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Acute respiratory failure due to infection, trauma or major surgery is one of the most common problems
encountered in intensive care units, and mechanical ventilation is the mainstay of supportive therapy for such
patients. In this article, we develop a general mathematical model for the dynamic behaviour of a
multi-compartment respiratory system in response to an arbitrary applied inspiratory pressure. Specifically, we
use compartmental dynamical system theory and Poincaré maps to model and analyse the dynamics of a
pressure-limited respirator and lung mechanics system, and show that the periodic orbit generated by this system
is globally asymptotically stable. Furthermore, we show that the individual compartmental volumes, and hence
the total lung volume, converge to steady-state end-inspiratory and end-expiratory values. Finally, we develop a
model reference direct adaptive controller framework for the multi-compartmental model of a pressure-limited
respirator and lung mechanics system where the plant and reference model involve switching and time-varying
dynamics. We then apply the proposed adaptive feedback controller framework to stabilise a given limit cycle
corresponding to a clinically plausible respiratory pattern.

Keywords: mechanical ventilation; multi-compartment model; bronchial tree; limit cycle analysis; periodic orbits;
stability of periodic orbits; Poincaré maps; adaptive control

1. Introduction

Acute respiratory failure due to infection, trauma and

major surgery is one of the most common problems

encountered in intensive care units and mechanical

ventilation is the mainstay of supportive therapy for

such patients. Numerous mathematical models of

respiratory function have been developed in the hope

of better understanding pulmonary function and the

process ofmechanical ventilation (Campbell and Brown

1963; Wald, Murphy, and Mazzia 1968; Epstein and

Epstein 1979; Barbini 1982; Marini and Crooke 1993).

However, the models that have been presented in the

medical and scientific literature have typically assumed

homogenous lung function. For example, in analogy to

a simple electrical circuit, the most common model has

assumed that the lungs can be viewed as a single

compartment characterised by its compliance (the ratio

of compartment volume to pressure) and the resistance

to air flow into the compartment (Campbell and Brown

1963; Wald et al. 1968; Marini and Crooke 1993).
While a few investigators have considered two

compartment models, reflecting the fact that there are

two lungs (right and left), there has been little interest in

more detailed models (Similowski and Bates 1991;

Hotchkiss , Crooke, Adams, and Marini 1994; Crooke,

Head, and Marini 1996). However, the lungs, especially

diseased lungs, are heterogeneous, both functionally

and anatomically, and are composed of many subunits,

or compartments, that differ in their capacities for gas

exchange. Realistic models should take this heteroge-

neity into account. While more sophisticated models

entail greater complexity, since the models are readily

presented in the context of dynamical systems theory,

sophisticated mathematical tools can be applied to their

analysis. Compartmental lung models are described by

a state vector, whose components are the volumes of the

individual compartments. One interesting and impor-

tant question is the stability, in the sense of dynamical

systems theory, of the model.
For a simple one compartment model, it is easy to

demonstrate that the model exhibits an asymptotically

stable limit cycle behaviour. And indeed, in clinical

practice it appears that the total lung volume converges

to the steady-state end-inspiratory and end-expiratory

values after the institution of mechanical ventilation.

However, a more subtle question for a multi-

compartment lung model is whether the volumes in

the individual compartments could be unstable, even
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when the total volume of the lung (the sum of all the
compartment volumes) converges to a steady-state
value. That is, is it possible that individual compart-
ment volumes oscillate or even demonstrate chaotic
behaviour while the total lung volume is stable?

This question has interesting clinical implications
as there is also heterogeneity in the amount of blood
flowing to individual subunits of the lung. If there is
significant disparity in the ratio of ventilation (reflected
in the compartment volume) to blood flow, gas
exchange is impaired, resulting in decreases in the
oxygen or increases in the carbon dioxide content of
blood, which is a serious clinical problem. Instability of
the compartment volumes could be reflected in unsta-
ble measures of basic pulmonary function, such as
oxygen or carbon dioxide levels in the blood. In this
article, we first develop a generalised multi-
compartment lung model and subsequently analyse
its stability properties. Specifically, we use compart-
mental dynamical system theory and Poincaré maps to
model and analyse the dynamics of a pressure-limited
respirator and lung mechanics system, and show that
the periodic orbit generated by this system is globally
asymptotically stable. Furthermore, we show that the
individual compartmental volumes, and hence the total
lung volume, converge to steady-state end-inspiratory
and end-expiratory values.

As noted above, mechanical ventilation of a
patient with respiratory failure is one of the most
common life-saving procedures performed in the
intensive care unit. However, mechanical ventilation
is physically uncomfortable due to the noxious
interface between the ventilator and patient, and
mechanical ventilation evokes substantial anxiety on
the part of the patient. This will often be manifested
by the patient ‘fighting the ventilator’. In this
situation, there is dyssynchrony between the ventila-
tory effort of the patient and the ventilator. The
patient will attempt to exhale when the ventilator is
trying to expand the lungs or the patient will try to
inhale when the ventilator is decreasing airway
pressure to allow an exhalation. When patient–
ventilator dyssynchrony occurs, at the very least
there is excessive work of breathing with subsequent
ventilatory muscle fatigue and in the worst case,
elevated airway pressures that can actually rupture
lung tissue. In this situation, it is a very common
clinical practice to sedate patients to minimise ‘fight-
ing the ventilator’. Sedative-hypnotic agents act on
the central nervous system to ameliorate the anxiety
and discomfort associated with mechanical ventilation
and facilitate patient–ventilator synchrony.

Using the multi-compartmental model of a
pressure-limited respirator and lung mechanics systems
developed in the first part of the article, we also

develop an adaptive feedback controller for addressing
this dyssynchrony for intensive care unit sedation. In
particular, we develop a model reference direct
adaptive controller framework where the plant and
reference model involve switching and time-varying
dynamics. Then, we apply the proposed adaptive
framework to the multi-compartmental model of a
pressure-limited respirator and lung mechanics system.
Specifically, we develop an adaptive feedback control-
ler that stabilises a given limit cycle corresponding to a
clinically plausible breathing pattern. The proposed
adaptive control framework for mechanical ventilation
can be used to quantify patient–ventilator dyssyn-
chrony as well as to provide closed-loop control for
intensive care unit sedation.

2. Notation and mathematical preliminaries

In this section, we introduce notation, several defini-
tions, and some key results that are necessary for
developing the main results of this article. Specifically,
for x2R

n we write x�� 0 (resp., x� 0) to indicate
that every component of x is nonnegative (resp.,
positive). In this case, we say that x is nonnegative or
positive, respectively. Likewise, A2R

n�m is nonnegative
or positive if every entry of A is nonnegative or
positive, respectively, which is written as A�� 0 or
A� 0, respectively. Furthermore, for A2R

n�n we
write A� 0 (resp., A40) to indicate that A is a
nonnegative-definite (resp., positive-definite) matrix.
In addition, (�)T denotes transpose, (�)�1 denotes
inverse and ‘�’ denotes the Kronecker product. Let
R

n

þ and R
n
þ denote the nonnegative and positive

orthants of R
n, that is, if x2R

n, then x 2 R
n

þ and
x 2 R

n
þ are equivalent, respectively, to x�� 0 and

x� 0. Finally, let en2R
n denote the ones vector of

order n, that is, en¼ [1, . . . , 1]T; if the order of en is clear
from context we simply write e for en.

The following definitions introduce the notions of
essentially nonnegative, compartmental and strictly
ultrametric matrices.

Definition 2.1 (Haddad, Chellabonia, and Hui
2010): Let A2R

n�n. A is essentially nonnegative if
A(i, j)� 0, i, j¼ 1, . . . , n, i 6¼ j. A is compartmental if A is
essentially nonnegative and ATe�� 0.

Definition 2.2 (Martinez, Michon, and Martin
1994): Let A2R

n�n be such that A�� 0. A is strictly
ultrametric if A is symmetric, A(i,i)4max{A(i,k) :
k¼ 1, . . . , n, k 6¼ i}, i¼ 1, . . . , n, and A(i, j)�

min{A(i,k),A(k,j)}, k¼ 1, . . . , n, i, j¼ 1, . . . , n, i 6¼ j.

The following lemmas and propositions are key in
establishing the main results of the article.
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Lemma 2.1 (Haddad et al. 2010): Let A2R
n�n. Then

A is essentially nonnegative if and only if eAt is
nonnegative for all t� 0.

Proposition 2.1: The following statements hold:

(i) Let �1, �2� 0 be such that �1þ �240 and let
A1,A22R

n�n be strictly ultrametric. Then
�1A1þ �2A2 is strictly ultrametric.

