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SUMMARY

In clinical intensive care unit practice, sedative/analgesic agents are titrated to achieve a specific level
of sedation. The level of sedation is currently based on clinical scoring systems. Examples include the
motor activity assessment scale, the Richmond agitation–sedation scale, and the modified Ramsay sedation
scale. In general, the goal of the clinician is to find the drug dose that maintains the patient at a seda-
tion score corresponding to a moderately sedated state. This is typically done empirically, administering a
drug dose that usually is in the effective range for most patients, observing the patient’s response, and then
adjusting the dose accordingly. However, the response of patients to any drug dose is a reflection of the
pharmacokinetic and pharmacodynamic properties of the drug and the specific patient. In this paper, we use
pharmacokinetic and pharmacodynamic modeling to find an optimal drug dosing control policy to drive the
patient to a desired modified Ramsay sedation scale score. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The clinical management of critically ill patients requiring mechanical ventilation due to respira-
tory failure is complex. Mechanical ventilation is intrinsically uncomfortable to the patient because
of both the introduction of an artificial airway that is the interface between the patient and the
ventilator, and the lack of synchronization between the patient’s own spontaneous efforts to breathe
and the action of the ventilator to breath for the patient. This can lead to the patient ‘fighting the
ventilator’, which is not only uncomfortable for the patient but can also have deleterious physiolog-
ical effects. For this reason, patients often require administration of sedative and analgesic agents in
intensive care units (ICUs).

In clinical ICU practice, sedative/analgesic agents are titrated to achieve a specific level of seda-
tion. The level of sedation is currently based on clinical scoring systems. Examples include the
motor activity assessment scale (MAAS) [1], the Richmond agitation–sedation scale (RASS) [2],
and the modified Ramsay sedation scale (MRSS) [3]. Specifically, in the MRSS scoring system,
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patients are given an integer score of 0–6 as follows: 0 = paralyzed, unable to evaluate; 1 = awake;
2 = lightly sedated; 3 = moderately sedated, follows simple commands; 4 = deeply sedated, responds
to nonpainful stimuli; 5 = deeply sedated, responds only to painful stimuli; and 6 = deeply sedated,
unresponsive to painful stimuli.

Useful features of a sedation scale include multidisciplinary development, ease of utilization and
interpretation with well-defined discrete criteria for each level, adequate granularity for effective
drug titration, assessment of agitation, demonstration of interrater reliability for relevant patient
populations, and evidence of validity. A number of sedation scales have been developed for ICU
use that meet these criteria and have been tested for interrater reliability in multiple patient popu-
lations. In this paper, we specifically consider the MRSS scoring system; however, the framework
presented herein can be adopted to any other sedation scoring system. The selection of MRSS was
largely based on its simplicity, clinical familiarity, and convenience. The RASS score has greater
granularity, and our techniques could be readily extended to its use. Finally, we assume that the
patient’s sedation level can always be evaluated, that is, the patient’s MRSS sedation score of 1–6
can be assessed.

The goal of the clinician is to find the drug dose that maintains the patient at a sedation score of 3.
This is typically done empirically, administering a drug dose that usually is in the effective range for
most patients, observing the patient’s response, and then adjusting the dose accordingly. However,
the response of patients to any drug dose is a reflection of the pharmacokinetic and pharmacody-
namic properties of the drug and the specific patient. In this paper, we use pharmacokinetic and
pharmacodynamic modeling to find an optimal drug dose, as a function of time, to drive the patient
to an MRSS score of 3. This framework is developed for a general n-compartment mammillary
phamacokinetic model, and the methodology can be applied to any sedative agent.

Although pharmacokinetics of sedative and anesthetic drugs can be adequately modeled by non-
negative and compartmental dynamical systems [4], the pharmacodynamics of these drugs are not
well understood, and drug effect predictions usually involve probabilities [5–7]. Specifically, when
considering sedative agents, drug effect is closely related to patient sedation level. As discussed in
[6, 7], the corresponding sedation level of the ICU patient is related to drug concentration in the
effect-site compartment by using an empirical probabilistic model.

