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Abstract—Critical care patients, whether undergoing surgery or
recovering in intensive care units, require drug administration to
regulate physiological variables such as blood pressure, cardiac
output, heart rate, and degree of consciousness. The rate of infu-
sion of each administered drug is critical, requiring constant moni-
toring and frequent adjustments. Nonnegative and compartmental
models provide a broad framework for biological and physiological
systems, including clinical pharmacology, and are well suited for
developing models for closed-loop control of drug administration.
In this paper, we develop a neuroadaptive output feedback con-
trol framework for nonlinear uncertain nonnegative and compart-
mental systems with nonnegative control inputs and noisy mea-
surements. The proposed framework is Lyapunov-based and guar-
antees ultimate boundedness of the error signals. In addition, the
neuroadaptive controller guarantees that the physical system states
remain in the nonnegative orthant of the state space. Finally, the
proposed approach is used to control the infusion of the anesthetic
drug propofol for maintaining a desired constant level of depth of
anesthesia for surgery in the face of noisy electroencephalographic
(EEG) measurements. Clinical trials demonstrate excellent regu-
lation of unconsciousness allowing for a safe and effective admin-
istration of the anesthetic agent propofol.

Index Terms—Adaptive control, automated anesthesia, bispec-
tral index, dynamic output feedback, electroencephalography,
measurement noise, neural networks, nonnegative control, non-
negative systems, surgery.

I. INTRODUCTION

T HE DOSING of most drugs is a process of empirical ad-
ministration of a low dose with observation of the biolog-

ical effect and subsequent adjustment of the dose in the hopes of
achieving the desired effect. This is true of anesthetic drugs, just
as it is of chronically administered medications (for example,
anti-hypertensive agents). In the acute environment of the op-
erating room and intensive care unit (ICU), this can result in
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inefficient, and possibly even dangerous, titration of drug to the
desired effect. There has been a long interest in use of the elec-
troencephalograph (EEG) as an objective, quantitative measure
of consciousness that could be used as a performance variable
for closed-loop control of anesthesia [1]. Ever since the pio-
neering work of Bickford [2], it has been known that the EEG
changes with the induction of anesthesia. Processed electroen-
cephalogram algorithms have been extensively investigated as
monitors of the level of consciousness in patients requiring sur-
gical anesthesia [2]–[6]. However, the EEG is a complex of mul-
tiple time series and in earlier work it was difficult to identify
one single aspect of the EEG signal that correlated with the clin-
ical signs of anesthesia.

Subsequent to this early research there has been substantial
progress in the development of processed EEG monitors that
analyze the raw data to extract a single measure of the depth of
anesthesia. The best known of these monitors is the bispectral or
BIS monitor, which calculates a single composite EEG measure
that is well correlated with the depth of anesthesia [1], [7], [8].
The BIS signal ranges from 0 (no cerebral electrical activity) to
100 (the normal awake state). Available evidence indicates that
a BIS signal less than 55 is associated with lack of conscious-
ness. While BIS monitoring has proven useful in the operating
room environment, there have been inconsistencies reported and
attempts to extend BIS monitoring for the evaluation of sedation
outside of the operating room have been unsuccessful [9]. One
of the key reasons for this is due to the fact that the signal-av-
eraging algorithm within the BIS monitor ignores signal noise,
and when there is excessive noise, the BIS monitor does not gen-
erate a signal.

It is widely appreciated that BIS monitoring, or for that
matter, any EEG monitoring, can be fraught with error be-
cause of the potential for outside interference to produce an
unfavorable signal-to-noise ratio yielding spurious results.
Nonphysiologic artifactual signals may be generated from
sources external to the patient that include lights, electric
cautery devices, ventilators, pacemakers, patient warming
systems, and electrical noise related to the many different kinds
of monitors normally found in an operating room or ICU.
Physiologic movements such as eye movements, myogenic
activity, perspiration, and ventilation can produce artifactual
increases in the BIS score. In particular, it is apparent that
electromyographic (EMG) activity can spuriously increase
the BIS score [10]. The co-administration of neuromuscular
blockade eliminates artifacts from muscle movement, which
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can be superimposed on the BIS score; and this undoubtedly
contributes to the widespread use and value of the BIS device
during surgery. However, to extend this technology outside
of the operating room, or for that matter, to nonparalyzed
patients in the operating room, further refinements are needed.
In addition, if the BIS signal is to be used to quantify levels of
consciousness for feedback control in general anesthesia, then
the observation noise needs to be accounted for in the control
system design process.

The challenge to the use of the BIS signal for closed-loop
control of anesthesia is that the relationships between drug dose
and tissue concentration (pharmacokinetics) and between tissue
concentration and physiological effect (pharmacodynamics) is
highly variable between individuals. In addition, observation
noise in the BIS signal results in feedback measurement sig-
nals with high signal-to-noise ratios that need to be accounted
for in the control algorithm. Adaptive feedback controllers seem
particularly promising given this interpatient variability as well
as BIS signal variation due to noise. In previous work, we have
used nonnegative and compartmental dynamical systems theory
to develop adaptive and neuroadaptive controllers for control-
ling the depth of anesthesia [11]–[13].