(ii) Let x2R
n be such that xi¼ 0 or 1, i¼ 1, . . . , n,

and let P2R
n�n be a positive diagonal matrix.

Then PþxxT is a strictly ultrametric matrix.

Proof: Statement (i) is a direct consequence of
Definition 2.2. To show (ii) let A ¼

4
Pþ xxT and note

that A is symmetric and

Aði, j Þ ¼
Pði,iÞ þ x2i , if i ¼ j,
xixj, if i 6¼ j:

�
Hence, if xi¼ 0, then max{A(i,k) : k¼ 1, . . . , n, k 6¼ i}¼ 0,
i¼ 1, . . . , n, which implies thatA(i,i)¼P(i,i)4max{A(i,k) :
k¼ 1, . . . , n, k 6¼ i}, i¼ 1, . . . , n. Alternatively, if xi¼ 1,
then A(i,i)¼P(i,i)þ 14max{xk : k¼ 1, . . . , n, k 6¼ i},
i¼ 1, . . . , n. Furthermore, for i 6¼ j, A(i, j)¼ xixj and

minfAði,kÞ,Aðk, j Þg ¼
0, if xixj ¼ 0,
xk, otherwise:

�
In either case, A(i, j)�min{A(i,k),A(k,j)}, k¼ 1, . . . , n,
i, j¼ 1, . . . , n, i 6¼ j, which implies that A is strictly
ultrametric. œ

Lemma 2.2 (Martinez et al. 1994): Let A2R
n�n be

such that A�� 0. If A is strictly ultrametric, then �A�1

is essentially nonnegative and A�1e�� 0.

Proposition 2.2: Let A2R
n�n and assume that there

exists an n� n matrix P40 such that

ATPþ PA5 0: ð1Þ

Then eA
T

PeA5P.

Proof: Define R ¼
4
�(ATPþPA)40 and note that

(1) implies

P ¼

Z 1
0

eA
TtReAtdt: ð2Þ

Next, pre- and post-multiplying (2) by eA
T

and eA,
respectively, yields

eA
T

PeA ¼

Z 1
0

eA
Tðtþ1ÞReAðtþ1Þdt

¼

Z 1
1

eA
TtReAtdt

¼

Z 1
0

eA
TtReAtdt�

Z 1

0

eA
TtReAtdt

¼ P�

Z 1

0

eA
TtReAtdt

5P,

which proves the result. œ

Remark 2.1: It is well known that A is Hurwitz if and
only if eA is Schur.Hence, it follows fromProposition 2.2
that the Lyapunov function candidate V(x)¼xTPx can
be used to establish the stability of both A and eA.

In this article, we analyse the stability of periodic
orbits using Poincaré maps (Wiggins 2003; Haddad
and Chellaboina 2008). To state Poincaré’s theorem,
consider the nonlinear periodic dynamical system

_xðtÞ ¼ f ðt,xðtÞÞ, xð0Þ ¼ x0, t 2 Ix0 , ð3Þ

where x(t)2D	R
n, t2Ix0

, is the system state vector,
D is an open set, f : [0,1)�D!R

n satisfies
f (t,x)¼ f (tþT, x), x2D, t� 0, for some T40, and
Ix0
¼ [0, �x0

), 05�x0
�1, is the maximal interval of

existence for the solution x(�) of (3). A continuously
differentiable function x : Ix0

!D is said to be a
solution to (3) on the interval Ix0

	 [0,1) with initial
condition x(0)¼ x0 if x(t) satisfies (3) for all t2Ix0

. It is
assumed that f (�, �) is such that the solution to (3) is
unique for every initial condition in D and jointly
continuous in t and x0. A sufficient condition ensuring
this is Lipschitz continuity of f (t, �) :D!R

n for all
t2 [0, t1] and continuity of f (�, x) : [0, t1]!R

n for all
x2D. Here, we assume that all solutions to (3) are
bounded over Ix0

, and hence, by the Peano-Cauchy
theorem can be extended to infinity.

Next, we introduce the notions of periodic solu-
tions and periodic orbits for (3). For the next defini-
tion, we denote the solution x(�) to (3) with initial
conditon x02D by s(t, x0).

1

Definition 2.3: A solution s(t, x0) of (3) is periodic if
there exists a finite time T40 such that s(tþT,x0)¼
s(t, x0) for all t� 0. A set O
D is a periodic orbit of (3)
if O¼ {x2D :x¼ s(t, x0), 0� t�T} for some periodic
solution s(t, x0) of (3).

Next, we introduce the notions of Lyapunov and
asymptotic stability of a periodic orbit of the nonlinear
dynamical system (3). For this definition, dist(p, M)
denotes the smallest distance from a point p to any
point in the set M, that is, dist(p,M) ¼

4
infx2M

kp� xk.

Definition 2.4: A periodic orbit O of (3) is Lyapunov
stable if, for all "40, there exists �¼ �(")40 such that
if dist(x0,O)5�, then dist(s(t, x0),O)5", t� 0. A
periodic orbit O is asymptotically stable if O is
Lyapunov stable and there exists "40 such that if
dist(x0,O)5", then dist(s(t, x0),O)! 0 as t!1.

To proceed, we assume that for the point p2D, the
dynamical system (3) has a periodic solution s(t, p),
t� 0, with period T40 that generates the periodic
orbit O ¼

4
{x2D :x¼ s(t, p), 0� t�T}. Next, let

U 
D be a neighbourhood of the point p and define

942 V. Chellaboina et al.
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the Poincaré return map P :U!D by

PðxÞ¼
4
sðT, xÞ, x 2 U: ð4Þ

Furthermore, define the discrete-time dynamical

system given by

zðkþ 1Þ ¼ PðzðkÞÞ, zð0Þ 2 U, k 2 Zþ, ð5Þ

where Zþ denotes the set of nonnegative integers.

Clearly x¼ p is a fixed point of (5) since

p¼ s(T, p)¼P(p).

Theorem 2.1: Consider the nonlinear periodic dyna-

mical system (3) with the Poincaré map defined by (4).

Assume that the point p2D generates the periodic

orbit O ¼
4
{x2D : x¼ s(t, p), 0� t�T}, where s(t, p),

t� 0, is the periodic solution with period T. Then the

following statements hold:

(i) p2D is a Lyapunov stable fixed point of (5) if

and only if the periodic orbit O generated by p

is Lyapunov stable.
(ii) p2D is an asymptotically stable fixed point of

(5) if and only if the periodic orbit O generated

by p is asymptotically stable.

Proof: Define x1(t) ¼
4
x(t) and x2(t) ¼

4
t, and note

that the solution x(t), t� 0, to the nonlinear periodic

dynamical system (3) can be equivalently characterised

by the solution x1(t), t� 0, to the nonlinear autono-

mous dynamical system

_x1ðtÞ ¼ f ðx2ðtÞ, x1ðtÞÞ, x1ð0Þ ¼ x0, t � 0, ð6Þ

x2ðtÞ ¼ t mod T, x2ð0Þ ¼ 0: ð7Þ

Since p2D generates a periodic solution to (3) it

follows that the point [p, 0]T2D� [0,T ] generates a

periodic solution to (6) and (7). Next, it can be shown

that the map P :U!D given by (4) is a Poincaré map

for (6) and (7) (see Wiggins (2003, p. 127) for details).

Now, the result is a direct consequence of the standard

Poincaré theorem (Haddad and Chellaboina 2008). œ

Finally, in this article, we develop a

multi-compartment lung model based on a directed

tree architecture. The following definitions are neces-

sary for the main results of this article.

Definition 2.5 (Thulasiraman and Swamy 1992): A

weighted directed graph G is a triple (V, E,W), where

V ¼ {v1, v2, . . . , vN} is the set of vertices, E ¼ {e1,

e2, . . . , eM}	V �V is the set of edges and W2R
N�N

is the weighted adjacency matrix. Every edge el2E

corresponds to an ordered pair of vertices

(vi, vj)2V �V, where vi and vj are the initial and

terminal vertices of the edge el. In this case, el is incident

into vj and incident out of vi. The adjacency matrix W is
such that W(i, j)40, i, j¼ 1, . . . ,N, if (vi, vj)2E, and
W(i, j)¼ 0, otherwise. The in-degree di(vi) of vi is the
number of edges incident into vi and the out-degree
do(vj) of vj is the number of edges incident out of vj. A
directed path from vi1 to vik is a set of distinct vertices
{vi1, vi2, . . . , vik} such that (vij, vijþ1)2E, j¼ 1, . . . , k� 1.
A vertex vi is a root of G if, for every vj 6¼ vi, there exist
directed paths from vi to vj. G is connected if, for every
pair of vi, vj2V, there exists vk2V such that there are
directed paths from vk to vi and vk to vj. A vertex vi2V
is a leaf of G if do(vi)¼ 0.

