
value u � U, we define the function Fu by Fu(x)¼F(x, u).

A measurable function / : D ! U satisfying /ðxeÞ ¼ ue is
called a control law. If uðtÞ ¼ /ðxðtÞÞ, where / is a control law
and x(t) satisfies Eq. (1), then we call u(�) a feedback control law.
Note that the feedback control law is an admissible control since
/ð�Þ has values in U. Given a control law /ð�Þ and a feedback
control law uðtÞ ¼ /ðxðtÞÞ, the closed-loop system is given by

_xðtÞ ¼ FðxðtÞ;/ðxðtÞÞÞ; xð0Þ ¼ x0; a:e: t � 0 (2)

Analogous to the open-loop case, we define the function F/ by
F/ðxÞ ¼ Fðx;/ðxÞÞ. Note that an arc x(�) (i.e., an absolutely con-
tinuous function from [t0, t] to D) satisfies Eq. (1) for an admissi-
ble control u(t) � U if and only if [15, p. 152]

_xðtÞ 2 FðxðtÞÞ; xðt0Þ ¼ x0; a:e: t � t0 (3)

where FðxÞ ¼D Fðx;UÞ, that is, FðxÞ ¼D fFðx; uÞ : u 2 Ug.
Here, F : D ! 2Rn

is a set-valued map that assigns sets to

points and 2Rn

denotes the collection of all subsets of Rn. The set
FðxÞ captures all of the directions in Rn that can be generated at
x with inputs u¼ u(t) � U. The inputs u(�) can be selected as ei-
ther u: [t0,1) ! U or u : D ! U. We assume that FðxÞ is an
upper semicontinuous, nonempty, convex, and compact set for all
x 2 Rn. That is, for every x 2 D and every e> 0, there exists
d> 0 such that, for all z 2 Rn satisfying k z� x k� d;FðzÞ
� FðxÞ þ Beð0Þ. This assumption is mainly used to guarantee the
existence of Filippov solutions to Eq. (2) [15].

An absolutely continuous function x : ½t0; s	 ! Rn is said to be
a Filippov solution [15] of Eq. (2) on the interval [t0, s] with initial
condition x(t0)¼ x0, if x(t) satisfies

_xðtÞ 2 K½F/	ðxðtÞÞ; a:e: t 2 ½t0; s	 (4)

where the Filippov set-valued map K½F/	 : Rn ! 2Rn

is defined
by

K½F/	ðxÞ ¼
D \

d>0

\
lðSÞ¼0

cofF/ðBdðxÞnSÞg; x 2 D (5)

l(�) denotes the Lebesgue measure in Rn, “co” denotes convex
closure, and \lðSÞ ¼ 0 denotes the intersection over all sets S of

Lebesgue measure zero.1 Note that since F is locally essentially
bounded, K½F/	ð�Þ is upper semicontinuous and has nonempty,
compact, and convex values. Thus, Filippov solutions are limits of
solutions to G with F averaged over progressively smaller

neighborhoods around the solution point, and hence, allow solu-
tions to be defined at points where F itself is not defined. Hence,
the tangent vector to a Filippov solution, when it exists, lies in the
convex closure of the limiting values of the system vector field
F(�, �) in progressively smaller neighborhoods around the solution
point. Dynamical systems of the form given by Eqs. (3) and (4)
are called differential inclusions in the literature [16] and, for
every state x 2 Rn, they specify a set of possible evolutions of G
rather than a single one.

Since the Filippov set-valued map given by Eq. (5) is upper
semicontinuous with nonempty, convex, and compact values, and
K½F/	ð�Þ is also locally bounded [15, p. 85], it follows that
Filippov solutions to Eq. (2) exist [15, Theorem 1, p. 77]. Recall
that the Filippov solution t 7! x(t) to Eq. (2) is a right maximal so-
lution if it cannot be extended (either uniquely or nonuniquely)
forward in time. We assume that all right maximal Filippov solu-
tions to Eq. (2) exist on [t0,1), and hence, we assume that (2) is
forward complete. Recall that (2) is forward complete if and only
if the Filippov solutions to Eq. (2) are uniformly globally sliding
time stable [17, Lemma 1, p. 182]. An equilibrium point of
Eq. (2) is a point xe 2 Rn such that 0 2 K½F/	ðxeÞ. It is easy to
see that xe is an equilibrium point of Eq. (2) if and only if the con-
stant function x(�)¼ xe is a Filippov solution of Eq. (2). We denote
the set of equilibrium points of Eq. (2) by E. Since the set-valued
map K½F/	ð�Þ is upper semicontinuous, it follows that E is closed.