One of our initial efforts was the development of a direct
adaptive control framework for uncertain nonlinear nonnega-
tive and compartmental systems with nonnegative control in-
puts [11], [12]. This framework is Lyapunov-based and guaran-
tees partial asymptotic set-point regulation, that is, asymptotic
setpoint stability with respect to part of the closed-loop system
states associated with the physiological state variables. In ad-
dition, the adaptive controllers, which are constructed without
requiring knowledge of the pharmacokinetic and pharmacody-
namic parameters, provide a nonnegative control input for sta-
bilization with respect to a given setpoint in the nonnegative or-
thant. Subsequently, we also developed a neuroadaptive output
feedback control framework for uncertain nonlinear nonnega-
tive and compartmental systems with nonnegative control inputs
[13], [14]. This framework is also Lyapunov-based and guaran-
tees ultimate boundedness of the error signals corresponding to
the physical system states in the face of interpatient pharma-
cokinetic and pharmacodynamic variability.

In a recent paper [15], we presented numerical and clinical re-
sults that compares and contrasts our adaptive control algorithm
with our neural network adaptive control algorithm for con-
trolling the depth of anesthesia in the operating theater during
surgery. Specifically, 11 clinical trials were performed with our
adaptive control algorithm [12] and seven clinical trials were
performed with our neural network algorithm [13] at the North-
east Georgia Medical Center, Gainesville, GA. The proposed
automated anesthesia controllers demonstrated excellent reg-
ulation of unconsciousness and allowed for a safe and effec-
tive administration of the anesthetic agent propofol. However,
the adaptive and neuroadaptive controllers presented in [15] did
not account for measurement noise in the EEG signal. Clinical
testing has clearly demonstrated the need for developing adap-
tive and neuroadaptive controllers that can address system mea-
surement noise [15].

In this paper, we extend the neuroadaptive controller frame-
work developed in [13] and [14] to address measurement noise

in the BIS signal. Specifically, we develop an output feedback
neural network adaptive controller that operates over a tapped
delay line (TDL) of available input and filtered output measure-
ments. The neuroadaptive laws for the neural network weights
are constructed using a linear observer for the nominal normal
form error system dynamics. The proposed framework is Lya-
punov-based and guarantees ultimate boundness of the error sig-
nals. In addition, the nonnegative neuroadaptive controller guar-
antees that the physiological system states remain in the non-
negative orthant of the state space. Finally, we present numer-
ical and clinical results for controlling the depth of anesthesia in
the operating theater during surgery. The proposed automated
anesthesia neuroadaptive controller demonstrates excellent reg-
ulation of unconsciousness and allows for a safe and effective
administration of the anesthetic agent propofol in the face of
noisy EEG measurements.

II. NOTATION AND MATHEMATICAL PRELIMINARIES

In this section, we introduce notation, several definitions, and
some key results concerning nonlinear nonnegative dynamical
systems [16], [17] that are necessary for developing the main
results of this paper. Specifically, for we write
(respectively, ) to indicate that every component of is
nonnegative (respectively, positive). In this case, we say that
is nonnegative or positive, respectively. Likewise,
is nonnegative1 or positive if every entry of is nonnegative or
positive, respectively, which is written as or , re-
spectively. Let and denote the nonnegative and positive
orthants of , that is, if , then and are
equivalent, respectively, to and . Furthermore,
we write to denote transpose, for the trace operator,

to denote the minimum eigenvalue of a Hermitian ma-
trix, for a vector norm, for the Frobenius matrix norm,

to denote the ones vector of order , that is, ,
and for the Fréchet derivative of at . Finally,
denotes the Kronecker product of matrices and . The fol-
lowing definition introduces the notion of a nonnegative (respec-
tively, positive) function.

Definition 2.1: Let . A real function
is a nonnegative (respectively, positive) function if
(respectively, ) on the interval .

The following definition introduces the notion of essentially
nonnegative and compartmental vector fields [17].

Definition 2.2: Let .
Then is essentially nonnegative if , for all

, and such that , where denotes
the th component of . is compartmental if is essentially
nonnegative and , .

Note that if , where , then is essen-
tially nonnegative if and only if is essentially nonnegative,
that is, , , where denotes
the th entry of .

1In this paper it is important to distinguish between a square nonnegative
(respectively, positive) matrix and a nonnegative-definite (respectively, posi-
tive-definite) matrix.
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In this paper, we consider controlled nonlinear dynamical
systems of the form

(1)

where , , , ,
is locally Lipschitz continuous and satisfies ,

is continuous, and is piecewise
continuous.

The following definition and proposition are needed for the
main results of this paper.

Definition 2.3: The nonlinear dynamical system given by (1)
is nonnegative if for every and , ,
the solution , , to (1) is nonnegative.

Proposition 2.1 [17]: The nonlinear dynamical system given
by (1) is nonnegative if is essentially nonnegative
and , .

It follows from Proposition 2.1 that if is essentially non-
negative, then a nonnegative input signal , , is
sufficient to guarantee the nonnegativity of the state of (1).