Definition 2.6 (Thulasiraman and Swamy 1992): A
weighted directed graph G is a weighted directed tree if
G is connected and there exists a vertex vi2V such that
di(vi)¼ 0 and di(vj)¼ 1, vj2V n {vi}.
Remark 2.2: Note that if G is a weighted directed
tree, then there exists exactly one root vi2V and
exactly one directed path from vi to vj for all vj2V n {vi}
(see Thulasiraman and Swamy (1992), for details).

3. Compartmental modelling of lung dynamics:

dichotomy architecture

In this section, we develop a general mathematical
model for the dynamic behaviour of a multi-
compartment respiratory system in response to an
arbitrary applied inspiratory pressure. Here, we
assume that the bronchial tree has a dichotomy
architecture (Weibel 1963), that is, in every generation
each airway unit branches in two airway units of the
subsequent generation. First, however, we start by
considering a single-compartment lung model as
shown in Figure 1. In this model, the lungs are
represented as a single lung unit with compliance c
connected to a pressure source by an airway unit with
resistance (to air flow) of R. At time t¼ 0, an arbitrary
pressure pin(t) is applied to the opening of the parent
airway, where pin(t) is determined by the mechanical
ventilator. A typical choice for pin(t) is pin(t)¼ �tþ �,

c

R

papp

Figure 1. Single-compartment lung model.
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where � and � are positive constants. This pressure is
applied to the airway opening over the time interval
0� t�Tin, which is the inspiratory part of the breath-
ing cycle. At time t¼Tin, the applied airway pressure is
released and expiration takes place passively, that is,
the external pressure is only the atmospheric pressure
pex(t) during the time interval Tin� t�TinþTex, where
Tex is the duration of expiration.

The state equation for inspiration (inflation of
lung) is given by

Rin _xðtÞþ
1

c
xðtÞ ¼ pinðtÞ, xð0Þ ¼ xin0 , 0� t�Tin, ð8Þ

where x(t)2R, t� 0, is the lung volume, Rin2R is the
resistance to air flow during the inspiration period,
xin0 2 Rþ is the lung volume at the start of the
inspiration and serves as the system initial condition.
Equation (8) is simply a pressure balance equation
(Crooke et al. 1996) where the total pressure pin(t),
t� 0, applied to the compartment is proportional to
the volume of the compartment via the compliance and
the rate of change of the compartmental volume via the
resistance. We assume that expiration is passive (due to
elastic stretch of lung unit). During the expiration
process, the state equation is given by

Rex _xðtÞ þ
1

c
xðtÞ ¼ pexðtÞ, xðTinÞ ¼ xex0 ,

Tin � t � Tin þ Tex, ð9Þ

where x(t)2R, t� 0, is the lung volume, Rex2R is the
resistance to air flow during the expiration period and
xex0 2 Rþ is the lung volume at the start of expiration.

Next, we develop the state equations for inspiration
and expiration for a 2n-compartment model, where
n� 0. In this model, the lungs are represented as 2n

lung units which are connected to the pressure source
by n generations of airway units, where each airway is

divided into two airways of the subsequent generation

leading to 2n compartments (see Figure 2 for a

four-compartment model).
Let ci, i¼ 1, 2, . . . , 2n, denote the compliance of

each compartment and let Rin
j,i (resp., Rex

j,i ), i¼ 1,

2, . . . , 2j, j¼ 0, . . . , n, denote the resistance (to air

flow) of the i-th airway in the j-th generation during

the inspiration (resp., expiration) period with Rin
01

(resp., Rex
01) denoting the inspiration (resp., expiration)

of the parent (i.e. 0-th generation) airway. As in the

single-compartment model, we assume that a pressure

of pin(t), t� 0 is applied during inspiration. Next, let xi,

i¼ 1, 2, . . . , 2n, denote the lung volume in the i-th

compartment so that the state equations for inspiration

are given by

Rin
n,i _xiðtÞ þ

1

ci
xiðtÞ þ

Xn�1
j¼0

Rin
j,kj

Xkj2n�j
l¼ðkj�1Þ2n�jþ1

_xl ðtÞ ¼ pinðtÞ,

xið0Þ ¼ xini0, 0 � t � Tin, i ¼ 1, 2, . . . , 2n, ð10Þ

where

kj ¼
kjþ1� 1

2

� �
þ 1, j¼ 0, . . . ,n� 1, kn ¼ i, ð11Þ

and bqc denotes the floor functionwhich gives the largest

integer less than or equal to the positive number q.
To further elucidate the inspiration state equation

for a 2n-compartment model, consider the four-

compartment model shown in Figure 2 corresponding

to a 2-generation lung model. Let xi, i¼ 1, 2, 3, 4,

denote the compartmental volumes. Now, the

pressure 1
ci
xiðtÞ due to the compliance in i-th compart-

ment will be equal to the difference between the

external pressure applied and the resistance to air flow

at every airway in the path leading from the pressure

source to the i-th compartment. In particular, for i¼ 3

(Figure 2),

1

c3
x3ðtÞ ¼ pinðtÞ � Rin

0,1½ _x1ðtÞ þ _x2ðtÞ þ _x3ðtÞ þ _x4ðtÞ�

� Rin
1,2½ _x3ðtÞ þ _x4ðtÞ� � Rin

2,3 _x3ðtÞ,

or, equivalently,

Rin
2,3 _x3ðtÞ þ Rin

1,2½ _x3ðtÞ þ _x4ðtÞ� þ Rin
0,1½ _x1ðtÞ þ _x2ðtÞ

þ _x3ðtÞ þ _x4ðtÞ� þ
1

c3
x3ðtÞ ¼ pinðtÞ:

Next, we consider the state equation for the

expiration process. As in the single-compartment

model we assume that the expiration process is passive

and the external pressure applied is pex(t), t� 0.

Following an identical procedure as in the inspiration

x2

c1

c2 c3

c4

x1

x3

x4

Rin
0,1

Rin
1,2Rin

1,1

Rin
2,2

Rin
2,1

Rin
2,4

Rin
2,3

papp

Figure 2. Four-compartment lung model.
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case, we obtain the state equation for expiration as

Rex
n,i _xiðtÞ þ

Xn�1
j¼0

Rex
j,kj

Xkj2n�j
l¼ðkj�1Þ2n�jþ1

_xl ðtÞ þ
1

ci
xiðtÞ ¼ pexðtÞ,

xiðTinÞ ¼ xexi0 , Tin � t � Tex þ Tin, i ¼ 1, 2, . . . , 2n,

ð12Þ

where kj is given by (11).

4. State space multi-compartment lung model

In this section, we rewrite the state equations (10) and
(12) for inspiration and expiration, respectively, as a
switched dynamical system. To describe the dynamics
of the multi-compartment lung model in terms of a
state space model, define the state vector x ¼

4

[x1,x2, . . . , x2n]
T, where xi denotes the lung volume of

the i-th compartment. Now, the state equation (10) for
inspiration can be rewritten as

Rin _xðtÞ þ CxðtÞ ¼ pinðtÞe, xð0Þ ¼ xin0 , 0 � t � Tin,

ð13Þ

where C¼
4
diag½ 1c1 , . . . , 1

c2n
� and

Rin¼
4
Xn
j¼0

X2j
k¼1

Rin
j,kZj,kZ

T
j,k, ð14Þ

where Zj,k2R
2n is such that the l-th element of Zj,k is 1

for all l¼ (k� 1)2n�jþ 1, (k� 1)2n�jþ 2, . . . , k2n�j,
k¼ 1, . . . , 2j, j¼ 0, 1, . . . , n, and zero elsewhere.

Similarly, the state equation (12) for expiration can
be rewritten as

Rex _xðtÞ þ CxðtÞ ¼ pexðtÞe, xðTinÞ ¼ xex0 ,

Tin � t � Tex þ Tin, ð15Þ

where

Rex¼
4
Xn
j¼0

X2j
k¼1

Rex
j,kZj,kZ

T
j,k: ð16Þ

Note that if Rin and Rex are invertible, then (13) and
(15) can be equivalently written as

_xðtÞ ¼ AinxðtÞ þ BinpinðtÞ, xð0Þ ¼ xin0 , 0 � t � Tin,

ð17Þ

_xðtÞ ¼ AexxðtÞ þ BexpexðtÞ, xðTinÞ ¼ xex0 ,

Tin � t � Tex þ Tin, ð18Þ

where Ain¼
4
�R�1in C, Bin¼

4
R�1in e, Aex¼

4
�R�1ex C and

Bex¼
4
R�1ex e.

