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SUMMARY

In this paper we provide guaranteed stability regions for multivariable Luré-type systems. Specifically, using
the Luré—Postnikov Lyapunov function a guaranteed subset of the domain of attraction for a feedback
system whose forward path contains a dynamic linear time-invariant system and whose feedback path
contains multiple sector-bounded time-invariant memoryless nonlinearities is constructed via open
Lyapunov surfaces. It is shown that the use of open Lyapunov surfaces yields a considerable improvement
over closed Lyapunov surfaces in estimating the domain of attraction of the zero solution of the nonlinear
system. An immediate application of this result is the computation of transient stability regions for
multimachine power systems and computation of stability regions of anti-windup controllers for systems
subject to input saturation. ( 1997 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Absolute stability theory guarantees stability of feedback systems whose forward path contains
a dynamic linear time-invariant system and whose feedback path contains a memoryless (possibly
time-varying) sector bounded nonlinearity. In the case where the sector bounded nonlinearity is
known to be time-invariant, the Popov criterion1~4 provides a sufficient condition for global
absolute stability. If, however, the feedback nonlinearity satisfies the sector constraint for only
a finite or semi-infinite range of its argument the feedback interconnection can only be guaran-
teed to be locally asymptotically stable. In this case, it is important to provide a guaranteed subset
of the domain of attraction for the nonlinear system to ensure that the system trajectories do not
leave the local stability region.

The problem of providing a guaranteed domain of attraction for locally stable nonlinear
systems has received considerable attention (see, for example, References 5—7 and the references
therein). The motivation for estimating a subset of the domain of attraction of a nonlinear system
is the fact that there is no guarantee that a system trajectory starting in a subset of the state space



R will remain in R even though the system trajectories move from one Lyapunov level surface to
an inner Lyapunov level surface. For single-input/single-output (SISO) Luré and Luré-type
systems the authors in References 8—10 use the Luré—Postnikov Lyapunov function to provide an
estimate of domain of attraction. Specifically, References 8 and 9 use the Luré—Postnikov
Lyapunov function to compute a region of asymptotic stability using closed Lyapunov surfaces
while Reference 10, using a series of formal geometric arguments, provides a considerably
improved region of asymptotic stability using open Lyapunov surfaces. In this paper using the
multivariable Popov criterion11,12 we extend the results of References 8—10 to multi-input/multi-
output (MIMO) systems.

An immediate application of the results of this paper is the computation of transient stability
regions for multimachine power systems13,14 and computation of stability regions of anti-windup
controllers for systems subjected to input saturation.15,16 Specifically, it can be shown that the
dynamic equations describing this class of systems can be cast into a multivariable Luré problem
where the feedback nonlinearities satisfy sector constraints for a finite or semi-infinite range of
their arguments. Hence, the results of the present paper can be used to provide a guaranteed
subset of the domain of attraction for this class of systems.

2. GUARANTEED DOMAINS OF ATTRACTION FOR SISO LURË SYSTEMS

In this section we consider a Luré-type absolute stability problem of the nonlinear system

xR (t)"Ax(t)!B/(y), x (0)"x
0
, t*0 (1)

y(t)"Cx(t) (2)

where (A,B) is controllable, (A,C) is observable, x (t)3Rn, y(t)3Rm and / :RmPRm is a time-
invariant sector-bounded memoryless nonlinearity. In this section we restrict our attention to
single-input/single-output systems, i.e., m"1. This constraint is removed in the next section. For
the single-input/single-output case we assume /3'

4
where '

4
is defined by

'
4
¢ M/ : RmPR : 0)/ (y)y)ky2, y3RN

where k is a positive scalar. In this case it follows from the Popov criterion3,4,17 that the zero
solution of (1), (2) is globally asymptotically stable for all /3'

4
if there exists a constant a3R,

a*0, such that 1
k
#(1#as)G(s) is strictly positive real where G(s) ¢C(sI!A)~1B. Further-

more, absolute stability can be proven by the Luré—Postnikov Lyapunov function

» (x)"xTPx#a P
y

0

/ (p) dp (3)

where P3Rn]n, P'0, satisfies the Kalman—Yakubovich—Popov Equations4 arising from the
strict positive real condition on 1

k
#(1#as)G(s). In what follows, we assume that there exists

a*0 such that 1
k
#(1#as)G(s) is strictly positive real and hence there exists P3Rn]n, P'0,

satisfying the corresponding Kalman—Yakubovich—Popov equations. Next, if the input nonlin-
earity / is contained in '

4
for a finite or semi-infinite range of its argument, that is,

/3'ª
4
¢ M/ :RmPR : 0)/ (y)y)ky2, y

6
)y)yN N (4)

where y
1
(0 and yN '0 are given, then (3) can be used to provide a guaranteed subset of the

domain of attraction for the nonlinear system (1), (2). Since P'0 satisfies the
Kalman—Yakubovich—Popov conditions arising from the strict positive real condition on
1
k
#(1#as)G(s) it follows that »Q (x)¢» @(x) [Ax!B/(Cx)](0 for all x3X/M0N where
X¢ Mx3Rn : y

1
)Cx)yN N.
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Next, define the hyperplanes

!` ¢ Mx3Rn : Cx"yN N (5)

!~ ¢ Mx3Rn : Cx"y
6
N (6)

with associated minimum Lyapunov values, respectively,

»!` ¢ min
x|!`

» (x) (7)

»!~ ¢ min
x|!~

» (x) (8)

Proposition 2.1

Let »!` and »!~ be given by (7) and (8), respectively. Then

»!`"

yN 2
CP~1CT

#aY (yN ) (9)

»!~"

y
6
2

CP~1CT
#aY (y

6
) (10)

where Y(z)¢ :z
0

/(p) dp.