To develop discontinuous controllers for discontinuous dynami-
cal systems given by Eq. (1), we need to introduce the notion of
generalized derivatives and gradients. Here, we focus on Clarke
generalized derivatives and gradients [13].

DEFINITION 2.1. [13,14] Let V : Rn ! R be a locally Lipschitz
continuous function. The Clarke upper generalized derivative of
V (�) at x in the direction of v 2 Rn is defined by

Voðx; vÞ ¼D lim sup
y!x;h!0þ

Vðyþ hvÞ � VðyÞ
h

(6)

The Clarke generalized gradient @V : Rn ! 2R1�n

of V (�) at x is
the set

@VðxÞ ¼D co lim
i!1
rVðxiÞ : xi ! x; xi 62 N [ S

� �
(7)

where co denotes the convex hull, r denotes the nabla operator,
N is the set of measure zero of points where rV does not exist, S
is any subset of Rn of measure zero, and the unbounded sequence
fxigi2Zþ

� Rn converges to x 2 Rn.
Note that Eq. (6) always exists. Furthermore, note that it fol-

lows from Definition 2.1 that the generalized gradient of V at x
consists of all convex combinations of all the possible limits of
the gradient at neighboring points where V is differentiable. In
addition, note that since V (�) is Lipschitz continuous, it follows
from Rademacher’s theorem [18, Theorem 6, p. 281] that the
gradient rV (�) of V (�) exists almost everywhere. Moreover, for
every x 2 Rn, every constant e> 0, and every Lipschitz constant

L for V on BeðxÞ, we have @VðxÞ � BLð0Þ. Since @V (x) is convex,
closed, and bounded, it follows that @V (x) is compact.

In order to state the main results of this paper, we need some
additional notation and definitions. Specifically, the upper right
directional Dini derivative of V(x) along the Filippov state trajec-
tories w(t, x, u) of Eq. (1) through x 2 D with u(�) � U at t¼ 0 is
defined as

_VðxÞ ¼ d

dt
Vðwðt; x; uÞÞ

����
t¼0

¼D lim sup
h!0þ

Vðwðh; x; uÞÞ � VðxÞ
h

(8)

for every x 2 Rn such that the limit in Eq. (8) exists. Furthermore,
given a locally Lipschitz continuous function V : Rn ! R and
a function f : Rn ! Rn, the set-valued Lie derivative
Lf V : Rn ! 2R of V with respect to f at x [14,19] is defined as

1Alternatively, we can consider Krasovskii solutions of Eq. (2) wherein the
possible misbehavior of the derivative of the state on null measure sets is not
ignored; that is, K½F/	ðxÞ is replaced with K½F/	ðxÞ ¼

T
d>0 cofF/ðBdðxÞÞg and

where F/ is assumed to be locally bounded.
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Lf VðxÞ¼D
�

a2R: there existsv2K½ f 	ðxÞ such that pTv¼ a

for all pT 2 @VðxÞg
� \

pT2@VðxÞ
pTK½ f 	ðxÞ: (9)

Since K½ f 	ðxÞ is convex with compact values, it follows that for
each x 2 Rn, the set Lf VðxÞ is a closed and bounded, but possibly
empty, interval in R. If V (�) is continuously differentiable at x, then
Lf VðxÞ ¼ frVðxÞ : v 2 K½ f 	ðxÞg. In the case where Lf VðxÞ is
nonempty, we use the notation maxLf VðxÞ (respectively,
minLf VðxÞ) to denote the largest (respectively, smallest) element of

Lf VðxÞ. Furthermore, we adopt the convention max ; ¼ �1.
Finally, recall that a function V : Rn ! R is regular at x 2 Rn [13,
Definition 2.3.4] if, for all v 2 Rn, the right directional derivative

V0þðx; vÞ ¼
D

lim
h!0þ

1
h ½Vðxþ hvÞ � VðxÞ	 exists and V0þðx; vÞ ¼ Vo

ðx; vÞ. V is called regular on Rn if it is regular at every x 2 Rn.