III. NEUROADAPTIVE OUTPUT FEEDBACK CONTROL FOR

NONLINEAR NONNEGATIVE UNCERTAIN SYSTEMS

In this section, we consider the problem of characterizing
neuroadaptive dynamic output feedback control laws for non-
linear nonnegative and compartmental uncertain dynamical sys-
tems to achieve set-point regulation in the nonnegative orthant.
Specifically, consider the controlled square (i.e., the number of
inputs is equal to the number of outputs) nonlinear uncertain dy-
namical system given by

(2)

(3)

(4)

where , , is the state vector, , ,
is the control input, , , is the system output,

, , is the noisy system output, ,
, is a noise signal such that , for all ,

is essentially nonnegative but otherwise unknown,
is an unknown nonnegative input matrix

function, and is a nonnegative output function.
We assume that , , and are smooth (at least
mappings) and the control input in (2) is restricted to the
class of admissible controls consisting of measurable functions
such that , . Furthermore, we assume that
the distribution spanned by the vector fields composed by the
column vectors of , , has a constant dimension and
is involutive in a neighborhood of the equilibrium point of (2).

As discussed in the Introduction, control (source) inputs of
drug delivery systems for physiological and pharmacological
processes are usually constrained to be nonnegative as are the
system states. Hence, in this paper we develop neuroadaptive
dynamic output feedback control laws for nonnegative systems
with nonnegative control inputs. Specifically, for a given desired
set point and for a given , our aim is to design a
nonnegative control input , , predicated on the system
measurement , , such that , for all

, where , and , , for all
.

In this paper, we assume that for the nonlinear dynamical
system (2) and (3), the conditions for the existence of a globally
defined diffeomorphism transforming (2) and (3) into a normal
form [18], [19] are satisfied. Specifically, we assume that there
exist a global diffeomorphism and functions

and such that,
in the coordinates , where

denotes the th derivative of , denotes the relative
degree of with respect to the output , , and

is the (vector) relative degree of , the nonlinear
dynamical system given by (2)–(4) is equivalent to

(5)

(6)

(7)

(8)

where , , ,

(9)

(10)

, is a known matrix of zeros
and ones capturing the multivariable observable canonical form
representation [20], is such that is asymptotically
stable, is an unknown function, is
a known matrix of zeros and ones capturing the system output,
and is an unknown matrix function such
that , . Furthermore, we assume that for a
given there exist and such that

and

(11)

(12)

where and is given with ,
, and , . As

we see in Section IV, the aforementioned assumptions are auto-
matically satisfied for our clinical compartmental model.

To ensure that for a bounded state , , the dynamics
given by (6) are bounded, we assume that (6) is input-to-state
stable at with viewed as the input; that is,
there exist a class function and a class function
such that

(13)

where denotes the Euclidean vector norm. Unless otherwise
stated, henceforth we use to denote the Euclidean vector
norm. Note that is an equilibrium point
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of (5) and (6) if and only if there exists such that (11)
and (12) hold.

Finally, we assume that the functions
and , where

, can be approximated over a compact set
by a linear in the parameters neural network up to a

desired accuracy. In this case, there exist and
such that and ,

, where and , and

(14)

(15)

where , and are op-
timal unknown (constant) weights that minimize the approxi-
mation errors over , and
are basis functions such that each component of and
takes values between 0 and 1, and and are the mod-
eling errors. Note that denotes the total number of basis
functions or, equivalently, the number of nodes of the neural
network.

Since and are continuous, we can choose and
from a linear space of continuous functions that forms

an algebra and separates points in . In this case, it follows
from the Stone–Weierstrass theorem [21, p. 212] that is a
dense subset of the set of continuous functions on . Now, as
is the case in the standard neuroadaptive control literature [22],
we can construct the signal ,
where , involving
the estimates of the optimal weights and basis functions as our
adaptive control signal. It is important to note here that we as-
sume that we know both the structure and the size of the ap-
proximator. This is a standard assumption in the neural network
adaptive control literature. In online neural network training,
the size and the structure of the optimal approximator are not
known and are often chosen by the rule that the larger the size
of the neural network and the richer the distribution class of the
basis functions over a compact domain, the tighter the resulting
approximation error bounds and . This goes back to the
Stone–Weierstrass theorem which only provides an existence
result without any constructive guidelines.

Since the actual measurement , , is noisy with
, , representing a high-frequency noise signal, we use

a filtered version of , , in the control input , .
Specifically, we design an asymptotically stable low-pass filter
of the form

(16)

(17)

where is Hurwitz and and
are such that ,
, where denotes the th entry of

the transfer function . Here, we
choose the matrices , , and such that .
In this case, for every , there exists such that

(18)

(19)

Note that since is Hurwitz there exist positive-definite ma-
trices and such that

(20)

In order to develop an output feedback neural network, we
use the recent approach developed in [23] for reconstructing
the system states via the system delayed inputs and filtered out-
puts. Specifically, we use a memory unit as a particular form of
a tapped delay line that takes a scalar time series input and pro-
vides an -dimensional vector output consisting of the
present values of the system filtered outputs and system inputs,
and their delayed values given by

(21)

where .
For the statement of our main result, define the projec-

tion operator given by the equation shown at
the bottom of the page, where , ,

, is the norm
bound imposed on , and . Note that for a given
matrix and , it follows that

(22)

where denotes the th column of the matrix .
Assumption 3.1: For a given assume there exist

nonnegative vectors and such that

(23)