Proof. Suppose x
`
3!` solves (7). Since :y

0
/ (p) dp is a constant for all x3!`, x

`
solves (7) if

and only if x
`

solves the minimization problem min
x|!` Q (x) where Q (x)¢xTPx is the

positive-definite quadratic part of » (x). The existence and uniqueness of min
x|!`Q (x) and

min
x|!~Q (x) follows from the fact that Q (x) is a strictly convex function on !` and !~. Next, to

minimize Q (x) subject to x3!` form the Lagrangian L (x, j)¢Q (x)#j (Cx!yN ) where j3R is
a Lagrange multiplier. Now if x

`
solves (7) then

0"
LL
Lx K

x/x`

"2xT
`

P#jC (11)

and hence 2xT
`

Px
`
"!jCx

`
"!jyN . Next, forming (11) P~1CT yields

0"2xT
`

CT#jCP~1CT"2yN #jCP~1CT

and hence, since CP~1CT'0, xT
`

Px
`
"

yN 2
CP~1CT

. Thus,

»!`"» (x
`

)"xT
`

Px
`
#a P

Cx`

0

/(p) dp"
yN 2

CP~1CT
#aY (yN )

Equation (10) follows by carrying out the identical steps with x
`

and !` replaced by x
~

and !~,
respectively. K

Remark 2.1

Note that the closed subset D
#-

of X defined by D
#-

¢ Mx3X :» (x))»!N, where
»! ¢minM»!` ,»!~N, is a subset of the domain of attraction for (1) and (2) since »Q (x)(0 for all
x3D

#-
/M0N-X/M0N.
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Remark 2.2

It is important to note that unlike standard Luré absolute stability problems where the
nonlinearity /3'

4
is not explicitly known our results for estimating a subset of the domain of

attraction require the exact functional form of /3'
4
. This restriction can be eliminated if we

restrict our consideration to non-Luré—Postnikov type Lyapunov functions of the form
» (x)"xTPx. However, this will introduce conservatism to both the stability and domain of
attraction predictions since fixed quadratic-type Lyapunov functions guarantee stability for the
much larger class of arbitrary time-varying nonlinearities.11 For further details see Reference 15.

The following lemma is needed for the main result of this section.

Lemma 2.1

Let x
`
3!` and x

~
3!~ be such that »!`"» (x

`
) and »!~"» (x

~
). Then

CAx
`
!CB/(yN )(0 (12)

and
CAx

~
!CB/(y

6
)'0 (13)

Proof. Since by assumption x
`

minimizes » (x) on !` it follows that LL
Lx

D
x/x`

"0 where
L (x, j)¢» (x)#j (Cx!yN ) is a Lagrangian and j3R is a Lagrange multiplier. Hence,

0"
LL
Lx K

x/x`

"» @ (x
`

)#jC (14)

Next, forming (14)x
`

yields » @(x
`

)x
`
#jyN "0 which implies that j"!(» @(x

`
)x

`
/yN )(0

since » @ (x
`

)x
`
"2xT

`
Px

`
#a/ (yN )yN '0. Furthermore, since »Q (x)(0 for all x3X/M0N, it

follows that

» @(x
`

) [Ax
`
!B/ (Cx

`
)]"!j (CAx

`
!CB/ (yN ))(0

and hence CAx
`
!CB/(yN )(0. Equation (13) follows by carrying out the identical steps with

x
`

and !` replaced by x
~

and !~, respectively. K

Next, define the intersections of !` and !~ and the hyperplanes CAx!CB/(yN )"0 and
CAx!CB/(y

6
)"0, respectively, by

S`¢ Mx3!` : CAx!CB/(yN )"0N (15)

S~¢ Mx3!~ : CAx!CB/(y
6
)"0N (16)

with associated minimum Lyapunov values

»S` ¢G
min

x|S` » (x)

R

if S`O0
if S`"0

(17)

»S~ ¢G
min

x|S~ » (x)

R

if S~O0
if S~"0

(18)

Proposition 2.2

Suppose

0O(CP~1CT) (CAP~1ATCT )!(CAP~1CT )2 (19)
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and let »S` and »S~ be given by (17) and (18), respectively. Then