3 Nonmooth Control Lyapunov Functions

In this section, we consider a feedback control problem and
introduce the notion of control Lyapunov functions for discontinu-
ous dynamical systems. Furthermore, using the concept of control
Lyapunov functions we provide necessary and sufficient condi-
tions for stabilization of discontinuous nonlinear dynamical sys-
tems. To address the problem of control Lyapunov functions for
discontinuous dynamical systems, let D � Rn be an open set and
let U � Rm, where 0 2 D and 0 � U. Next, consider the con-
trolled nonlinear discontinuous dynamical system (1), where u(�)
is restricted to the class of admissible controls consisting of meas-
urable functions u(�) such that u(t) � U for almost all t� 0 and
the constraint set U is given. Given a control law /ð�Þ and a feed-
back control uðtÞ ¼ /ðxðtÞÞ, the closed-loop dynamical system is
given by Eq. (2).

The following stability theorem is needed for the main result of
this paper. In addressing the stability properties of a Filippov solu-
tion of a discontinuous dynamical system, the usual stability defi-
nitions are valid [5,20,21]. Here, we state the stability theorem for
only the local case; the global stability theorems are similar except
for the additional assumption of properness on the Lyapunov
function and nonrestricting the domain of analysis. For the re-
mainder of the paper, the adjective “weak” is used in reference to
a stability property when the stability property is satisfied by at
least one Filippov solution starting from every initial condition in
D, whereas “strong” is used when the stability property is satisfied
by all Filippov solutions starting from every initial condition in D.
Our main result will be based on applying the following theorem

to the system given by Eq. (2) with ~FðxÞ ¼ F/ðxÞ ¼ Fðx;/ðxÞÞ.
THEOREM 3.1. [14,21] Consider the discontinuous nonlinear

dynamical system _x ¼ ~FðxÞ, where ~F : D ! Rn is Lebesgue
measurable and locally essentially bounded and admits an equi-
librium point xe, and D � Rn is an open and connected set with
xe 2 D. If V : D ! R is a positive definite, locally Lipschitz con-
tinuous, and regular function such that maxL ~FVðxÞ � 0 (respec-
tively, maxL ~FVðxÞ < 0; x 6¼ xe) for almost all x 2 D such that
L ~FVðxÞ 6¼ ;, then xe is strongly Lyapunov (respectively, strongly
asymptotically) stable.

The following definitions are required for stating the main
result of this section.

DEFINITION 3.1. Let / : D ! U be a measurable mapping on
Dnf0g with /ð0Þ ¼ 0. Then, Eq. (1) is feedback asymptotically
stabilizable if the zero Filippov solution x(t)
 0 of the closed-
loop discontinuous nonlinear dynamical system (2) is asymptoti-
cally stable.

DEFINITION 3.2. Consider the controlled discontinuous nonlinear
dynamical system given by Eq. (1). A locally Lipschitz continuous,
regular, and positive-definite function V : D ! R satisfying

inf
u2U

maxLFu
VðxÞ½ 	 < 0; a:e: x 2 Dnf0g; (10)

is called a control Lyapunov function.
Note that if V(�) is continuously differentiable at x, then

LFu
¼ frVðxÞv : v 2 K½Fu	ðxÞg. If, in addition, F : D� U ! Rn

is locally Lipschitz continuous in x uniformly in u, then Eq. (10) col-
lapses to the standard control Lyapunov definition given in Ref. [7].