(24)

if ,
if and ,

otherwise
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Furthermore, assume that the equilibrium point of (2) is glob-
ally asymptotically stable and nonnegative with .
Finally, assume that there exists a global diffeomorphism

such that can be transformed into the normal form
given by (5) and (6), and (6) is input-to-state stable at with

viewed as the input.
Consider the neuroadaptive output feedback control law

given by

if
otherwise

(25)

where

(26)
is nonsingular, , , is given by (21),

and are basis functions such that
each component of and takes values between 0 and
1, , , and , . Here,
the update laws satisfy

(27)

(28)

where and are positive definite
matrices, is a positive-definite solution of the Lya-
punov equation

(29)

where , and , , is the solution to the estimator
dynamics

(30)

(31)

where , , is given by (10),
is such that is Hurwitz, , , is the output
of the filter (16) and (17), and . For
the statement of the next result recall the definition of ultimate
boundedness given in [24, p. 241].

Theorem 3.1: Consider the nonlinear uncertain dynam-
ical system given by (2) and (3) with , , given
by (25). Assume Assumption 3.1 holds, ,

, and , where
, , and are the positive-defi-

nite solutions of the Lyapunov (20), (29), and

(32)

where . Then there exists a compact positively invariant
set such that

, where and

, and the solution ,
, of the closed-loop system given by (2), (16), (17),

(25), (27), (28), (30), and (31) is ultimately bounded for all
with ultimate bound

, , where

(33)

(34)

(35)

(36)

(37)

, , 1, 2, are norm bounds imposed
on , and is the positive-definite solution of the
Lyapunov (29). Furthermore, , , and

, , for all .
Proof: The proof is given in the Appendix .

Remark 3.1: If in Theorem 3.1 is not sat-
isfied for a given , we can modify (9) as

, where and is such
that , where

For example, with , where ,
is guaranteed. In this case, Theorem 3.1 holds with replaced

by . In addition, by properly choosing we can ensure that
. Finally, choosing small enough and in-

dependent of , , , and , can
also be guaranteed.

Remark 3.2: The domain of attraction in Theorem 3.1 is
given by (67) and is characterized by the Lyapunov-like function
(52) that guarantees ultimate boundedness for the closed-loop
system. For details see the Appendix.

A block diagram showing the neuroadaptive control architec-
ture given in Theorem 3.1 is shown in Fig. 1. It is important to
note that the existence of a global neural network approximator
for an uncertain nonlinear map using the system filtered outputs
andinputs,anditsdelayedvaluescannotingeneralbeestablished.
In the proof of Theorem 3.1 (see the Appendix ), as is common
in the neural network literature, we assume that for a given ar-
bitrarily large compact set , there exists an approxi-
mator for the unknown nonlinear map up to a desired accuracy.
This assumption ensures that in the error space defined in the
Appendix, there exists at least one Lyapunov level set such that
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Fig. 1. Block diagram of the closed-loop system.

the set inclusions invoked in the proof of Theorem 3.1 are satis-
fied. In the case where and are continuous on , it
follows from the Stone–Weierstrass theorem that and
can be approximated over an arbitrarily large compact set in
the sense of (14) and (15). Finally, we note that since the norm
of is bounded it is always possible to choose so that

exists and is bounded for all
so that there exists such that , .

This follows from the fact that for any two square matrices and
, if and only if there exists such that

and , where and
denote the minimum and maximum singular value, respectively.

Implementing the neuroadaptive controller (26) requires a
fixed-point iteration at each integration step, that is, the con-
troller contains an algebraic constraint on . For each choice of

and this equation must be examined for solvability
in terms of . It is more practical to avoid this iteration by using
one-step delayed values of in calculating . Implementations
using both approaches result in imperceptible differences in our
numerical studies.

In Theorem 3.1 we assumed that the equilibrium point of
(2) is globally asymptotically stable with . In general,
however, unlike linear nonnegative systems with asymptotically
stable plant dynamics, a given set point for the non-
linear nonnegative dynamical system (2) may not be asymptoti-
cally stablizable with a constant control . How-
ever, if is homogeneous, cooperative, that is, the Jacobian
matrix is essentially nonnegative for all , the
Jacobian matrix is irreducible for all [16],
and the zero solution of the undisturbed ( )
system (2) is globally asymptotically stable, then the set point

satisfying (11) and (12) is a unique equilibrium point
with and is also asymptotically stable for all
[25], [26]. This implies that the solution to (2) with

is asymptotically stable for all .

IV. NEUROADAPTIVE OUTPUT FEEDBACK CONTROL FOR

GENERAL ANESTHESIA

Almost all anesthetics are myocardial depressants, that is,
they decrease the contractility of the heart and lower cardiac
output (i.e., the volume of blood pumped by the heart per unit
time). As a consequence, decreased cardiac output slows down
redistribution kinetics, that is, the transfer of blood from the
central compartment (heart, brain, kidney, and liver) to the pe-
ripheral compartments (muscle and fat). In addition, decreased

Fig. 2. Pharmacokinetic model for drug distribution during anesthesia.

cardiac output could increase drug concentrations in the central
compartment, causing even more myocardial depression and
further decrease in cardiac output. This instability can lead
to overdosing that, at the very least, can delay recovery from
anesthesia and, in the worst case, can result in respiratory and
cardiovascular collapse. Alternatively, underdosing can result
in patients psychologically traumatized by pain and awareness
during surgery. Thus, control of drug effect is clinically impor-
tant since overdosing or underdosing incur risk for the patient.