»S`"( (yN )#aY (yN ) (20)
and

»S~"( ( y
6
)#aY (y

6
) (21)

where ( : RPR is given by

((z)¢
C[Az!BC/ (z)]P~1 [Az!CB/(z)]TCT

(CP~1CT) (CAP~1ATCT )!(CAP~1CT)2

Proof. Once again note that x
`

solves min
x|S` » (x) if and only if x

`
solves min

x|S` Q (x)
where Q (x)"xTPx since :cx

0
/ (p) dp is a constant for all x3S`. Furthermore, since Q (x) is

a positive-definite quadratic function the existence and uniqueness of min
x|S`Q(x) and

min
x|S~ Q (x) follows from the fact that Q (x) is a strictly convex function S` and S~. Next, to

minimize Q (x) subject to x3S` form the Lagrangian

L (x, j
1
, j

2
)¢Q (x)#j

1
(Cx!yN )#j

2
(CAx!CB/(yN ))

where j
1
, j

2
3R are the Lagrange multipliers. Now, if x

`
solves min

x|S` » (x) then

0"
LL
Lx K

x/x`

"2xT
`

P#j
1
C#j

2
CA (22)

Next, forming (22)P~1CT and (22)P~1ATCT yields, respectively,

0"2xT
`

CT#j
1
(CP~1CT)#j

2
(CAP~1CT) (23)

0"2xT
`

ATCT#j
1
(CP~1ATCT)#j

2
(CAP~1ATCT ) (24)

which further implies that

j
1
"!2

yN (CAP~1ATCT)!/ (yN )BTCT (CAP~1CT )

(CP~1CT) (CAP~1 ATCT)!(CP~1ATCT)2

and

j
2
"2

yN (CP~1ATCT)!/ (yN )BTCT (CP~1CT )

(CP~1CT) (CAP~1 ATCT)!(CP~1ATCT)2

Now, forming (22)x
`

and substituting for j
1

and j
2

yields

xT
`

Px
`
"

C[AyN !BC/(yN )]P~1[AyN !BC/(yN )]TCT

(CP~1CT) (CAP~1ATCT)!(CP~1ATCT )2
"( (yN )

Hence, »S`"» (x
`

)"( (yN )#aY(yN ). Equation (21) follows by carrying out the identical steps
with x

`
and S` replaced by x

~
and S~, respectively. K

Remark 2.3

Note that if (CP~1CT ) (CAP~1ATCT)!(CAP~1CT)2"0 then

0"CAP~1@2( (CP~1CT)I
n
!P~1@2CTCP~1@2 )P~1@2ATCT (25)

In this case, since p
.!9

(P~1@2CTCP~1@2))CP~1CT, where p
.!9

( ·) denotes the maximum
singular value, it follows that P~1@2( (CP~1CT) I

n
!P~1@2CTCP~1@2)P~1@2 is non-negative
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definite and hence (25) yields

0"CAP~1@2((CP~1CT ) I
n
!P~1@2CTCP~1@2 )P~1@2

which further implies that CA"(CAP~1CT/CP~1CT) C. Thus, since C is a left eigenvector of A,
the hyperplanes !` and Mx3Rn :CAx!CB/(yN )"0N (respectively, !~ and Mx3Rn :
CAx!CB/(y

6
)"0N ) are either identical or parallel to each other. In the former case S`"!`

(resp., S~"!~) and hence »S`"»!` (respectively, »S~"»!~) while in the latter case
S`"0 (respectively, S~"0) and hence »S`"R (respectively, »S~"R).

Next, we present the main result of this section for providing a guaranteed subset of the domain
of attraction of (1), (2) when the input nonlinearity / is contained in 'ª

4
for a finite range of its

argument. For the statement of this result define

D
A

¢ Mx3Rn :» (x)(»S , y
6
)Cx)yN N (26)

where »S ¢minM»S` ,»S~N.

Theorem 2.1

Let D
A

be given by (26). Then D
A

is a subset of the domain of attraction for (1), (2).

Proof. First we show that D
A

is an invariant set for (1), (2). Suppose »S(R. In this case in
order to show that D

A
is an invariant set for (1), (2) it suffices to show that CAx!CB/(Cx)(0

for all x3D
A
W!` and CAx!CB/(Cx)'0 for all x3D

A
W!~. Note that

D
A
W!`"Mx3Rn :» (x)(»S , Cx"yN N is a convex set and hence connected. Now, suppose that

there exists x3D
A
W!` such that CAx!CB/(yN )*0. Then, since by Lemma 2.1, there exists

x
`
3D

A
W!` such that CAx

`
!CB/(yN )(0, it follows from continuity that there exists

x*3D
A
W!` such that CAx*!CB/(yN )"0 and hence » (x*)*»S which is a contradiction.

Hence, CAx!CB/(yN )(0 for all x3D
A
W!`. Using similar arguments it can be shown that

CAx!CB/(y
6
)'0 for all x3D

A
W!~. Next, suppose »S"R. In this case D

A
"X and hence

in order to show that D
A

is an invariant set for (1), (2) it suffices to show that
CAx!CB/(Cx)(0 for all x3!` and CAx!CB/(Cx)'0 for all x3!~ which can be shown
as above using the fact that there exists x3!` such that CAx!CB/(Cx)(0 and x3!~ such
that CAx!CB/(Cx)'0. Hence, D

A
is an invariant set for (1), (2). Finally, since »Q (x)(0 for all

x3D
A
/M0N-X/M0N it follows that x (t)P0 as tPR where x (t) is the solution to (1). K

Remark 2.4

Theorem 2.1 gives an estimate of the domain of attraction for (1) and (2) by constructing
Lyapunov surfaces that are not necessarily closed. For the single-input/single-output case
a similar result was reported in Reference 10 where the proof was given using a series of formal
geometric arguments.