If Eq. (10) holds, then there exists a feedback control law
/ : D ! U such that maxLF/ VðxÞ < 0; x 2 D; x 6¼ 0, and hence,

Theorem 3.1 implies that if there exists a control Lyapunov func-
tion for the discontinuous nonlinear dynamical system (1), then
there exists a feedback control law /ðxÞ such that the zero Fili-
ppov solution x(t)
 0 of the closed-loop system (2) is strongly
asymptotically stable. Conversely, if there exists a feedback con-
trol law u ¼ /ðxÞ such that the zero Filippov solution x(t) 
 0 of
the discontinuous nonlinear dynamical system (1) is strongly

asymptotically stable, then, since LF/ VðxÞ � fpTv : pT 2 @VðxÞ
and v 2 K½F/	ðxÞg, it follows from Theorem 2.7 of Ref. [9] that
there exists a locally Lipschitz continuous, regular, and positive-
definite function V : D ! R such that maxLF/ VðxÞ < 0 for

almost all nonzero x 2 D or, equivalently, there exists a control
Lyapunov function for the discontinuous nonlinear dynamical sys-
tem (1). Hence, a given discontinuous dynamical system of the
form (1) is strongly feedback asymptotically stabilizable if and
only if there exists a control Lyapunov function satisfying (10).
Finally, in the case where D ¼ Rn and U ¼ Rm the zero Filippov
solution x(t) 
 0 to (1) is globally strongly asymptotically stabiliz-
able if and only if V (x)!1 as jjxjj ! 1.

Next, we consider the special case of discontinuous nonlinear
systems affine in the control, and we construct state feedback
controllers that globally asymptotically stabilize the zero Filippov
solution of the discontinuous nonlinear dynamical system under
the assumption that the system has a radially unbounded control
Lyapunov function. Specifically, we consider discontinuous non-
linear affine dynamical systems of the form

_xðtÞ ¼ f ðxðtÞÞ þ GðxðtÞÞuðtÞ; xð0Þ ¼ x0; a:e: t � 0 (11)

where f : Rn ! Rn;G : Rn ! Rn�m;D ¼ Rn, and U ¼ Rm.
We assume that f(�) and G(�) are Lebesgue measurable and locally
essentially bounded. Note that Eq. (11) is a special case of Eq. (1)
with F(x, u)¼ f(x)þG(x)u. We use the notation fþGu to denote
the function Fu(x)¼ f(x)þG(x)u for each u 2 Rm.

Note that Eq. (11) includes piecewise continuous dynamical
systems as well as switched dynamical systems as special cases.
For example, if f(�) and G(�) are piecewise continuous, then
Eq. (11) can be represented as a differential inclusion involving
Filippov set-valued maps of piecewise-continuous vector fields
given by K½ f 	ðxÞ ¼ cof lim

i!1
f ðxiÞ : xi ! x; xi 62 Sf g, where Sf has

measure zero and denotes the set of points where f is discontinu-
ous [22], and similarly for G(�). Here, we assume that K½ f 	ð�Þ has
at least one equilibrium point so that, without loss of generality,
0 2 K½ f 	ð0Þ.

Next, define

LGVðxÞ ¼D fq2R1�m : there exists v2GðxÞ such that pTv¼ q

for all pT 2 @VðxÞg;

where GðxÞ ¼D
T
d>0

T
lðSÞ¼0

cofGðBdðxÞnSÞg; x 2 Rn, and \lðSÞ¼0

denotes the intersection over all sets S of Lebesgue measure zero.
Finally, we assume that the set LGVðxÞ is single-valued2 for
almost all x 2 Rn and that LGVðxÞ 6¼ ; at all other points x.

2The assumption that LGVðxÞ is single-valued is necessary. Specifically, as will
be seen later in the paper, the requirement that there exists �z 2 LGVðxÞ such that, for
all u 2 Rm;max½LGVðxÞu	 ¼ �zu holds if and only if LGVðxÞ is a singleton. To see
this, let q; r 2 LGVðxÞ, with q 6¼r, and assume, ad absurdum, that the required �z
exists. Then, either q� �z 6¼ 0 or r � �z 6¼ 0. Assume q� �z 6¼ 0 and let uT ¼ q� �z.
Then, qu� �zu ¼ ðq� �zÞu ¼ ðq� �zÞðq� �zÞT ¼k q� �z k2