In this paper, we model the pharmacokinetics and pharmacodynamics of a general sedative agent
by using a hybrid deterministic–stochastic model involving deterministic pharmacokinetics and
stochastic pharmacodynamics. Then, using this hybrid model, we consider the sedative drug propo-
fol and use nonnegative and compartmental modeling to model the drug pharmacokinetics (drug
concentration as a function of time), and a stochastic process to represent the patient’s sedation
score and model the drug pharmacodynamics (drug effect as a function of concentration). The
first-order distribution of the stochastic process is a function of the states of the compartmental
dynamical system.

Next, we use the aforementioned hybrid deterministic–stochastic model to develop an open-
loop optimal control policy for ICU sedation. Specifically, we first find the optimal effect-site drug
concentration corresponding to a high probability for the desired sedation score (i.e., MRSS score
of 3) and a low probability for all other sedation scores. Then, we use optimal control theory to drive
the effect-site drug concentration to the optimal value found in the previous step while minimizing
a given cost functional. The cost functional captures control effort constraints as well as probability
constraints associated with different sedation scores. The proposed methodology is then applied to
a three-compartment nonlinear mammillary model describing the disposition of propofol to find an
optimal drug dosing control policy to drive the patient to a desired MRSS score.

2. NOTATION AND MATHEMATICAL PRELIMINARIES

In this section, we introduce notation, several definitions, and some key results concerning nonlinear
nonnegative dynamical systems [4] that are necessary for developing the main results of this paper.
Specifically, for x 2 Rn, we write x >> 0 (resp., x >> 0) to indicate that every component of x
is nonnegative (resp., positive). In this case, we say that x is nonnegative or positive, respectively.
Likewise, A 2Rn�m is nonnegative or positive if every entry of A is nonnegative or positive, which

Copyright © 2012 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2013; 34:547–561
DOI: 10.1002/oca



OPTIMAL DRUG DOSING CONTROL FOR ICU SEDATION 549

is written as A >> 0 or A >> 0, respectively. In addition, R
n

C and RnC denote the nonnegative and

positive orthants of Rn, that is, if x 2 Rn, then x 2 R
n

C and x 2 RnC are equivalent, respectively, to
x >> 0 and x >> 0. Finally, we write .�/T to denote transpose, k � k for a vector norm in Rn, Z to
denote the set of integers, dist.x,M/ to denote the distance of a point x 2 Rn to the set M � Rn

in the norm k � k (i.e., dist.x,M/ , infp2M kx � pk), and e to denote the ones vector of order n,
that is, e, Œ1, : : : , 1�T.

The following definition introduces the notion of a nonnegative (resp., positive) function.

Definition 2.1
Let T > 0. A real function u W Œ0,T �! Rm is a nonnegative (resp., positive) function if u.t/ >> 0
(resp., u.t/ >> 0) on the interval Œ0,T �.

The following definition introduces the notions of essentially nonnegative and compartmental
vector fields [4].

Definition 2.2
Let f D Œf1, : : : ,fn�T W D � R

n

C ! Rn. Then, f is essentially nonnegative if fi .x/ > 0, for

all i D 1, : : : ,n, and x 2 R
n

C such that xi D 0, where xi denotes the i th component of x. f is

compartmental if f is essentially nonnegative and eTf .x/6 0, x 2R
n

C.

Proposition 2.1
If f .x/ D Ax, where A 2 Rn�n, x 2 Rn, then f is essentially nonnegative if and only if
A.i ,j / > 0, i , j D 1, : : : ,n, i ¤ j , where A.i ,j / denotes the .i , j /th entry of A. Alternatively, f is
compartmental if and only if A.i ,j / > 0, i , j D 1, : : : ,n, i ¤ j , and

Pn
iD1A.i ,j / 6 0, j D 1, : : : ,n.

Proof
The proof is a direct consequence of Definition 2.2. �

In this paper, we consider controlled nonlinear dynamical systems of the form

Px.t/D f .x.t//CG.x.t//u.t/, x.0/D x0, t > 0, (1)

where x.t/ 2 Rn, t > 0, u.t/ 2 Rm, t > 0, f W Rn ! Rn is locally Lipschitz continuous and
satisfies f .0/D 0, G WRn!Rn�m is continuous, and u W Œ0,1/!Rm is piecewise continuous.