The following proposition states and proves several
important properties of Rin, Rex, Ain and Aex that are
essential for the main results of this article.

Proposition 4.1: Consider the dynamical system (13)
and (15). Then the following statements hold:

(i) Rin40 and Rex40.
(ii) AT

inCþ CAin 5 0:

(iii) AT
exCþ CAex 5 0:

(iv) Rin and Rex are strictly ultrametric.
(v) Ain and Aex are compartmental and Hurwitz,

and Bin�� 0 and Bex�� 0.

Proof: Statement (i) follows from (14) by noting

Rin �
X2n
k¼1

Rin
n,k Zn,k ZT

n,k ¼ diag½Rin
n,1, . . . ,Rin

n,2n �4 0,

since the l-th element of Zn,k is 1 if l¼ k and zero
otherwise. Similarly, it can be shown that Rex40.

Statements (ii) and (iii) follow immediately by
noting that

AT
inCþ CAin ¼ �2CR

�1
in C5 0

and

AT
exCþ CAex ¼ �2CR

�1
ex C5 0:

To show (iv), define

Rin
j ¼
4
"Rin

n þ
X2j
k¼1

Rin
j,kZj,kZ

T
j,k, j ¼ 1, . . . , n� 1,

where Rin
n ¼
4
diag½Rin

n,1, . . . ,Rin
n,2n � and " ¼

1
n�1. Note that

it follows from Proposition 2.1 that, for every
j2 {1, . . . , n}, Rin

j is strictly ultrametric, and hence,
Rin ¼

Pn
j¼1 R

in
j is strictly ultrametric. Similarly, it can

be shown that Rex is strictly ultrametric.
Finally, to show (v) note that since Rin and Rex are

strictly ultrametric it follows from Lemma 2.2 that
Bin ¼ R�1in e �� 0, Bex ¼ R�1ex e �� 0 and �R�1in and
�R�1ex are essentially nonnegative. Hence, since C is a
positive diagonal matrix, Ain and Aex are essentially
nonnegative. Now, since R�1in e �� 0 and R�1ex e �� 0 it
follows that AT

ine ¼ �CR
�1
in e �� 0 and AT

exe ¼

�CR�1ex e �� 0, which implies that Ain and Aex are
compartmental and, by (ii) and (iii), Ain and Aex are
Hurwitz. œ

Remark 4.1: It follows from Proposition 4.1 that Rin

and Rex are invertible. Hence, Ain and Aex are well
defined, which implies that the state equations for
inspiration and expiration given by (17) and (18),
respectively, are well defined.

In this article, we assume that the inspiration
process starts from a given initial state xin0 followed by
the expiration process where its initial state will be the
final state of the inspiration. An inspiration followed
by the expiration is called a single breathing cycle.
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We assume that each breathing cycle is followed by
another breathing cycle where the initial condition for
the latter breathing cycle is the final state of the former
breathing cycle. Furthermore, we assume that the
duration of inspiration is Tin and that of expiration is
Tex so that the total duration of a breathing cycle
is TinþTex. It is clear that this process generates
a periodic dynamical system with a period
T ¼
4
TinþTex. Furthermore, the system dynamics

switch from inspiration to expiration and back to
inspiration. Hence, the dynamics for a breathing cycle
can be characterised by the periodic switched dynami-
cal system G given by

_xðtÞ ¼ AðtÞxðtÞ þ BðtÞuðtÞ, xð0Þ ¼ xin0 , t � 0, ð19Þ

where

AðtÞ ¼ Aðtþ T Þ, uðtÞ ¼ uðtþ T Þ, t � 0, ð20Þ

AðtÞ ¼
Ain, 0 � t5Tin,

Aex, Tin � t5T,

�
ð21Þ

BðtÞ ¼
Bin, 0 � t5Tin,

Bex, Tin � t5T,

�
ð22Þ

uðtÞ ¼
pinðtÞ, 0 � t5Tin,

pexðtÞ, Tin � t5T:

�
ð23Þ

The following result shows that the solution to the
switched dynamical system (19) is nonnegative, that is,
for every xin0 2 R

2n

þ , the solution x(t), t� 0, to (19)
satisfies x(t)�� 0, t� 0.

Theorem 4.1: Consider the switched dynamical system
(19) where xin0 �� 0. Then x(t)�� 0, t� 0, where x(t)
denotes the solution to (19).

Proof: Note that the solution to (19) over the time
interval [0,T ] is given by

xðtÞ ¼

eAintxin0 þ
R t
0 e

A
in
ðt��ÞBinpinð�Þd�,

0 � t � Tin,

eAexðt�TinÞxex0 þ
R t
Tin

eAexðt��ÞBexpexð�Þd�,

Tin � t � T,

8>>><
>>>:

ð24Þ

where xex0 ¼ xðTinÞ. Now, since Ain and Aex are
essentially nonnegative (by Proposition 4.1), it follows
from Lemma 2.1 that eAint�� 0 and eAext�� 0 for all
t� 0. Hence, x(t)�� 0, 0� t�T. Now, the nonnega-
tivity of x(t) for all t� 0 follows by mathematical
induction. œ

5. Limit cycle analysis of the multi-compartment

lung model

In this section, we characterise and analyse the stability
of periodic orbits of the switched dynamical system G

given by (19). First, note that it follows from (24) that

xex0 ¼ xðTinÞ ¼ �inx
in
0 þ �, ð25Þ

where

�in¼
4
eAinTin , ð26Þ

�¼
4
eAinTin

Z Tin

0

e�AintBinpinðtÞdt: ð27Þ

Furthermore, note that

xðT Þ ¼ �exx
ex
0 þ �, ð28Þ

where

�ex¼
4
eAexTex , ð29Þ

�¼
4
eAexT

Z T

Tin

e�AextBexpexðtÞdt: ð30Þ

Next, let xinm denote the initial condition for the

m-th inspiration (and hence the m-th breathing cycle)

and let xexm denote the initial condition for the m-th

expiration, that is, xinm ¼ xðmT Þ and xexm ¼ xðmTþ TinÞ,

m¼ 0, 1,. . .. Hence, it follows from (25) and (28) that

xin1 ¼ �eix
in
0 þ �ex� þ �, ð31Þ

where �ei ¼
4

�ex �in. Similarly, it can be shown that

xex1 ¼ �iex
ex
0 þ �in�þ �, ð32Þ

where �ie ¼
4

�in�ex. More generally,

xinmþ1 ¼ �eix
in
m þ �ex� þ �, m ¼ 0, 1, . . . , ð33Þ

xexmþ1 ¼ �iex
ex
m þ �in�þ �, m ¼ 0, 1, . . . : ð34Þ

The following proposition states and proves two

key properties for �ei and �ie which are useful in

characterising a periodic orbit for the switched

dynamical system G.

Proposition 5.1: The following statements hold:

(i) �T
exC�ex 5C and �T

inC�in 5C.
(ii) �T

eiC�ei 5C and �T
ieC�ie 5C.

Proof: It follows from Proposition 4.1 that

TinðA
T
inCþ CAinÞ5 0,

TexðA
T
exCþ CAexÞ5 0:

Hence, it follows from Proposition 2.2 that

eA
T
in
TinCeAinTin 5C,

eA
T
exTexCeAexTex 5C,

which proves (i).
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To prove (ii), pre- and post-multiply the first

inequality of (i) by �T
in and �in, respectively, to obtain

�T
in�T

exC�ex�in � �T
inC�in 5C,

where the last inequality follows from (i). This

establishes the first inequality of (ii). The second

inequality follows in an identical manner. œ

For the next result, define x̂in¼
4
ðI� �eiÞ

�1
ð�ex� þ �Þ

and x̂ex¼
4
ðI� �ieÞ

�1
ð�in�þ �Þ.