2> 0. Hence, qu > �zu,
which leads to a contradiction.
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THEOREM 3.2. Consider the controlled discontinuous nonlinear
dynamical system given by Eq. (11). Then a locally Lipschitz con-
tinuous, regular, positive-definite, and radially unbounded func-
tion V : Rn ! R is a control Lyapunov function for Eq. (11) if
and only if

maxLf VðxÞ < 0; a:e: x 2 R; (12)

whereR ¼D fx 2 Rnnf0g : LGVðxÞ ¼ 0g.
Proof. Sufficiency is a consequence of the definition of a con-

trol Lyapunov function and the sum rule for computing the
generalized gradient of locally Lipschitz continuous functions
[22]. Specifically, for systems of the form (11), note that
LfþGuVðxÞ � Lf VðxÞ þ LGVðxÞu for almost all x and all u, and
hence, infu2U½maxLf VðxÞ þ LGVðxÞu	 ¼ �1 when x 62 R and
x 6¼ 0, whereas infu2U½maxLf VðxÞ þ LGVðxÞu	 < 0 for almost all
x 2 R. Hence, Eq. (12) implies Eq. (10) with Fu(x)¼ f(x)þG(x)u.

To prove necessity suppose, ad absurdum, that V (�) is a control
Lyapunov function and Eq. (12) does not hold. In this case, there
exists a set M� R of positive measure such that
maxLf VðxÞ � 0 for all x 2M. Let x 2M and let a 2 Lf VðxÞ
\½0;1Þ. From the definition of a control Lyapunov function, x is
such that there exists u such that maxLfþGuVðxÞ < 0 and, by the
sum rule for generalized gradients, the inclusion Lf VðxÞ �
LfþGuVðxÞ þ L�GuVðxÞ is satisfied (since the sum rule holds for
almost all x). Now, since x 2 M, we have L�GuVðxÞ ¼ �LGu

VðxÞ � �LGVðxÞu � f0g. Hence, there exists a non-negative
a 2 LfþGuVðxÞ, which is a contradiction. This proves the theorem.

It follows from Theorem 3.2 that the zero Filippov solution
x(t)
 0 of a discontinuous nonlinear affine system of the form
(11) is globally strongly feedback asymptotically stabilizable if
and only if there exists a locally Lipschitz continuous, regular,
positive-definite, and radially unbounded function V : Rn ! R
satisfying Eq. (12). Hence, Theorem 3.2 provides necessary and suf-
ficient conditions for discontinuous nonlinear system stabilization.

Next, using Theorem 3.2 we construct an explicit feedback con-
trol law that is a function of the control Lyapunov function V (�).
Specifically, consider the feedback control law given by

/ðxÞ ¼ � c0þ
aðxÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ðxÞþðbTðxÞbðxÞÞ2

q
bTðxÞbðxÞ

0
@

1
AbðxÞ; bðxÞ 6¼ 0

0; bðxÞ ¼ 0

8>><
>>:

(13)

where aðxÞ ¼D maxLf VðxÞ; bðxÞ ¼
D ðLGVðxÞÞT, and c0� 0 is a

constant. In this case, the control Lyapunov function V (�) of (11)
is a Lyapunov function for the closed-loop system (11) with
u ¼ /ðxÞ, where /ðxÞ is given by Eq. (13). To see this, recall that
using the sum rule for computing the generalized gradient of
locally Lipschitz continuous functions, [22] it follows that
LfþGuVðxÞ � Lf VðxÞ þ LGuVðxÞ for almost all x 2 Rn.

In particular, Theorem 3.2 gives

maxLF/ VðxÞ¼maxLfþG/ (14)

�max Lf VðxÞþLGVðxÞ/ðxÞ
� �

¼maxLf VðxÞþLGVðxÞ/ðxÞ
¼aðxÞþbTðxÞ/ðxÞ

¼ �c0b
TðxÞbðxÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ðxÞþðbTðxÞbðxÞÞ2

q
; bðxÞ 6¼0;

aðxÞ; bðxÞ¼0;

(

<0; x2Rn; a:e: x 6¼0;

(15)

which implies that V (�) is a Lyapunov function for the closed-
loop system (11), and hence, by Theorem 3.1, guaranteeing global
strong asymptotic stability with u ¼ /ðxÞ given by Eq. (13).