Remark 2.5

SinceS`-!` and S~-!~ it follows that »S`*»!` and »S~*»!~ . Hence, the domain
of attraction predicted by (26) will always be larger than or equal to the domain of attraction
predicted by (26) with »S"minM»!` ,»!~N.
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Remark 2.6

As shown in Remark 2.3, if (CP~1CT) (CAP~1ATCT)"(CAP~1CT)2, S`O!`, and
S ~O!~ then »S`"»S~"R. In this case »S"R and hence the system (1), (2) is
asymptotically stable for all x

0
3X.

3. GUARANTEED DOMAINS OF ATTRACTION FOR MIMO LURË SYSTEMS

In this section we extend the result of Section 2 to multivariable systems, i.e., m'1. Specifically,
we consider the nonlinear system (1), (2) where /3'

.
belongs to a class of component-decoupled

time-invariant sector-bounded monotonic nonlinearities, that is,

'
.

¢ M/ : RmPRm : 0)/
i
(y

i
)y

i
)k

i
y2
i
, /

i
(· ) is differentiable

/@
i
(y

i
)*0, y

i
3R, i"1,2 , mN (27)

where k
i
, i"1,2 ,m, are positive scalars and y

i
denotes the ith element of y3Rm. Note that the

nonlinear functions considered, /3'
.
, are identical to the nonlinearities considered by multi-

variable extensions of the Popov criterion11,12 with the additional constraint of monotonicity. In
this case global absolute stability of (1), (2) is guaranteed by the multivariable Popov cri-
terion11,12 which requires that K~1#(I#Ns)G(s) be strictly positive real where
K"diag (k

1
,2 , k

m
) and N"diag(a

1
,2 , a

m
) where a

i
3R, a

i
*0, k

i
'0, i"1,2 ,m. Fur-

thermore, the Lyapunov function guaranteeing stability is given by

» (x)"xTPx#
m
+
i/1

a
i P

C
i
x

0

/
i
(p) dp (28)

where P3Rn]n, P'0, satisfies the Kalman—Yakubovich—Popov equations11 arising from the
strict positive real condition on K~1#(I#Ns)G(s) and C

i
O0 denotes the ith row of C. As in

the single-input/single-output case, we assume that there exists a non-negative-definite diagonal
matrix N3Rm]m such that K~1#(I#Ns)G(s) is strictly positive real and hence there exists
P'0 satisfying the corresponding Kalman—Yakubovich—Popov equations. Next, we assume
that the input nonlinearity / is contained in 'ª

.
for a finite or semi-infinite range of its argument,

that is,

/3'ª
.

¢ M/ : RmPRm : 0)/
i
(y

i
)y

i
)k

i
y2
i
, /

i
(· ) is differentiable

/@
i
(y

i
)*0, y

6 i
)y

i
)yN

i
, i"1,2 ,mN (29)

where y
6 i
(0 and yN

i
'0, i"1,2 ,m, are given. Since P'0 satisfies the Kalman—Yakubovich—

Popov equations arising from the strict positive real condition on K~1#(I#Ns)G(s) it follows
that »Q (x)(0 for all x3X/M0N where X¢ Ym

i/1
X
i

with X
i
¢ Mx3Rn : y

6 i
)C

i
x)yN

i
N. The

following lemma is required for our main result.

Lemma 3.1

Let » (x) be given by (28) and let C-Rn be a convex set. Then » (x) is a strictly convex function
on C.
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Int. J. Robust Nonlinear Control, 7, 935—949 (1997)( 1997 by John Wiley & Sons, Ltd.



Proof. The strict convexity of the first term of » (x), xTPx, is immediate. Next let v
i
: RPR be

defined by v
i
(h

i
)¢ :hi

0
/

i
(p)dp, i"1,2 , m. Now note that since d2v

i
/dh2

i

"/@
i
(h

i
)*0, v

i
(h

i
),

i"1,2 ,m, is a convex function on R. Furthermore, since

m
+
i/1

a
i
v
i
(C

i
(ex

1
#(1!e)x

2
) ))e C

m
+
i/1

a
i
v
i
(C

i
x
1
)D#(1!e)C

m
+
i/1

a
i
v
i
(C

i
x
2
)D

for all e3[0, 1] and x
1
, x

2
3C, it follows that +m

i/1
a
i
:Cix
0

/
i
(p)dp is a convex function on C. The

result now follows from the fact that the sum of a strictly convex function and a convex function is
a strictly convex function. K

Next, for i3M1,2 , mN, define the hyperplanes

!`
i

¢ Mx3Rn : C
i
x"yN

i
N (30)

!~
i

¢ Mx3Rn : C
i
x"y

6 i
N (31)

with associated minimum Lyapunov values, respectively,

»!`
i
¢min

x|!`
i

» (x) (32)

»!~
i
¢min

x|!~
i

» (x) (33)

Proposition 3.1

For i3M1,2 , mN let x
`
3!`

i
and x

~
3!~

i
be such that » (x

`
)"»!`

i
and » (x

~
)"»!~

i
. Then

0"2xT
`

P#

m
+
j/1

a
j
/

j
(C

j
x
`

)C
j
!