The following definition and proposition are needed for the main results of the paper.

Definition 2.3
The nonlinear dynamical system given by (1) is nonnegative if, for every x.0/ 2R

n

C and u.t/>> 0,
t > 0, the solution x.t/, t > 0, to (1) is nonnegative.

Proposition 2.2 ([4])
The nonlinear dynamical system given by (1) is nonnegative if f W Rn ! Rn is essentially
nonnegative and G.x/>> 0, x 2R

n

C.

It follows from Proposition 2.2 that if f .�/ is essentially nonnegative, then a nonnegative input
signal G.x.t//u.t/, t > 0, is sufficient to guarantee the nonnegativity of the state of (1).

Finally, the following theorem and definition are needed for the main results of the paper.

Theorem 2.1 ([8])
Let x 2Rn, M�Rn be a closed set and k � k be a norm in Rn. Then, there exists ax 2M such that
kx � axk D dist.x,M/. Furthermore, if M is closed and convex, and k � k W Rn ! RC is strictly
convex, then ax is unique.
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Definition 2.4
Let x 2 Rn, M � Rn be a closed set and k � k be a norm in Rn. The projection of x on M is
given by

projM.x/, ¹a 2M W kx � ak D dist.x,M/º, (2)

where projM WR
n! P .M/ and P .M/ denotes the power set of M.

Note that it follows from Theorem 2.1 and Definition 2.4 that if p 2 projM.x/, then p D
argmina2Mkx � ak. Finally, we note that if for every x 2 Rn there exists a unique p 2 projM.x/,
then M is closed and convex [8].

3. NONLINEAR COMPARTMENTAL MAMMILLARY SYSTEMS

Drug dosing can be made more precise by using pharmacokinetic and pharmacodynamic model-
ing [9]. Pharmacokinetics is the study of the concentration of drugs in tissue as a function of time
and dose schedule, whereas pharmacodynamics is the study of the relationship between drug con-
centration and drug effect. By relating dose to resultant drug concentration (pharmacokinetics) and
concentration to effect (pharmacodynamics), a model for drug dosing can be generated.

Pharmacokinetic compartmental models typically assume that the body is comprised of multiple
compartments. Within each compartment, the drug concentration is assumed to be uniform because
of perfect, instantaneous mixing. Transport to other compartments and elimination from the body
occur by metabolic processes. For simplicity, the transport rate is often assumed to be proportional
to drug concentration. Although the assumption of instantaneous mixing is an idealization, it has
little effect on the accuracy of the model as long as we do not try to predict drug concentrations
immediately after the initial drug dose.

In this section, we consider a nonlinear compartmental mammillary dynamical system to model
the pharmacokinetics of a sedative drug. The nonlinear mammillary model is comprised of a central
compartment from which there is outflow from the system and which exchanges material reversibly
with one or more peripheral compartments. In an n-compartment mammillary model, the central
compartment, which is the site for drug administration, is generally thought to be comprised of
the intravascular blood volume (i.e., blood within arteries and veins) as well as highly perfused
organs (i.e., organs with high ratios of blood flow to weight) such as the heart, brain, kidneys,
and liver. The central compartment exchanges drug with the peripheral compartments comprised of
muscle, fat, and other organs and tissues of the body, which are metabolically inert as far as drug is
concerned (Figure 1).

The pharmacokinetic model of an n-compartment nonlinear mammillary model with a control
input drug dose needed to achieve and maintain a target drug concentration is given by

Figure 1. The n-compartment mammillary model.
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Px1.t/D�

0
@ nX
jD1

aj1.c.t//

1
A x1.t/C

nX
jD2

a1j .c.t//xj .t/C u.t/, x1.0/D x10, t > 0, (3)

Pxi .t/D ai1.c.t//x1.t/� a1i .c.t//xi .t/, xi .0/D xi0, i D 2, : : : , n, (4)

where c.t/ D x1.t/=V c, V c is the volume of the central compartment (about 15 l for a 70-kg
patient), aij .c/, i ¤ j is the rate of transfer of drug from the j th to the i th compartment, a11.c/
is the rate of drug metabolism and elimination (metabolism typically occurs in the liver), and u.t/,
t > 0 is the infusion rate of the sedative drug into the central compartment.