Example 3.1. Consider a controlled nonsmooth harmonic
oscillator with nonsmooth friction given by [14]

_x1ðtÞ ¼ �signðx2ðtÞÞ �
1

2
signðx1ðtÞÞ; x1ð0Þ ¼ x10; a:e: t � 0

(16)

_x2ðtÞ ¼ signðx1ðtÞÞ þ uðtÞ; x2ð0Þ ¼ x20 (17)

where signðrÞ ¼D r=jrj;r 6¼ 0, and sign(0) ¢ 0. Next, consider
the locally Lipschitz continuous function VðxÞ ¼ jx1j þ jx2j and
note that

@VðxÞ ¼

fsignðx1Þg�fsignðx2Þg; x1 6¼ 0; x2 6¼ 0

fsignðx1Þg� ½�1;1	; x1 6¼ 0; x2 ¼ 0

�1;1½ 	�fsignðx2Þg; x2 6¼ 0; x1 ¼ 0

cofð1;1Þ;ð�1;1Þ;ð�1;�1Þ;ð1;�1Þg; ðx1;x2Þ ¼ ð0;0Þ

8>>>><
>>>>:

Hence, with f ðxÞ¼ ½�signðx2Þ�1=2signðx1Þ;signðx1Þ	T and G(x)
¼[0, 1]T,

Lf VðxÞ ¼
f� 1

2
g; x1 6¼ 0; x2 6¼ 0

;; x1 6¼ 0; x2 ¼ 0

;; x2 6¼ 0; x1 ¼ 0

f0g; ðx1; x2Þ ¼ ð0; 0Þ

8>><
>>:

and

LGVðxÞ ¼

fsignðx2Þg; x1 6¼ 0; x2 6¼ 0

;; x1 6¼ 0; x2 ¼ 0

fsignðx2Þg; x2 6¼ 0; x1 ¼ 0

;; ðx1; x2Þ ¼ ð0; 0Þ

8>>><
>>>:

Now, since maxLf VðxÞ < 0 for all x 2 R, where R ¼ fx 2 R2n
f0g : LGVðxÞ ¼ 0g, it follows from Theorem 3.2 that VðxÞ ¼ jx1j
þ jx2j is a control Lyapunov function for Eqs. (16) and (17).

Next, note that it follows from Eq. (13) that for almost all
x 2 R2nf0g

/ðxÞ ¼ � c0 þ
� 1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ sign4ðx2Þ

r
sign2ðx2Þ

0
BB@

1
CCAsignðx2Þ;

signðx2Þ 6¼ 0 (18)

where c0� 0, and hence, since LfþG/VðxÞ � Lf VðxÞ þ LGVðxÞ/
ðxÞ for almost all x,

maxLfþG/VðxÞ � � c0 þ
ffiffiffi
5
p

2

 !
< 0:

Now, it follows from Theorem 3.1 that Eq. (18) is a globally
strongly stabilizing feedback controller. Figures 1 and 2 show the
phase portraits of the open-loop (u(t) 
 0) and closed-loop non-
smooth harmonic oscillator with c0¼ 0, respectively. Finally,
Figs. 3 and 4 show the state trajectories and the control trajecto-
ries of the closed-loop system versus time for x(0)¼ [2, �2]T and
c0¼ 0. �

Example 3.2. Consider the controlled dynamical system G given
by Eq. (11), where x¼ [x1, x2]T, u¼ [u1, u2]T,

f ðxÞ ¼ jx1jð�x1 þ jx2jÞ
x2ð�x1 � jx2jÞ

	 

; GðxÞ ¼ jx1j 0

0 x2
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Next, consider the locally Lipschitz continuous function
VðxÞ ¼ 2jx1j þ 2jx2j and note that