Proposition 5.2: Consider the switched dynamical

system G given by (19). Then, for every xin0 2 R
2n

þ , the

following statements hold:

(i) limm!1 xinm ¼ x̂in and limm!1 xexm ¼ x̂ex.
(ii) For every t2 [0,Tin],

lim
m!1

xðtþmT Þ ¼ eAintx̂in þ

Z t

0

eAinðt��ÞBinpinð�Þd�,

and, for every t2 [Tin,T ],

lim
m!1

xðtþmTþ TinÞ

¼ eAextx̂ex þ

Z t

0

eAexðt��ÞBexpexð� þ TinÞd�:

Proof: It follows from (ii) of Proposition 5.1 that

�ei and �ie are Schur, and hence, limm!1 �m
ei ¼ 0 and

limm!1 �m
ie ¼ 0. Furthermore, (I��ei)

�1 and

(I��ie)
�1 exist and are given by

ðI� �eiÞ
�1
¼
X1
j¼0

�j
ei, ðI� �ieÞ

�1
¼
X1
j¼0

�j
ie:

Next, it follows from (33) and (34) that

xinm ¼ �m
eix

in
0 þ

Xm�1
j¼0

�j
eið�ex� þ �Þ,

xexm ¼ �m
iex

ex
0 þ

Xm�1
j¼0

�j
ieð�in�þ �Þ,

which, by taking limits, yields (i). Now, (ii) follows

from (i) and (24). œ

Remark 5.1: It follows from Proposition 5.2 that the

individual compartmental volumes, and hence the total

volume, converge to the steady-state end-inspiratory

and end-expiratory values of (I��ei)
�1(�ex�þ �) and

(I��ie)
�1(�in�þ �), respectively.

Next, let x̂¼
4
ðI� �eiÞ

�1
ð�ex� þ �Þ and define the

orbit

Ox̂¼
4 �

x 2 R
2n

þ : x ¼ sðt, x̂Þ,

where sðt, x̂Þ is the solution to (19)g: ð35Þ

With xin0 ¼ x̂ note that xinm ¼ x̂, m¼ 1, 2, . . . or,

equivalently, xðmT Þ ¼ x̂, m¼ 1, 2, . . . which implies

that Ox̂ is a periodic orbit of (19). The following

theorem presents one of the main results of this article.

Theorem 5.1: Consider the switched dynamical system

G given by (19). Then the periodic orbit Ox̂ of G

generated by xð0Þ ¼ x̂ ¼ ðI� �eiÞ
�1
ð�ex� þ �Þ is globally

asymptotically stable.

Proof: Note that for the periodic orbit Ox̂ generated

by the point x̂ ¼ ðI� �eiÞ
�1
ð�ex� þ �Þ, the Poincaré

map is given by

zðkþ 1Þ ¼ sðT, zðkÞÞ ¼ �eizðkÞ þ �ex� þ �,

zð0Þ ¼ xin0 , k 2 Zþ: ð36Þ

Since �ei is Schur (by Proposition 5.1) it follows that x̂

is an asymptotically stable fixed point of (36). Hence, it

follows from Theorem 2.1 that Ox̂ is asymptotically

stable.
Next, let "40 be such that distðsðt, x0Þ,Ox̂Þ ! 0 for

all x02D and dist ðx0,Ox̂Þ5 ". (The existence of such

an " is guaranteed since Ox̂ is asymptotically stable.)

Now, it follows from (i) of Proposition 5.2 that there

exists m2Zþ such that distðsðmT,xin0 Þ,Ox̂Þ �

ksðmT, xin0 Þ � x̂k5 ". Hence,

lim
t!1

distðsðt, xin0 Þ,Ox̂Þ

¼ lim
t!1

distðsðt�mT, sðmT, xin0 ÞÞ,Ox̂Þ ¼ 0,

establishing global asymptotic stability of Ox̂. œ

Remark 5.2: The first part of the proof of Theorem 5.1

shows that the periodic orbit Ox̂ is (locally) asympto-

tically stable. The second part shows that for an

arbitrary initial condition xin0 2 R
2n

þ , Proposition 5.2

implies that the trajectory of G comes arbitrarily close to

Ox̂. Global asymptotic stability now follows from local

asymptotic stability. In particular, since Ox̂ is asympto-

tically stable and every trajectory comes arbitrarily close

toOx̂, it follows that the trajectory enters the domain of

attraction of Ox̂, establishing global convergence to Ox̂

(and hence, global asymptotic stability).

Remark 5.3: Note that Theorem 5.1 is valid for

arbitrary nonnegative functions (possibly discontinu-

ous) pin(t) and pex(t) as long as
R Tin

0 e�AintBinpinðtÞdt

and
R T
Tin

e�AextBexpexðtÞdt are finite. In the case where

pin(t)¼ �tþ� and pex(t)¼ � for some positive con-

stants �, �, and �, � and � are given by

� ¼ A�2in ½ð�Iþ �AinÞðe
AinTin � IÞ � �AinTin�Bin,

� ¼ �A�1ex ðe
AexTex � IÞBex:

The following result provides a generalisation to

Theorem 5.1.
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Theorem 5.2: Consider the switched dynamical system
G given by (19). Let x(t) and y(t), t� 0, denote the
solutions to (19) with initial conditions xð0Þ 2 R

2n

þ and
yð0Þ ¼ x̂. Then, x(t)! y(t) as t!1.

Proof: Let e(t) ¼
4
x(t)� y(t) so that

_eðtÞ ¼ AðtÞeðtÞ, eð0Þ ¼ xð0Þ � x̂, t � 0: ð37Þ

Now, consider the Lyapunov function candidate
V :R2n

!R given by V(e)¼ eTCe so that the
Lyapunov derivative of V(e) along the trajectories of
(37) is given by

_VðeðtÞÞ ¼ eTðtÞ½ATðtÞCþ CAðtÞ�eðtÞ

� maxf�2eTðtÞCR�1in CeðtÞ, �2eTðtÞCR�1ex CeðtÞg

� �2	eTðtÞeðtÞ, t � 0,

where 	¼
4
minf�minðCR

�1
in CÞ, �minðCR

�1
ex CÞg, which

implies that e(t)! 0 as t!1. œ

Remark 5.4: Note that Theorem 5.2 shows that the
periodic solution given by Ox̂ is globally asymptoti-
cally stable (in the sense of stability of motion), and
hence, Ox̂ is orbitally stable strengthening the conclu-
sion of Theorem 5.1.

Remark 5.5: Note that the error dynamics e(t), t� 0,
given by (37) is a switched dynamical system where
each of the switched systems is a linear dynamical
system, and V(e)¼ eTCe is a common Lyapunov
function for both linear systems.

6. A regular dichotomy model

In this section, we present results for a special class of
models with a dichotomy architecture. Specifically, we
assume that the bronchial tree has a regular dichotomy
structure (Weibel 1963), that is, for a given branch
generation all airflow resistances at the airway units
are equal, and hence, for an n-generation model
(2n-compartment model), Rin

j,k ¼ R̂in
j and Rex

j,k ¼ R̂ex
j ,

k¼ 1, 2, . . . , 2j, j¼ 0, 1, . . . , n, where R̂in
j 4 0 and

R̂ex
j 4 0, j¼ 0, . . . , n. Furthermore, we assume that

ck ¼ ĉ, k¼ 1, . . . , 2n, that is, the compliance of each
compartment is equal. In this case, it can be shown that
C ¼ 1

ĉ I2n and

Rin ¼
Xn
j¼0

R̂in
j I2 j � e2n�je

T
2n�j

� �
, ð38Þ

Rex ¼
Xn
j¼0

R̂ex
j I2 j � e2n�je

T
2n�j

� �
, ð39Þ

so that Ain ¼ �
1
ĉ R
�1
in ,Bin ¼ R�1in e,Aex ¼ �

1
ĉ R
�1
ex and

Bex ¼ R�1ex e. Furthermore, note that Rine ¼ 2nR̂ine

and Rexe ¼ 2nR̂exe, where R̂in¼
4 Pn

j¼0

R̂in
j

2 j and

R̂ex¼
4 Pn

j¼0

R̂ex
j

2 j , so that Bin ¼
1

2nR̂in
e,Bex ¼

1
2nR̂ex

e and

eAinðTin�tÞBin ¼
1

2nR̂in

e
�
ðTin�tÞ

ĉ2nR̂in e: ð40Þ

Hence,

� ¼
e
�

Tin
ĉ2nR̂in

2nR̂in

Z Tin

0

e
t

ĉ2nR̂inpappðtÞdt e: ð41Þ

Now, using (41) it can be shown that x̂in is of the form

�e, where �40, and hence, the limit cycle

Ox̂ 
 f�e : � � 0g: Thus, it follows that the limiting

behaviour of a regular dichotomy lung model exhibits

equipartioning of the total volume, that is, xi(t)! xj(t)

as t!1 for all i, j¼ 1, 2, . . . , 2n.
Next, we provide a relation between m-generation

and n-generation regular dichotomy models, where

m5n. Let R̂in
m, j and R̂ex

m, j denote the resistances to

airflow at a j-th generation airway unit, let ĉm denote

the compliance of each compartment, and let

xmi denote the i-th compartmental volume in an

m-generation model. Here, we assume that

xmi ¼
XL
j¼1

xnði�1ÞLþj, i ¼ 1, . . . ,M, ð42Þ

where L ¼
4
2n�m and M ¼

4
2m, that is, each compart-

ment of m-generation model is equivalent to L

compartments of the n-generation model so that the

total volumes in both models are equal. Note that (42)

may be written as

xm ¼ ðIM � eTLÞx
n, ð43Þ

where xm ¼ ½xm1 , . . . , xmM� and xn ¼ ½xn1, . . . , xnN�, and

where N ¼
4
2n.