2yN
i
#

m
+
j/1

a
j
/

j
(C

j
x
`

) C
j
P~1CT

i

C
i
P~1CT

i

C
i

(34)

and

0"2xT
~

P#

m
+
j/1

a
j
/
j
(C

j
x
~

)C
j
!

2y
6 i
#

m
+
j/1

a
j
/
j
(C

j
x
~

) C
j
P~1CT

i

C
i
P~1CT

i

C
i

(35)

Proof. First, the existence and uniqueness of min
x|!`

i
» (x) and min

x|!~
i
» (x) follows from the

fact that » (x) is a strictly convex function on !`
i

and !~
i

. Next, to minimize » (x) subject to
x3!`

i
form the Lagrangian L(x, j)¢» (x)#j (C

i
x!yN

i
) where j3R is a Lagrange multiplier.

Now if x
`

solves (32) then

0"
LL
Lx K

x/x`

"2xT
`

P#

m
+
j/1

a
j
/
j
(C

j
x
`

)C
j
#jC

i
(36)

Next, forming (36)P~1CT
i

yields

j"!

2yN
i
#

m
+
j/1

a
j
/
j
(C

j
x
`

)C
j
P~1CT

i

C
i
P~1CT

i
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and hence

0"2xT
`

P#

m
+
j/1

a
j
/

j
(C

j
x
`

)C
j
!

2yN
i
#

m
+
j/1

a
j
/

j
(C

j
x
`

) C
j
P~1CT

i

C
i
P~1CT

i

C
i

(37)

Equation (35) follows by carrying out the identical steps with x
`

and !`
i

replaced by x
~

and !~
i

,
respectively. K

Remark 3.1

As in the single-input/single-output case, note that the closed subset D
#-

of X defined by
D

#-
¢ Mx3X :» (x))»!N, where »!¢ min Mmin

i/1 ,2 ,m
»!`

i
, min

i/1 ,2 ,m
»!~

i
N, is a subset of

the domain of attraction for (1) and (2).

Remark 3.2

As in the single-input/single-output case Proposition 3.1 requires the exact functional form of
/3'ª

.
. However, in the case where we restrict our consideration to non-Luré—Postnikov type

functions of the form » (x)"xTPx this restriction can once again be eliminated. Furthermore, in
this case the nonlinearity set 'ª

.
can be generalized to non-monotonic fully coupled nonlineari-

ties. As mentioned in Remark 2.2 however, this will introduce conservatism to both stability and
domain of attraction predictions since stability is assured for a much larger class of arbitrary
time-varying nonlinearities.

Since in the multivariable Luré problem +m
i/1

a
i
:Cix
0

/
i
(p)dp is no longer a constant on !`

i
and

!~
i

for i3M1,2 , mN, the resulting minimization problem considered in Proposition 3.1 results in
a set of nonlinear algebraic equations. However, since a

i
:C

i
x

0
/i (p)dp *0, i"1,2 , m, a lower

bound involving a closed-form expression for the minimum Lyapunov values (32) and (33) can be
computed.

Corollary 3.1

For i3M1,2 ,mN let »!`
i
and »!~

i
be given by (32) and (33), respectively. Then

»!`
i
*

yN 2
i

C
i
P~1CT

i

#a
i
Y

i
(yN

i
) (38)

»!~
i
*

y
6
2
i

C
i
P~1CT

i

#a
i
Y

i
(y
6 i
) (39)

where Y
i
(z)¢ :z

0
/

i
(p)dp.

Proof. Note that » (x)*»K (x)¢xTPx#a
i
:Cix
0

/
i
(p)dp and hence min

x|!`
i
» (x)*min

x|!`
i
»K (x)

and min
x|!~

i
» (x)*min

x|!~
i
»K (x). Now since a

i
:Cix
0

/
i
(p)dp is a constant on !`

i
and !~

i
the result

follows as in the proof of Proposition 2.1. K

The following lemma is needed for the main result of this section.