To illustrate the application of the neuroadaptive control
framework presented in Section III for general anesthesia we
develop a model for the intravenous anesthetic propofol. The
pharmacokinetics of propofol are described by the three com-
partment model [12], [27] shown in Fig. 2, where denotes
the mass of drug in the central compartment, which is the site
for drug administration and is generally thought to be com-
prised of the intravascular blood volume (blood within arteries
and veins) as well as highly perfused organs (organs with high
ratios of blood flow to weight) such as the heart, brain, kidney,
and liver. These organs receive a large fraction of the cardiac
output. The remainder of the drug in the body is assumed to
reside in two peripheral compartments, one identified with
muscle and one with fat; the masses in these compartments
are denoted by and , respectively. These compartments
receive less than 20% of the cardiac output.

A mass balance of the three-state compartmental model
yields

(38)

(39)

(40)

where , is the volume of the central compart-
ment (about 15 l for a 70 kg patient), , , is the rate of
transfer of drug from the th compartment to the th compart-
ment, is the rate of drug metabolism and elimination (me-
tabolism typically occurs in the liver), and , , is the in-
fusion rate of the anesthetic drug propofol into the central com-
partment. The transfer coefficients are assumed to be functions
of the drug concentration since it is well known that the phar-
macokinetics of propofol are influenced by cardiac output [28]
and, in turn, cardiac output is influenced by propofol plasma
concentrations, both due to venodilation (pooling of blood in
dilated vains) [29] and myocardial depression [30]. Finally, it
is important to note that the compartmental model (38)–(40)
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is already in the normal form basis (5)–(7), and hence, there
is no need to construct a global diffeomorphism to transform
(38)–(40) into the form of (5)–(7).

Experimental data indicate that the transfer coefficients
are nonincreasing functions of the propofol concentration [29],
[30]. The most widely used empirical models for pharmaco-
dynamic concentration-effect relationships are modifications of
the Hill equation [31]. Applying this almost ubiquitous empir-
ical model to the relationship between transfer coefficients im-
plies that

where, for , , is the drug concentra-
tion associated with a 50% decrease in the transfer coefficient,

is a parameter that determines the steepness of the concen-
tration-effect relationship, and are positive constants. Note
that both pharmacokinetic parameters are functions of and ,
that is, there are distinct Hill equations for each transfer coeffi-
cient. Furthermore, since for many drugs the rate of metabolism

is proportional to the rate of transport of drug to the liver
we assume that is also proportional to the cardiac output
so that .

To illustrate the neuroadaptive control of propofol, we as-
sume that and are independent of and . Also, since
decreases in cardiac output are observed at clinically-utilized
propofol concentrations we arbitrarily assign a value of 4

since this value is in the mid-range of clinically utilized
values. We also assign a value of 3 [32]. This value is within
the typical range of those observed for ligand-receptor binding
(see the discussion in [33]). The nonnegative transfer and loss
coefficients , , , , and , and the parameters

, , and , are uncertain due to patient
gender, weight, pre-existing disease, age, and concomitant med-
ication. Hence, the need for adaptive control to regulate intra-
venous anesthetics during surgery is essential.

Even though propofol concentration levels in the blood
plasma will lead to the desired depth of anesthesia, they cannot
be measured in real-time during surgery. Furthermore, we are
more interested in drug effect (depth of hypnosis) rather than
drug concentration. Hence, we consider a model involving
pharmacokinetics (drug concentration as a function of time)
and pharmacodynamics (drug effect as a function of concen-
tration) for controlling consciousness. Specifically, we use an
electroencephalogram (EEG) signal as a measure of hypnotic
drug effect of anesthetic compounds on the brain [8], [34], [35].
Since electroencephalography provides real-time monitoring of
the central nervous system activity, it can be used to quantify
levels of consciousness, and hence, is amenable for feedback
control in general anesthesia.

As discussed in the introduction, the BIS, an EEG indicator,
has been proposed as a measure of hypnotic effect. This index
quantifies the nonlinear relationships between the component
frequencies in the electroencephalogram, as well as analyzing
their phase and amplitude. The BIS signal is related to drug
concentration by the empirical relationship

(41)

Fig. 3. Combined pharmacokinetic/pharmacodynamic control model.

where denotes the baseline (awake state) value and, by
convention, is typically assigned a value of 100, is the
propofol concentration in g ml in the effect-site compartment
(brain), is the concentration at half maximal effect and
represents the patient’s sensitivity to the drug, determines
the degree of nonlinearity in (41), and is a high-frequency
observation noise signal. Here, the effect-site compartment
is introduced to account for finite equilibration time between
the central compartment concentration and the central nervous
system concentration [36].