Now, consider the n-generation state equation for

inspiration given by

Rn
in _xnðtÞþ

1

ĉn
xnðtÞ¼ pinðtÞeN, xnð0Þ¼xnin,0, 0� t�Tin,

ð44Þ

where

Rn
in ¼

Xn
j¼0

R̂in
n, jðI2 j � e2n�je

T
2n�j Þ: ð45Þ

In this case, it can be shown that

ðIM� eTLÞðI2 j � e2n�je
T
2n�j Þ ¼

2LðI2 j � e2m�je
T
2m�j Þ, j5m,

2n�jðIM� eTLÞ, j�m:

(

ð46Þ
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Now, pre-multiplying (45) by ðIM � eTLÞ and using (43)
and (46) yields

Xm�1
j¼0

2LR̂in
n, jðI2j � e2n�je

T
2n�j Þ _x

nðtÞ

þ
Xn
j¼m

2n�jR̂in
n, j _x

mðtÞ þ
1

ĉn
xmðtÞ ¼ 2LpinðtÞeM: ð47Þ

Next, note that ðI2j � e2m�je
T
2n�j Þ _x

nðtÞ ¼ ðI2 j�

e2m�je
T
2m�j Þ _x

mðtÞ so that (47) can be written as

Xm�1
j¼0

R̂in
n, jðI2 j � e2m�je

T
2m�jÞ _x

mðtÞ þ
Xn
j¼m

2m�jR̂in
n, j _x

mðtÞ

þ
1

2Lĉn
xmðtÞ ¼ pinðtÞeM: ð48Þ

Comparing (48) with the m-generation model given by

Rm
in _xmðtÞ þ

1

ĉm
xmðtÞ ¼ pinðtÞeM, ð49Þ

yields ĉm ¼ 2n�mĉn and

Rm
in ¼

Xm�1
j¼0

R̂in
n, jðI2j � e2m�je

T
2m�j Þ þ

Xn
j¼m

2m�jR̂in
n, jIM,

or, equivalently,

R̂in
m, j ¼ R̂in

n, j, j ¼ 0, 1, . . . ,m� 1, ð50Þ

R̂in
m,m ¼

Xn
j¼m

R̂in
n, j

2 j�m
: ð51Þ

Similarly, it can be shown that

R̂ex
m, j ¼ R̂ex

n, j, j ¼ 0, 1, . . . ,m� 1, ð52Þ

R̂ex
m,m ¼

Xn
j¼m

R̂ex
n, j

2 j�m
: ð53Þ

7. A general tree structure model

In this section, we extend the model presented in
Sections 3–5 to the case where the bronchial tree has a
general tree architecture (Horsfield and Cumming
1975; Horsfield 1990; Kitaoka and Suki 1997). The
general tree structure includes the regular and irregular
dichotomy (Weibel 1963). Specifically, let the bron-
chial tree be represented by a weighted directed tree
G ¼ ðV, E,RÞ, where each vertex corresponds to a
branching point of an airway unit or the terminal
compartment (alveolus) of the lung. In this case, the
trachea corresponds to the root v1 of the tree and all

the alveoli correspond to the leaves of the tree. Every

edge, (vl, vm)2E corresponds to an airway unit and

R(l,m), the weight of the edge, corresponds to the

resistance of the airway unit; we use Rðl,mÞ ¼ Rin
l,m and

Rðl,mÞ ¼ Rex
l,m for resistance during inspiration and

expiration, respectively.
Let L¼

4
fvi 2 V : vi is a leaf of Gg and let the

number of leaves of G (or, equivalently, compartments

of the lung) be n so that L¼ {vi1, vi2, . . . , vin}, where

ik2 {1, 2, . . . ,N}, k¼ 1, 2, . . . , n, and N is the number of

vertices of the graph. To develop the dynamical model

for the inspiration process, let ck, k¼ 1, 2, . . . , n, denote

the compliance of each compartment, and let xk,

k¼ 1, 2, . . . , n, denote the lung volume in the k-th

compartment so that the state equations for inspiration

are given by

1

ck
xkðtÞ þ

X
ðvl, vmÞ2Pk

Rin
l,m

X
vij2Ll,m

_xjðtÞ ¼ pinðtÞ,

xið0Þ ¼ xink0, 0 � t � Tin, k ¼ 1, 2, . . . , n, ð54Þ

where

Pk¼
4
fðvl, vmÞ 2 E : ðvl, vmÞ belongs to the directed

path from the root of G to vikg ð55Þ

and, for each l,m2 {1, . . . ,N} such that (vl, vm)2E,

Ll,m¼
4
fvik 2 L : there exists a directed path

from vm to vik , k ¼ 1, . . . , ng: ð56Þ

Next, let x ¼
4
[x1, . . . , x2n]

T so that (54) can be written as

Rin _xðtÞ þ CxðtÞ ¼ pinðtÞe, xð0Þ ¼ xin0 , 0 � t � Tin,

where C¼
4
diag½ 1c1 , . . . , 1

c2n
� and

Rin ¼
X
ðvl, vmÞ2E

Rin
l,mZl,mZ

T
l,m, ð57Þ

where Zl,m2R
n is such that the k-th element of Zl,m is 1

if vik2Ll,m and 0 otherwise.
An identical procedure yields the state equations

for expiration given by

Rex _xðtÞ þ CxðtÞ ¼ pexðtÞe, xðTinÞ ¼ xex0 , Tin � t � T,

ð58Þ

where

Rex ¼
X
ðvl, vmÞ2E

Rex
l,mZl,mZ

T
l,m: ð59Þ

Note that it can be easily shown thatRin40 andRex40,

and it follows from (57), (59) and Proposition 2.1 that

Rin and Rex are strictly ultrametric. Hence, for a general

tree structure model all of the results of Sections 4 and 5
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are valid with Rin and Rex given by (57) and (59),
respectively.

To illustrate the general tree structure lung model,
consider the five-compartment model shown in
Figure 3. Here, the bronchial tree is represented by a
weighted directed tree G ¼ ðV, E,RÞ consisting of nine
nodes V ¼ {v1, v2, . . . , v9} and eight edges E ¼ {(v1, v2),
(v2, v3), (v2, v4), (v3, v5), (v3, v6), (v3, v7), (v4, v8), (v4, v9)}.
In this case, the set of leaves L¼ {v5, v6, . . . , v9}
corresponds to the five compartments of the lung. Let
vik¼ vkþ4, k¼ 1, . . . , 5. Now, the pressure 1

ck
xkðtÞ due to

the compliance in k-th compartment will be equal to the
difference between the external pressure applied and the
resistance to air flow at every airway in the path leading
from the pressure source (the root v1) to the k-th
compartment. In particular, for k¼ 3 (Figure 3),

1

c3
x3ðtÞ ¼ pinðtÞ�Rin

1,2½ _x1ðtÞþ _x2ðtÞþ _x3ðtÞþ _x4ðtÞþ _x5ðtÞ�

�Rin
2,3½ _x1ðtÞþ _x2ðtÞþ _x3ðtÞ��Rin

3,7 _x3ðtÞ,

or, equivalently,

1

c3
x3ðtÞ þ

X
ðvl,vmÞ2P3

Rin
l,m

X
vij2Ll,m

_xj ðtÞ ¼ pinðtÞ, ð60Þ

where

P3 ¼ fðv1, v2Þ, ðv2, v3Þ, ðv3, v7Þg,

L1,2 ¼ fv5, v6, v7, v8, v9g,

L2,3 ¼ fv5, v6, v7g,

L3,7 ¼ fv7g:

8. Direct adaptive control for switched systems

In this section, we consider the problem of adaptive
tracking of uncertain switching systems. Specifically,
consider the controlled uncertain switched system G

with time-varying dynamics given by

_xpðtÞ ¼ApðtÞxpðtÞþBpðtÞuðtÞ, xpð0Þ ¼ xp0, t� 0, ð61Þ

where xp(t)2R
n, t� 0, is the state vector, u(t)2R

p,

t� 0, is the control input, and Ap(t)2R
n�n, t� 0, and

Bp(t)2R
n�p, t� 0, are unknown time-varying matrices.