@VðxÞ ¼

f2signðx1Þg�f2signðx2Þg; x1 6¼ 0; x2 6¼ 0

f2signðx1Þg� ½�2;2	; x1 6¼ 0; x2 ¼ 0

�2;2½ 	 � f2signðx2Þg; x2 6¼ 0; x1 ¼ 0

cofð2;2Þ;ð�2;2Þ;ð�2;�2Þ; ð2;�2Þg; ðx1;x2Þ ¼ ð0;0Þ

8>>>><
>>>>:

Hence

Lf VðxÞ ¼
f�2x2

1 � 2x2
2g; x1 6¼ 0; x2 6¼ 0

f�2x2
1g; x1 6¼ 0; x2 ¼ 0

f�2x2
2g; x2 6¼ 0; x1 ¼ 0

f0g; ðx1; x2Þ ¼ ð0; 0Þ

8>><
>>:

and

LGVðxÞ ¼

fð2x1; 2jx2jÞg; x1 6¼ 0; x2 6¼ 0

fð2x1; 0Þg; x1 6¼ 0; x2 ¼ 0

fð0; 2jx2jÞg; x2 6¼ 0; x1 ¼ 0

fð0; 0Þg; ðx1; x2Þ ¼ ð0; 0Þ

8>><
>>:

Now, since maxLf VðxÞ < 0 for all x 2 R, where R ¼ fx 2 R2

nf0g : LGVðxÞ ¼ 0g, it follows from Theorem 3.2 that VðxÞ
¼ 2jx1j þ 2jx2j is a control Lyapunov function.

Setting aðxÞ ¼ maxLf VðxÞ and bðxÞ ¼ ðLGVðxÞÞT, it follows

that bTðxÞbðxÞ ¼ 4ðx2
1 þ x2

2Þ and a2ðxÞþðbTðxÞbðxÞÞ2¼ 4ðx2
1

þx2
2Þ

2þ16ðx4
1þx4

2þ2x2
1x2

2Þ¼ 20ðx4
1þx4

2Þþ40x2
1x2

2¼ 20ðx2
1þx2

2Þ
2
,

and hence, Eq. (13) gives

/ðxÞ ¼ � c0 þ ð
ffiffiffi
5
p
� 1Þ

� � x1

jx2j

	 

; ðx1; x2Þ 6¼ ð0; 0Þ

0; ðx1; x2Þ ¼ ð0; 0Þ

8<
: (19)

where c0� 0. Thus, maxLfþG/VðxÞ � �jxj2 for all x 6¼ 0. Now, it
follows from Theorem 3.1 that Eq. (19) is a globally strongly sta-
bilizing feedback controller. Figures 5 and 6 show the phase

Fig. 1 Phase portrait of the open-loop nonsmooth harmonic
oscillator

Fig. 2 Phase portrait of the closed-loop nonsmooth harmonic
oscillator

Fig. 3 State trajectories of the closed-loop system versus time

Fig. 4 Control trajectories of the closed-loop system versus
time

Fig. 5 Phase portrait of the open-loop system
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portraits of the open-loop (u(t)
 0) and closed-loop system with
c0¼ 50, respectively. Finally, Figs. 7 and 8 show the state trajec-
tories and the control trajectories of the closed-loop system versus
time for x(0)¼ [2, �2]T and c0¼ 50. �

4 Conclusion

In this paper, we developed a constructive universal feedback
control law for discontinuous dynamical systems based on the ex-
istence of a nonsmooth control Lyapunov function defined in the

sense of generalized Clarke gradients and set-valued Lie
derivatives. Specifically, we address the problem of discontinuous
stabilization for dynamical systems with Lebesgue measurable
and locally essentially bounded vector fields characterized by dif-
ferential inclusions involving Filippov set-valued maps and admit-
ting Filippov solutions. In the case where the system vector field
is locally Lipschitz continuous and our control Lyapunov function
is assumed to be continuously differentiable, our results specialize
to the control Lyapunov function of Artstein [7] and our construc-
tive universal controller specializes to Sontag’s universal feed-
back control law [8]. The efficacy of the proposed approach is
shown in two representative examples involving discontinuous
dynamics and Lipschitz continuous control Lyapunov functions.
Extensions of this work for addressing connections between
nonsmooth control Lyapunov functions and inverse optimality is
currently under development.
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