The effect-site compartment concentration is related to the
concentration in the central compartment by the first-order
model [36]

(42)

where in is an unknown positive time constant. In
reality, the effect-site compartment equilibrates with the central
compartment in a matter of a few minutes. The parameters ,

, and are determined by data fitting and vary from pa-
tient to patient. BIS index values of 0 and 100 correspond, re-
spectively, to an isoelectric EEG signal (no cerebral electrical
activity) and an EEG signal of a fully conscious patient; the
range between 40 and 60 indicates a moderate hypnotic state
[34]. Fig. 3 shows the combined pharmacokinetic/pharmacody-
namic control model for the distribution of propofol.

For set-point regulation define , where
is the set point satisfying the equilibrium condi-

tion for (38)–(40) and (42) with , ,
, , and , so that

is given by
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Fig. 4. BIS Index versus effect site concentration.

where . The existence of this equilibrium point
follows from the fact that the Jacobian of (38)–(40) and (42) is
essentially nonnegative and every solution of (38)–(40) and (42)
is bounded [37]. Next, linearizing about 0 and computing
the eigenvalues of the resulting Jacobian matrix, it can be shown
that is asymptotically stable. Hence, Assumption 3.1 is sat-
isfied for our clinical model.

In the following simulation involving the infusion of the anes-
thetic drug propofol we set 5.6 g ml, , and

, so that the BIS signal is shown in Fig. 4. The target
(desired) BIS value, , is set at 50. Here, we use the neu-
roadaptive output feedback controller

(43)
where

, , with update laws

where and are positive constants and ,
, is the solution to the estimator dynamics

(44)

(45)

where , , , and is output
of the second-order, low-pass asymptotically stable filter

(46)

(47)

Fig. 5. Flowchart for the neuroadaptive control algorithm.

where

, , 5 rad/s, , and
. Here, we model as a noise signal generated

by a SIMULINK band-limited white noise block with a noise
power parameter of 0.0001 amplified 100 times. Now, it follows
from Theorem 3.1 that there exist positive constants and
such that , , where is given
by (41) with , for all nonnegative values of the pharma-
cokinetic transfer and loss coefficients
as well as all nonnegative coefficients , , and . A flow-
chart for the neuroadaptive control algorithm is shown in Fig. 5.

For our simulation, we assume 0.228 l/kg ( kg),
where 70 kg is the mass of the patient,
0.112 min , 0.055 min , 0.0419 min ,

0.0033 min , 0.119 min ,
3.4657 min , , and 4 g/ml [27], [32]. Note that
the parameter values for and probably exaggerate the
effect of propofol on cardiac output. They have been selected to
accentuate nonlinearity but they are not biologically unrealistic.
Furthermore, to illustrate the proposed neuroadaptive controller
we switch the pharmacodynamic parameters and ,
respectively, from 5.6 g ml and 2.39 to 7.2 g ml and 3.39
at 15 min and back to 5.6 g ml and 2.39 at 30 min.
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Fig. 6. Compartmental masses versus time.

Fig. 7. Concentrations in central and effect site compartments versus time.

Fig. 8. BIS signal versus time.

Here, we consider noncardiac surgery since cardiac surgery
often utilizes hypothermia which itself changes the BIS signal.

Fig. 9. Control signal (infusion rate) versus time.

With

, , g min ,
g min , , and initial conditions

0 g, 0 g/ml, ,
, , Fig. 6

shows the masses of propofol in the three compartments versus
time. Fig. 7 shows the concentrations in the central and effect-
site compartments versus time. Note that the effect-site com-
partment equilibrates with the central compartment in a matter
of a few minutes. Fig. 8 shows the noisy, actual, and filtered con-
trolled BIS signals versus time. Finally, Fig. 9 shows the control
signal (propofol infusion rate) versus time predicated on the ac-
tual and filtered BIS signal.

For our simulation we used

where , , , , ,
, , , and 15 mg/min. Even though we
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did not calculate the analytical bounds given by (33) due to the
fact that one has to solve an optimization problem with respect
to (14) and (15) to obtain and , , the closed-loop
BIS signal response shown in Fig. 8 is clearly acceptable. Fur-
thermore, the basis functions for , , 2, are chosen to
cover the domain of interest of our pharmacokinetic/pharmaco-
dynamic problem since we know that the BIS index varies from
0 to 100. Hence, the basis functions are distributed over that
domain. The number of basis functions, however, is based on
trial and error. This goes back to the Stone–Weierstrass theorem
which only provides an existence result without any construc-
tive guidelines. Finally, we note that simulations using a larger
number of neurons resulted in imperceptible differences in the
closed-loop system performance.

The neuroadaptive control algorithm (43)–(45) does not re-
quire knowledge of the pharmacokinetic and pharmacodynamic
parameters, in contrast to previous algorithms for closed-loop
control of anesthesia [38], [39]. However, the neuroadaptive
controller (43)–(45) does not account for time delays due to the
proprietary signal-averaging algorithm within the BIS monitor.
Given the clinical observation that there is often a substantial
delay between observed changes in patient status and a change
in the BIS signal, other measures of depth of anesthesia may be
needed [40].

V. CLINICAL EVALUATION TRIALS

We have performed 15 clinical trials with the neuroadaptive
controller (43)–(45) at the Northeast Georgia Medical Center,
Gainesville, GA. In initial clinical testing, we implemented
(43)–(45) using a Dell Latitude C610 laptop computer with
a Pentium (R) III processor running under Windows XP, an
Aspect A 2000 BIS monitor (rev 3.23), and a Harvard PHD
2000 programmable research pump. The BIS monitor sends
a data stream, which is updated every 5 s. This data stream
contains the BIS signal as well as other parameters such as
date, time, signal quality indicator, raw EEG information, and
electromyographic data. The data are sent to the serial port of
the laptop computer.