The control input u(�) in (61) is restricted to the class of

admissible controls consisting of measurable functions

such that u(t)2R
p, t� 0. Furthermore, for the uncer-

tain switched system G, we assume that Ap(�) and Bp(�)

are piecewise continuous functions and we assume that

the required properties for the existence and unique-

ness of solutions are satisfied; that is, Ap(�), Bp(�), and

u(�) satisfy sufficient regularity conditions such that

(61) has a unique solution forward in time.
Next, consider a reference model given by

_xmðtÞ ¼ AmðtÞxmðtÞ þ BmðtÞrðtÞ, xmð0Þ ¼ xm0, t � 0,

ð62Þ

where xm(t)2R
n, t� 0, is the state vector, r(t)2R

p,

t� 0, is the reference input, and Am(t)2R
n�n, t� 0,

and Bm(t)2R
n�p, t� 0, are known matrices. Moreover,

let Am(t), t� 0, satisfy

AT
mðtÞCm þ CmAmðtÞ � �"mI, t � 0, ð63Þ

where "m40 and Cm2R
n�n is positive definite.

Furthermore, we assume that Am(�) and Bm(�) are

piecewise continuous and are such that (63) has a

unique solution for all t� 0 and xm(t) is uniformly

bounded for all xm02R
n and t� 0.

For the next result, we assume that there exist a

positive-definite matrix Q� 2R
p�p and a matrix

�� 2R
p�n such that the compatibility conditions

BpðtÞQ
� ¼ BmðtÞ, t � 0, ð64Þ

ApðtÞ þ BpðtÞ�
� ¼ AmðtÞ, t � 0, ð65Þ

are satisfied.

Theorem 8.1: Consider the uncertain system G with

linear time-varying dynamics given by (61) and the

reference model given by (62), and assume the compat-

ibility conditions (64) and (65) hold. Then the adaptive

feedback control law

uðtÞ ¼ �ðtÞxpðtÞ þQðtÞrðtÞ, ð66Þ

where �(t)2R
p�n, t� 0, and Q(t)2R

p�p, t� 0, with

updated laws

_�ðtÞ ¼ �BT
mðtÞCmeðtÞx

T
p ðtÞ��, �ð0Þ ¼ �0, t � 0,

ð67Þ

_QðtÞ ¼ �BT
mðtÞCmeðtÞr

TðtÞ�Q, Qð0Þ ¼ Q0, ð68Þ

where ��2R
n�n and �Q2R

p�p are positive definite and

e(t) ¼
4
xp(t)� xm(t), guarantees that the solution

x3,c3 

x2,c2 

x1,c1

x4,c4 

x5,c5 

v1 

v2 

v3

v6

v7 v8

v5

v4 
v9 

Rin
1,2

Rin
2,4

Rin
4,9

Rin
4,8

Rin
2,3

Rin
3,7

Rin
3,5

Rin
3,6

papp

Figure 3. Five-compartment tree structure model.
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(xp(t),�(t),Q(t)) of the closed-loop system given by (61),

(62), (66), (67) and (68) is uniformly bounded for all

(xp0,�0,Q0)2R
n
�R

p�n
�R

p�p and t� 0, and

xp(t)!xm(t) as t!1.

Proof: Note that with u(t), t� 0, given by (66) it

follows from (61) that

_xpðtÞ ¼ ApðtÞxpðtÞ þ BpðtÞ�ðtÞxpðtÞ þ BpðtÞQðtÞrðtÞ,

xpð0Þ ¼ xp0, t � 0, ð69Þ

or, equivalently, using (64) and (65),

_xpðtÞ ¼ ApðtÞxpðtÞ þ BpðtÞ½�
� þ�ðtÞ ����xpðtÞ

þ BpðtÞ½Q
� þQðtÞ �Q��rðtÞ

¼ ½ApðtÞ þ BpðtÞ�
��xpðtÞ þ BpðtÞ½�ðtÞ ����xpðtÞ

þ BpðtÞQ
�rðtÞ þ BpðtÞ½QðtÞ �Q��rðtÞ

¼ AmðtÞxpðtÞ þ BmðtÞrðtÞ þ BpðtÞ½�ðtÞ ����xpðtÞ

þ BpðtÞ½QðtÞ �Q��rðtÞ

¼ AmðtÞxpðtÞ þ BmðtÞrðtÞ þ BpðtÞ�
TðtÞxpðtÞ

þ BpðtÞ�
TðtÞrðtÞ, xpð0Þ ¼ x0, t � 0, ð70Þ

where �T(t) ¼
4

�(t)��� and �T(t) ¼
4
Q(t)�Q�. Now,

it follows from (62) and (70) that

_eðtÞ ¼ AmðtÞeðtÞ þ BpðtÞ�
TðtÞxpðtÞ þ BpðtÞ�

TðtÞrðtÞ,

eð0Þ ¼ xp0 � xm0, t � 0: ð71Þ

To show uniform boundedness of the closed-loop

system (67), (68) and (71) consider the continuously

differentiable function

Vðe,�,�Þ ¼ eTCmeþ tr��1Q �Q��1�T

þ tr��1� �Q��1�T, ð72Þ

and note that V(0, 0, 0)¼ 0. Since Cm, �Q, ��, and Q�

are positive definite, V(e,�,�)40 for all (e,�,�) 6¼

(0, 0, 0). In addition, V(e,�,�) is radially unbounded.

Now, using (67) and (68), it follows that the derivative

of V(�, �, �) along the closed-loop system trajectories is

given by

_VðeðtÞ,�ðtÞ,�ðtÞÞ

¼ eTðtÞ
�
AT

mðtÞCm þCmAmðtÞ
	
eðtÞ

þ 2eTðtÞCmBpðtÞ�
TðtÞxpðtÞ

þ 2eTðtÞCmBpðtÞ�
TðtÞrðtÞ þ 2tr ��1� �ðtÞQ��1 _�TðtÞ

þ 2tr ��1Q �ðtÞQ��1 _�TðtÞ

¼ eTðtÞ
�
AT

mðtÞCm þCmAmðtÞ
	
eðtÞ

þ 2eTðtÞCmBpðtÞ�
TðtÞxpðtÞ

þ 2eTðtÞCmBpðtÞ�
TðtÞrðtÞ

� 2tr�ðtÞQ��1BT
mðtÞCmeðtÞr

TðtÞ

� 2tr �ðtÞQ��1BT
mðtÞCmeðtÞx

T
p ðtÞ

¼ eTðtÞ
�
AT

mðtÞCm þCmAmðtÞ
	
eðtÞ

� �"me
TðtÞeðtÞ, t � 0: ð73Þ

Hence, it follows from Corollary 2.4 of Haddad,
Chellabonia, and Nersesov (2006, p. 68) that
(e(t),�(t),�(t)) is uniformly bounded for all t� 0,
and hence, (xp(t),�(t),Q(t)) is uniformly bounded for
all (xp0, �0, Q0)2R

n
�R

p�n
�R

p�p and t� 0.
Finally, withW1(e,�,�)¼W2(e,�,�)¼V(e,�,�)

andW(e,�,�)¼ "me
Te, it follows from Theorem 2.5 of

Haddad et al. (2006) that (e(t),�(t),�(t))!R as
t!1, where R ¼

4
{(e,�,�) :W(e,�,�)¼ 0}¼

{(e,�,�) : e¼ 0}. In particular, note that

_WðeðtÞ,�ðtÞ,�ðtÞÞ

¼ 2"me
T _e ¼ 2"me

TðtÞ
�
AmðtÞeðtÞ þ BpðtÞ�

TðtÞxpðtÞ

þ BpðtÞ�
TðtÞrðtÞ

	
ð74Þ

is bounded for all t� 0, and hence, all conditions of
Theorem 2.5 of Haddad et al. (2006, p. 54) are satisfied
proving that e(t)! 0 as t!1 or, equivalently,
xp(t)!xm(t) as t!1. œ

Remark 8.1: Although the form of the adaptive
control law given in Theorem 8.1 is identical to that
of the standard model reference adaptive controllers
provided in the literature (see e.g. Narendra and
Annaswamy 1989), the dynamics of the system con-
sidered in Theorem 8.1 is not Lipschitz continuous,
and hence, standard proofs involving Barbalat’s
lemma do not hold. Consequently, Theorem 8.1
requires the more general result given by Theorem
2.5 of Haddad et al. (2006).

Remark 8.2: It is important to note that the adaptive
laws (67) and (68) do not require explicit knowledge of
Q� or ��. Furthermore, no specific structure on the
uncertain dynamics Ap(�) and Bp(�) is required as long
as the compatibility conditions (64) and (65) are
satisfied.