Lemma 3.2

For i3M1,2 ,mN let x
`
3!`

i
and x

~
3!~

i
be such that »!`

i
"»(x

`
) and »!~

i
"»(x

~
) . Then

C
i
Ax

`
!C

i
B/ (Cx

`
)(0 (40)
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and

C
i
Ax

~
!C

i
B/ (Cx

~
)'0 (41)

Proof. The proof is similar to that of Lemma 2.1 and hence is omitted. K

Next, for i3M1,2 ,mN, define the intersections of !`
i

and !~
i

and the hyperplanes
C

i
Ax!C

i
B/ (Cx)"0 by

S`
i

¢ Mx3!`
i

: C
i
Ax!C

i
B/(Cx)"0N (42)

S~
i

¢ Mx3!~
i

: C
i
Ax!C

i
B/(Cx)"0N (43)

with associated minimum Lyapunov values, respectively,

»S`
i
¢ G

min
x|S`

i
» (x)

R

if S`
i
O0

if S`
i
"0

(44)

»S~
i
¢ G

min
x|S~

i
» (x)

R

if S~
i
O0

if S~
i
"0

(45)

For the statement of the next result let #
i
:RnPRm]m and b

i
:RnPR be defined by

#
i
(x)¢ diag[/@

1
(C

1
x),2 , /@

m
(C

m
x)]

b
i
(x)¢ (C

i
P~1CT

i
) [C

i
AP~1ATCT

i
!C

i
B#

i
(x)CP~1ATCT

i
]

!(C
i
P~1ATCT

i
) [C

i
AP~1CT

i
!C

i
B#

i
(x)CP~1CT

i
]

Proposition 3.2

Let i3M1,2 ,mN. Suppose S`
i
O0, S~

i
O0 and let x

`
3S`

i
and x

~
3S~

i
be such that

» (x
`

)" »S`
i
and » (x

~
)" »S~

i
. Then

0"2b
i
(x

`
)xT

`
P#

m
+
j/1

b
i
(x

`
)a

j
/

j
(C

j
x
`

)C
j

#CG2xT
`

ATCT
i
#

m
+
j/1

a
j
/
j
(C

j
x
`

)C
j
P~1ATCT

i H MC
i
AP~1CT

i
!C

i
B#1

i
CP~1CT

i
N

!G2xT
`

CT
i
#

m
+
j/1

a
j
/
j
(C

j
x
`

)C
j
P~1CT

i H MC
i
AP~1ATCT

i
!C

i
B#1

i
CP~1ATCT

i
NDC

i

#CG2xT
`

CT
i
#

m
+
j/1

a
j
/
j
(C

j
x
`

)C
j
P~1CT

i H MC
i
P~1ATCT

i
N

!G2xT
`

ATCT
i
#

m
+
j/1

a
j
/
j
(C

j
x
`

)C
j
P~1ATCT

i H MC
i
P~1CT

i
ND [C

i
A!C

i
B#1

i
C] (46)
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and

0"2b
i
(x

~
)xT

~
P#

m
+
j/1

b
i
(x

~
)a

j
/

j
(C

j
x
~

)C
j

#CG2xT
~

ATCT
i
#

m
+
j/1

a
j
/
j
(C

j
x
~

)C
j
P~1ATCT

i H MC
i
AP~1CT

i
!C

i
B#

1 i
CP~1CT

i
N

!G2xT
~

CT
i
#

m
+
j/1

a
j
/
j
(C

j
x
~

)C
j
P~1CT

i H MC
i
AP~1ATCT

i
!C

i
B#

1 i
CP~1ATCT

i
NDC

i

#CG2xT
~

CT
i
#

m
+
j/1

a
j
/
j
(C

j
x
~

)C
j
P~1CT

i H MC
i
P~1ATCT

i
N

!G2xT
~

ATCT
i
#

m
+
j/1

a
j
/
j
(C

j
x
~

)C
j
P~1ATCT

i H MC
i
P~1CT

i
ND [C

i
A!C

i
B#

1 i
C] (47)

where #1
i
¢ #

i
(x

`
) and #

1 i
¢#

i
(x

~
) .

Proof. First, we prove the existence of min
x|S`

i
» (x) and min

x|S~
i
» (x). Since / ( · ) is a continu-

ous function on Rm it follows that S`
i

is a closed subset of Rn. Now, if S`
i

is bounded the
existence of min

x|S`
i
» (x) is immediate since » (x) is continuous onS`

i
andS`

i
is compact. Next,

suppose S`
i

is unbounded. Since » (x) is radially unbounded, that is, » (x)PR as DDx DDPR, it
follows that for every M'0 there exists r'0 such that » (x)'M for all x3S`

i
and DDx DD'r

where DD · DD is the Euclidean vector norm. Now let S
M

¢ Mx3S`
i

:» (x))MN and
SM

M
¢ Mx3S`

i
:» (x)'MN where M'0 is chosen such that S

M
O0. Next, note that

S
M
-Mx3Rn : DDx DD)rN and hence S

M
is compact, which proves the existence of min

x|SM
» (x).

Furthermore, min
x|SM

»(x))M)inf
x|SM M

» (x) and hence min
x|S`

i
»(x)"min

x|SM
»(x). Using

similar arguments we can show the existence of min
x|S~

i
» (x) .