The infusion rate for the controller is calculated by em-
ploying a forward Euler method to update the neural network
weights and every 0.5 s, using the BIS signal. The
infusion rate is communicated to the infusion pump using a 9600
bpm, 8 data bits, 2 stop bits, and zero parity protocol with the
aid of a USB-serial port adaptor. An updated infusion rate is
sent to the pump every 1 sec. Pharmacokinetic simulations pre-
dict that a pump update every 5 s or less is adequate in the con-
text of the algorithm under evaluation. An update interval of 1 s
was selected in anticipation that future algorithms might benefit
from the faster update rate. In order to filter the noisy BIS signal
we used a second-order, low-pass filter with natural frequency

0.01 rad/s and damping ratio .
The neuroadaptivecontrol algorithmwas programmed in Java,

an object-oriented programming language chosen for its multi-
platform portability tools for rapid prototyping. The program is
organized into five modules, namely, bisloader, bislogger, con-
troller, pumplogger, and pumploader. Bisloader and bislogger
handle communication between the BIS monitor and the com-
puter, while pumploader and pumplogger manage the Harvard

Fig. 10. Controlled BIS signal versus time for 10 patients.

pump apparatus. The module bisloader finds the serial port that
receives the BIS signal by using the Java class CommPort Iden-
tifier, and then invokes bislogger. Bislogger uses the Java class
SerialPort EventListener to read the signal, and uses the class
StringTokenizer to parse the BIS signal from the input stream.
The infusion rate is calculated by the controller module. Finally,
pumploader opens the serialport communicating to the pumpand
establishes the communication protocol, while pumplogger de-
livers the infusion rate to the pump.

Theprotocol forclinicalevaluationof thesystemwasapproved
by the Institutional Review Board of Northeast Georgia Med-
ical Center. Patients are enrolled after giving informed consent.
Our protocol excludes patients requiring emergency surgery, pe-
diatric patients, hemodynamically unstable patients, and patients
for whom we anticipate difficult airway management. Otherwise,
all elective surgical patients who can provide informed consent
are candidates. Preoperative management, including administra-
tion of anti-anxiolytic drugs, is left to the discretion of the at-
tending anesthesiologist. Propofol is delivered using the BIS-
computer-pump system with a target value of 50. In addition to
propofol, all patients receive infusions of either sufentanil or fen-
tanyl with loading doses of 0.25 or 2 g/ml and continuous infu-
sions of 0.25 or 2 g ml hr, respectively, to provide analgesia.
To ensure patient safety, an independent anesthesia provider ob-
serves the progress of the study and can terminate the study if
it appears that the patient’s safety is being jeopardized by either
overdosing or underdosing of propofol.

VI. RESULTS AND DISCUSSION

Patient demographics (for 10 patients) are presented in
Table I. The median BIS value after induction was 43. Four
of the ten patients required phenylephrine to treat hypotension
during induction (average dose 1075 with a standard devi-
ation of 809.8 g). The actual and filtered BIS signals versus
time and control signal (propofol infusion rate) versus time
for 10 patients are shown in Figs. 10–12. The effect of using
the actual (i.e., noisy) versus filtered BIS signal to generate
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Fig. 11. Filtered BIS signal versus time for 10 patients.

Fig. 12. Infusion rate versus time for 10 patients.

Fig. 13. Representative measured and filtered BIS signal versus time.

the control signal is illustrated in Figs. 13–16. In particular,
Fig. 14 shows the control signal predicated on the filtered
BIS signal shown in Fig. 13, whereas Fig. 16 shows control

Fig. 14. Representative infusion rate predicated on filtered BIS signal versus
time.

Fig. 15. Representative measured (noisy) BIS signal versus time.

Fig. 16. Representative infusion rate predicated on measured (noisy) BIS
signal versus time.

signal predicated on the actual (i.e., noisy) BIS signal shown in
Fig. 15. Several performance measures of the control algorithm
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TABLE I
DEMOGRAPHICS OF NEUROADAPTIVE CONTROL ALGORITHM

TABLE II
BIS, BIAS AND MAPE OF NEUROADAPTIVE CONTROL ALGORITHM

TABLE III
OVERSHOOT, OUTSIDE TIME OF NEUROADAPTIVE CONTROL ALGORITHM

such as median BIS, bias (the median of measured BIS minus
target, normalized to the target), the median absolute value of
the performance error (MAPE) (with performance error defined
as measured BIS minus the target, normalized to the target) are
summarized in Table II. We observed that with induction all
patients had some “overshoot” of the target BIS of 50, that is, a
BIS value less than 50. In Table III we present, overshoot, and
outside time (the percentage of study time that the individual
patients had BIS values outside of the 35–60 range).