9. Direct adaptive control for the compartment lung

model

In this section, we demonstrate the utility of the
proposed direct adaptive control framework for the
multi-compartmental lung model developed in
Section 4. First, we choose the reference model (62) to
correspond to a respiratory system producing a plau-
sible breathing pattern. Specifically, let AmðtÞ ¼
�R�1m ðtÞCm and BmðtÞ ¼ R�1m ðtÞe, where

RmðtÞ ¼
Rin m, 0 � t5Tin,
Rex m, Tin � t5T,

�
ð75Þ

and where Rm(t)¼Rm(tþT ), t4T. Here, Rin_m, Rex_m,
Cm and r(t), t� 0, are chosen appropriately to obtain
the desirable breathing pattern. It follows from
Theorem 5.1 that xm(t), t� 0, converges to a stable
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limit cycle, and hence, xm(t), t� 0, is uniformly
bounded.

Next, we assume that the switched system (61) is
such that ApðtÞ ¼ �R

�1
p ðtÞCp and BpðtÞ ¼ R�1p ðtÞe,

where

RpðtÞ ¼
Rin p, 0 � t5Tin,
Rex p, Tin � t5T,

�
ð76Þ

and where Rp(t)¼Rp(tþT ), t4T, so that (61) has the
form of a lung mechanics model. Here, we assume that
Rin_p,Rex_p andCp are unknown andwe use Theorem 8.1
to design an adaptive controller u(t), t� 0, such that
xp(t)!xm(t) as t!1.

In order to apply Theorem 8.1, we need to show
that the compatibility conditions (64) and (65) hold.
The following proposition provides sufficient condi-
tions under which (64) and (65) hold for the compart-
mental lung model. Note that in this case p¼ 1.

Proposition 9.1: Let W¼
4
Rin pR

�1
in m. Assume that the

following conditions hold:

(i) Rin pR
�1
in m ¼ Rex pR

�1
ex m.

(ii) There exists a positive scalar Q� such that
We¼Q�e.

(iii) There exists �� 2R
1�n such that

Cp¼WCmþ e��.

Then (64) and (65) hold.

Proof: The proof follows by noting that (i) and (ii)
imply (64) holds, while (i) and (iii) imply (65) holds. œ

Remark 9.1: In the absence of switching, conditions
(ii) and (iii) are standard for model reference adaptive
control (Narendra and Annaswamy 1989). Condition
(i) is an additional condition that ensures Theorem 8.1
holds for the switching periodic lung mechanics model.

10. Numerical simulations of a four-compartment

model

In this section, we numerically integrate (19) to
illustrate convergence of the trajectories to a stable
limit cycle. Here, we assume that the bronchial tree has
a regular dichotomy (Section 6). Anatomically the
human lung has around 24 generations of airway units.
A typical value for lung compliance is 0.1 ‘/cm H2O,
that is, ĉ0¼ 0.1 ‘/cm H2O. (Note that respiratory
pressure is measured in terms of centimetres of water
pressure.) The airway resistance varies with the branch
generation and typical values can be found in Hofman
and Meyer (1999). Furthermore, the expiratory resis-
tances will be higher than the inspiratory resistance by
a factor of 2 to 3. Here, we assume that the factor is
2.5. Now, based on the values for the 24-generation

model and using (50)–(53) we can obtain m-generation

models for all m¼ 0, . . . , 23.
Figures 4 and 5 provide the time responses of the

compartmental volumes of a 1-generation and

2-generation lung models, respectively, where we

assumed that the applied pressure pin(t)¼ 20tþ 5 cm

H2O, pex(t)¼ 0 cm H2O, the inspiration time Tin¼ 1 s,

the expiration time Tex¼ 2 s, and the initial total

volume xtot(0)¼ 0.25 ‘. Figures 4 and 5 clearly show

that the states of the 1-generation and 2-generation

models converge to limit cycles. Furthermore, after an

initial transient behaviour, the steady-state volume in

the lung is uniformly distributed over all the compart-

ments, that is, the steady-state value of the volume in

each compartment is equal (in both the 1-generation

and 2-generation models). Finally, Figure 6 shows the
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Figure 4. Compartmental volumes vs. time: 1-generation
model.
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Figure 5. Compartmental volumes vs. time: 2-generation
model.
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phase portrait (x1(t) vs x2(t)) of the 1-generation model
showing the asymptotic convergence of the state to a
limit cycle.

Finally, we illustrative the adaptive controller
framework of Section 8 on our four-compartment
lung mechanics model. The reference model is assumed
to correspond to a bronchial tree which has a regular
dichotomy architecture (Section 6). Furthermore, we
choose a reference model so that all the conditions of
Proposition 9.1, and hence, the compatibility condi-
tions of Theorem 8.1 are satisfied. In addition, we let
�0¼ [75, 75, 75, 75] and Q0¼ 5. Note that no explicit
knowledge of the plant model is needed to generate the
adaptive control input u(t), t� 0, given by (66) and the
update laws given by (67) and (68). Figure 7 shows
the error xp(t)� xm(t) vs. time t, verifying that
xp(t)!xm(t) as t!1. Here, we assumed that the

applied pressure for the reference model is
r(t)¼ sin(20t)þ 5 cm H2O and the inspiration time is
Tin¼ 1 s and the expiration time is Tex¼ 2 s. Figures 8
and 9 show the controlled phase portrait.

11. Conclusion

Respiratory failure, the inadequate exchange of carbon
dioxide and oxygen by the lungs, is a common clinical
problem in critical care medicine, and patients with
respiratory failure frequently require support with
mechanical ventilation while the underlying cause is
identified and treated. At its simplest, mechanical
ventilation is accomplished by the application of
cyclically varying positive gas pressure to the trachea.
In the absence of patient respiratory effort, it is
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Figure 9. x2(t) vs. x3(t): Controlled phase portrait.
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commonly observed that the lung volumes at
end-inspiration and end-expiration rapidly converge
to stable steady-state values. However, this does not
guarantee that the lungs, viewed as a dynamical
system, are stable. Anatomically the lungs are a
tree-like structure with repetitive branching into
smaller and smaller airways, culminating in the func-
tional units of gas exchange, the alveoli. Stability of
end-inspiratory and end-expiratory lung volume does
not guarantee that the volumes of individual functional
units (the alveoli) are stable.

In this article, we developed a general mathematical
model to analyse the behaviour of a multi-
compartment respirator and lung mechanics system.
In particular, we used compartmental dynamical
system theory and Poincaré maps to show that a
general multi-compartment dichotomous lung model
converges to a stable limit cycle. Furthermore, we
extended the analysis to models with a general tree
architecture using graph theory. This extension is
particularly important since the anatomy of the lungs
is significantly more complex than a regular dichot-
omous model. Finally, we developed an adaptive
control framework for the multi-compartmental
model of a pressure-limited respirator and lung
mechanics system. Specifically, we developed a model
reference direct adaptive controller framework where
the plant and reference models involve switching and
time-varying dynamics. Next, we applied the proposed
adaptive feedback controller framework to stabilise a
given limit cycle corresponding to a clinically plausible
respiratory pattern.

Future work will involve the application of the
proposed adaptive control framework for intensive
care unit sedation control using appropriate respira-
tory parameters. Calculation of patient work of
breathing requires measurement of a patient-generated
pressure/volume loop or work of breathing. Since
work of breathing can be measured using a commer-
cially available esophageal balloon (Kallet, Dicker,
Katz, and Mackersie 2006), this could serve as a
performance variable for intensive care unit sedation.
Furthermore, patient–ventilator dyssnchrony may be
identified by analysis of pressure/flow wave forms
(Nilsestuen and Hargett 2005). Dyssynchrony can be
divided into three major categories – trigger dyssyn-
chrony, flow dyssynchrony and cycle (breathing ter-
mination) dyssynchrony. While there are a number of
components of the pressure/flow wave forms that
indicate dyssynchrony, possibly the simplest is the
patient respiratory rate (Nilsestuen and Hargett 2005).
And it is certainly true that there is a correlation
between patient work of breathing and patient-
generated respiratory rate. If the goal of sedation is
to reduce patient work of breathing, one could target a

spontaneous respiratory rate less than some threshold
value. This offers the possibility of using respiratory
rate as the performance variable for intensive care unit
sedation with the proposed adaptive control
framework.
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Note

1. Note that since (3) is a time-varying dynamical system it
is typical to denote its solution as ŝ(t, t0, x0) to indicate
the dependence on both the initial time t0 and the initial
state x0. In this article, we assume that t0¼ 0 and define
s(t, x0) ¼

4
ŝ(t, 0, x0).
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