Next, to minimize » (x) subject to x3S`
i

form the Lagrangian L (x, j
1
, j

2
) ¢» (x)#

j
1
(C

i
x!yN

i
)#j

2
(C

i
Ax!C

i
B/(Cx)) where j

1
, j

2
3R are Lagrange multipliers. Now, if

x
`

solves (44) then

0"
LL
Lx K

x/x`

"2xT
`

P#

m
+
j/1

a
j
/
j
(C

j
x
`

)C
j
#j

1
C

i
#j

2
(C

i
A!C

i
B#1

i
C ) (48)

Next, forming (48)P~1CT
i

and (48)P~1ATCT
i

yields, respectively,

0"2yN
i
#

m
+
j/1

a
j
/
j
(C

j
x
`

)C
j
P~1CT

i
#j

1
C

i
P~1CT

i
#j

2
(C

i
AP~1CT

i
!C

i
B#1

i
CP~1CT

i
) (49)

and

0"2C
i
B/(Cx)#

m
+
j/1

a
j
/

j
(C

j
x
`

)C
j
P~1ATCT

i
#j

1
C

i
P~1ATCT

i

#j
2
(C

i
AP~1ATCT!C

i
B#1

i
CP~1ATCT

i
) (50)

which upon solving for j
1

and j
2

and substituting into (48) yields (46). Equation (47) follows by
carrying out the identical steps with x

`
and S`

i
replaced by x

~
and S~

i
, respectively. K
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Next we present the main result of this section for providing a guaranteed subset of the domain
of attraction of (1), (2) when the input nonlinearity / is contained in '

.
for a finite range of its

argument. For the statement of this result define

D
A

¢ Mx3Rn :» (x)(»S , y
6 i
)C

i
x)yN

i
, i"1,2 , mN (51)

where »S ¢ min
i/1 ,2 ,m

Mmin (»S`
i

, »S~
i
)N.

Theorem 3.1

Let D
A

be given by (51). Then D
A

is a subset of the domain of attraction for (1), (2).

Proof. First we show that D
A

is an invariant set for (1), (2). Suppose »S(R. In order to show
that D

A
is an invariant set for (1), (2) it suffices to show that C

i
Ax!C

i
B/ (Cx)(0 for all

x3D
A
W!`

i
and C

i
Ax!C

i
B/(Cx)'0 for all x3D

A
W!~

i
, i"1,2 ,m. Since » (x) is a convex

function on Rn it follows that D
A
W !`

i
is a convex set and hence connected for all i"1,2 , m.

Now, suppose that there exists x3D
A
W!`

i
for i3M1,2 ,mN such that C

i
Ax

`
!C

i
B/ (Cx)*0.

Then, since by Lemma 3.2, there exists x
`
3D

A
W!`

i
such that C

i
Ax

`
!C

i
B/(Cx

`
)(0, it

follows from continuity that there exists x*3D
A
W!` such that CA

i
*!C

i
B/(Cx*)"0 and

hence » (x* )*»S which is a contradiction. Hence, C
i
Ax!C

i
B/ (Cx)(0 for all x3D

A
W!`

i
,

i"1,2 ,m. Using similar arguments it can be shown that C
i
Ax!C

i
B/(Cx)'0 for all

x3D
A
W!~

i
, i"1,2 ,m. Next, suppose »S"R. In this case D

A
"X and hence in order to

show that D
A

is an invariant set for (1), (2) it suffices to show that C
i
Ax!C

i
B/ (Cx)(0 for all

x3!`
i

and C
i
Ax!C

i
B/(Cx)(0 for all x3!~

i
, i"1,2 , m, which can be shown as above

using the fact that there exists x3!`
i

such that C
i
Ax!C

i
B/ (Cx)(0 and x3!~

i
such that

C
i
Ax!C

i
B/(Cx)'0 , i"1,2 ,m. Hence, D

A
is an invariant set for (1), (2). Finally, since

»Q (x)(0 for all x3D
A
/M0N-X/M0N it follows that x (t)P0 as tPR where x (t) is a solution to

(1). K

Remark 3.3

Note that the monotonicity constraint on the nonlinearity /3'
.

(i.e., /@
i
(y)*0, i"1,2 ,m)

is required to assure that the Lyapunov function (28) is a strictly convex function which in turn
assures the existence of »!`

i
(respectively, »!~

i
), »S`

i
(respectively, »S~

i
), and the convexity of

D
A
W!`

i
(respectively, D

A
W!~

i
). This is in contrast to the single-input/single-output case since

the non-convex (integral) part of the Lyapunov function (3) is constant on !` (respectively, !~)
and hence a monotonicity assumption on /3'

4
is not required.

Remark 3.4

Theorem 3.1 is a multivariable generalization of the single-input/single-output result given in
Theorem 2.1.

As mentioned in the Introduction an important class of nonlinear feedback systems of the form
(1), (2) where the input nonlinearities / are contained in 'ª

.
for a finite or semi-infinite range of

their arguments arise in the analysis and synthesis of anti-windup controllers for systems
subjected to input saturation15,16 and multimachine power systems.13,14 For the aforementioned
systems an explicit expression for estimating the domain of attraction relaxes any explicit
unverifiable a priori assumptions on the magnitude of the control signal for the input saturation
problem and allows the computation of transient stability regions for power system problems.
For both classes of systems it can be shown that C

i
B"0, i"1,2 ,m.14,15 In this case
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considerable simplification can be achieved in Proposition 3.2. Finally, as in Corollary 3.1 taking
one (constant) term in (28) for a fixed i3M1,2 , mN, a lower bound involving a closed-form
expression for the minimum Lyapunov values (44) and (45) can be computed.