As noted in the introduction and [15], several other systems
for closed-loop control of intravenous anesthesia have been pre-
viously described. The most direct comparison is to the results
of Struys et al. [39]. The median absolute performance error of
their controller was 7.7% in comparison to our 17.7%. The frac-
tion of time that patients in the Struys et al. study were outside
a BIS range of 35–60 was 11% compared to our 20.5%. Based
on these measures, one would surmise that the clinical perfor-
manceofthecontrollerdescribedbyStruysetal. issuperior.How-
ever, there are several factors that make direct comparisons ten-
uous. First, study designs were quite different. Struys et al. sup-
plemented propofol with a continuous infusion of remifentanil
while we used a bolus then continuous infusion of sufentanil. The
rapid kinetics of remifentanil in comparison to sufentanil implies
that opioid levels were more constant over time in the Struys et
al. study than in ours. A constant opioid concentration could be

expected to more effectively blunt arousal responses in the BIS
with surgical stimulation. And, as noted by Glass and Rampil in
the editorial accompanying the publication by Struys et al.; the
remifentanil dose used by Struys et al. is sufficient to blunt re-
sponses to surgical stimulation and reduce the propofol concen-
tration to that needed to prevent consciousness [41].

Another key difference in study protocols is that Struys
et al. initiated propofol administration with open-loop control
and did not “close” the loop until the BIS reached 50. The
controllers evaluated in this study were used for the induction
as well as the maintenance of anesthesia. Finally, we note that
model-based controllers may be expected to perform better
than model-independent controllers as long as the model is
correct. The three compartment mammillary pharmacokinetic
model and the modified Hill equation pharmacodynamic model
are well established and they could be expected to facilitate
closed-loop control in the “average” patient who conforms to
the models. However, model-based controllers could fail in
patients who do not conform to the model and the studies done
of closed-loop anesthesia to date do not have sufficient numbers
to evaluate failure due to model nonconformance. Furthermore,
we know that the three compartment mammilary model is not
accurate when the propofol concentration is increased acutely,
as occurs during induction and when surgical arousal is not
blunted by opioids. Thus, we believe that comparison of con-
trollers will not be definitive until larger numbers of patients
are studied, so that one might encounter outlier patients, and
with more demanding anesthetic/surgical conditions requiring
wider ranges of anesthetic concentrations.

APPENDIX

PROOF OF THEOREM 3.1

In this appendix, we prove Theorem 3.1. First, define

if
otherwise.

(48)

Next, defining , ,
, and , and using (5)–(12), (14),

(15), and (25) it follows from (5), (6), (30), and (16)–(19) that
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(49)

(50)

(51)

where , ,
, , 2, and and

are such that each component of and takes values
between 0 and 1.

To show ultimate boundedness of the closed-loop system
(27), (28), (49)–(51), consider the Lyapunov-like function

(52)

where , , and satisfy (29), (32), and (20), respec-
tively. Note that (52) satisfies
with , ,

, where

and denotes the column stacking operator. Furthermore,
is a class function. Using (18), (19) and (4), the

filter dynamics given by (16) and (17) can be rewritten as

(53)

(54)

Now, letting , , and , , denote the
solution to (49), (30), and (53), respectively, and using (14),
(15), (22), (27), and (28), it follows that the time derivative of

along the closed-loop system trajec-
tories is given by



324 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 19, NO. 2, MARCH 2011

(55)

For the two cases given in (48), the last term on the right-hand
side of (55) gives

i) If , , then , and hence,

ii) Otherwise, , and hence, for ,

Hence, it follows from (55) that in either case

(56)

where , , , and are given by (34)–(37), respectively.
Now, for

(57)

or

(58)

or

(59)

it follows that
for all , that is,

for all
and , where

(60)

(61)

Next, define

(62)

where is the maximum value such that , and define

(63)

where

(64)

To show ultimate boundedness of the closed-loop system
(27), (28), and (49)–(51) assume2 that . Now, since

for all
and , it follows that is positively invariant.

Hence, if ,
then it follows from Theorem 4.14 of [24] that the solu-
tion , , to (27),
(28), (49)–(51) is ultimately bounded with respect to

uniformly in with ultimate bound
given by , which yields (33). In addition,
since (50) is input-to-state stable with viewed as the input,
it follows from Proposition 4.4 of [24] that the solution ,

, to (50) is also ultimately bounded.

2This assumption ensures that in the error space �� there exists at least one
Lyapunov level set �� � �� . Equivalently, imposing bounds on the adaptation
gains ensures �� � �� [42]. In the case where the neural network approxima-
tion holds in with delayed values, this assumption is automatically satisfied.
See the discussion at the end of Theorem 3.1 for further details.
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Next, it follows from Theorem 1 of [43] that there exist a
continuously differentiable, radially unbounded, positive-defi-
nite function and class functions and

such that

(65)

Since the upper bound for is given by , it follows that
the set given by

(66)
is also positively invariant. Now, since and are positively
invariant, it follows that

(67)

is also positively invariant. In addition, since (27), (28),
(49)–(51), and (53) is ultimately bounded with respect
to and (50) is input-to-state stable
with viewed as the input, it follows from Proposition
4.4 of [24] that the solution

, , of the closed-loop system (27),
(28), (49)–(51), and (53) is ultimately bounded for all

.
Finally, , , is a restatement of (25). Now,

since , , and , , it follows
from Proposition 2.1 that , , for all .
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