Corollary 3.2

For i3M1,2 ,mN let »S`
i
and »S~

i
be given by (44) and (45), respectively. If C

i
B"0 then

»S`
i
*(

i
(yN

i
)#a

i
Y

i
(yN

i
) (52)

»S~
i
*(

i
(y
6 i
)#a

i
Y

i
(y
N i
) (53)

where (
i
: RPR is given by

(
i
(z)¢

C
i
AP~1ATCT

i
z2

(C
i
P~1CT

i
) (C

i
AP~1ATCT

i
)!(C

i
AP~1CT

i
)2

Proof. The proof is similar to that of Proposition 2.1. K

Remark 3.5

For the case C
i
B"0, i"1,2 ,m, the estimate of the domain of attraction predicted by (51)

will always be larger than or equal to the domain of attraction predicted by (51) with
»S"min

i/1 ,2 ,m
Mmin((

i
(yN

i
)#a

i
Y

i
(yN

i
), (

i
(y
6 i
)#a

i
Y

i
(y
6 i
) )N. However, in the latter case con-

siderable numerical simplification is achieved since the lower bounds for (44) and (45) are given by
closed-form expressions.

4. ILLUSTRATIVE NUMERICAL EXAMPLES

To illustrate the improvement in estimating the domain of attraction using open Lyapunov
surfaces over closed Lyapunov surfaces we consider two examples. For these examples the
Lyapunov matrix P appearing in Proposition 3.1, Corollary 3.1 and Theorem 3.1 is computed by
forming the linear matrix inequality version of the Kalman—Yakubovich—Popov conditions
corresponding to the multivariable Popov criterion11 and using the LMI toolbox.18

Example 4.1

First, we consider the nonlinear system (1), (2) with

A"C
!1 0 0 0

0 !2 0 0

0 0 !3 0

0 0 0 !4 D , B"C
0 0

0 0

1 0

0 1 D , C"C
1 0

0 1

0 0

0 0 D
T

Using the multivariable Popov criterion with a
1
"a

2
"1 it can be shown that the zero solution

of (1), (2) is globally asymptotically stable for /3'
.

with k
1
"k

2
"8.

Next, consider the nonlinearities /
i
(y

i
), i"1, 2, given by

/
i
(y

i
)"y3

i
, i"1, 2
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Figure 1. Comparison of estimates of the domain of attraction predicted by Proposition 3.1 and Theorem 3.1.

In this case the nonlinearities /
i
(y

i
), i"1, 2, satisfy the sector constraint only for the interval

Dy
i
D)2·8284, i"1, 2, and hence global asymptotic stability is not assured. It follows from

Corollary 3.1 and Remark 3.1 that a guaranteed subset of the domain of attraction involving
closed Lyapunov surfaces is D

#-
"Mx3Rn :» (x))59·42N. Alternatively, since C is a left eigenvec-

tor of A and C
i
B"0, i"1, 2, it follows that S`

i
"S~

i
"0 and hence Theorem 3.1 yields

D
A
"X"Mx3Rn : DDy

i
DD)2·8284, i"1, 2N, which corresponds to a considerable improvement

over the guaranteed subset of the domain of attraction predicted by Corollary 3.1.

Example 4.2

Here we consider the nonlinear system (1), (2) with

A"C
!1

0

0·01

!4D , B"C
0 0

1 1D , C"C
1 0

1 0D
Using the multivariable Popov criterion with a

1
"a

2
"1 it can be shown that the zero solution

of (1), (2) is globally asymptotically stable for /3'
.

with k
1
"k

2
"14.

Next, consider the nonlinearities /
i
(y

i
), i"1, 2, given by

/
i
(y

i
)"y5

i
, i"1, 2

In this case, the nonlinearities /
i
(y

i
), i"1, 2, satisfy the sector constraint only for the interval

Dy
i
D)1·9343, i"1, 2, and hence global asymptotic stability is not assured. Now, it follows from

Proposition 3.1 and Remark 3.1 that a guaranteed subset of the domain of attraction involving
closed Lyapunov surfaces is D

#-
"Mx3Rn :» (x))19·869N. Alternatively, it follows

from Theorem 3.1 that D
A
"Mx3Rn :» (x)(5276·4, Dy

i
D)1·9343, i"1, 2N, which, as shown in

Figure 1, corresponds to a significant improvement over the guaranteed subset of the domain of
attraction predicted by Proposition 3.1.
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5. CONCLUSION

Guaranteed domains of attraction for multivariable Luré systems via open Lyapunov surfaces
were developed. It was shown that the construction of open Lyapunov surfaces yields a consider-
able improvement over closed Lyapunov surfaces in estimating the domain of attraction of
nonlinear Luré systems. Numerical examples were given to demonstrate the effectiveness of the
approach.
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Int. J. Robust Nonlinear Control, 7, 935—949 (1997)( 1997 by John Wiley & Sons, Ltd.