Although the concentration of the sedative agent in the blood is correlated with lack of respon-
siveness [10], the concentration cannot be measured in real time. Because we are more interested
in drug effect rather than drug concentration, we consider a model involving pharmacokinetics and
pharmacodynamics for controlling consciousness. We use the sedation score to access the effect
of anesthetic compounds on the brain. In Section 6, we utilize the modified probabilistic Hill
equation [6] to model the relationship between the sedation score and the effect-site concentration.
The effect-site compartment concentration is related to the concentration in the central compartment
by the first-order model [11]

Pceff.t/D aeff.c.t/� ceff.t//, ceff.0/D c.0/, t > 0, (5)

where aeff in min�1 is a positive time constant. In reality, the effect-site compartment equilibrates
with the central compartment within a few minutes.

4. HYBRID PHARMACOKINETIC–PHARMACODYNAMIC MODEL AND OPTIMAL
DRUG DOSING POLICY

In this section, we model the pharmacokinetics and pharmacodynamics of a sedative agent as a
hybrid deterministic–stochastic model involving the deterministic pharmacokinetic model devel-
oped in Section 3, and a stochastic pharmacodynamic model. Next, we use this model to develop an
open-loop optimal drug dosing control policy for ICU sedation.

To develop our optimal control policy for ICU sedation, we rewrite the pharmacokinetic
system (3)–(5) as

Px.t/D f .x.t//CBu.t/, x.0/D x0, t > 0, (6)

where x D Œx1, : : : , xn, ceff�
T, B D Œ1, 01�n�T and

f .x/,

2
6666664

�
�Pn

jD1 aj1.c/
�
x1C

Pn
jD2 a1j .c/xj

a21.c/x1 � a12.c/x2
...

an1.c/x1 � a1n.c/xn
aeff.c � ceff/

3
7777775

. (7)

Next, let the output y.t/ of the dynamical system (6) be given by a stochastic process. Specif-
ically, for every t > 0, y.t/ D S.t/ is a random variable with range.S.t// D S , where
S , ¹1, : : : , 6º. Let the first-order distribution of the stochastic process S.t/, t > 0, be given
by FS .s, ceff/ D P.S.t/ 6 s/, where s 2 R, FS W S � C ! R, and C � RC is a set of
feasible drug concentrations in the effect-site compartment. The first-order distribution FS .s, ceff/

is identified using experiments and statistical techniques, and provides a probabilistic relationship
between the effect-site drug concentration ceff and the sedation score. Finally, define the mapping
F W C!R6 by

F.ceff/, ŒFS .1, ceff/, : : : , FS .6, ceff/�
T. (8)

Copyright © 2012 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2013; 34:547–561
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Our proposed approach for optimal drug dosing consists of two stages. In the first stage, the set
of appropriate values of the drug concentration in the effect-site compartment denoted by C� is
identified such that the resulting probability distributions have desirable properties. More specifi-
cally, it is desirable to increase the probability associated with a desired sedation score (e.g., MRSS
score of 3) and decrease the probabilities associated with all other levels of sedation. Ideally, we
would like to target a cumulative distribution function for S.t/, t > 0, given by

Fstep,S .s/D

²
0, s < 3,
1, s > 3,

, (9)

where s 2R. Define Fstep , Œ0, 0, 1, 1, 1, 1�T and note that, in general, Fstep 62 F , where F , F.C/
is the image of C � RC under F W C ! R6 defining the set of feasible probability distributions
given by

F.C/, ¹v W v D F.c/ for some c 2 Cº. (10)

The following theorem and corollary provide a framework for identifying C� given by

C� , F �1.projF .Fstep//, (11)

where F , F.C/, F �1.B/ , ¹c 2 C W F.c/ 2 Bº, B � R6, and projF .Fstep/ is the projection of
Fstep on F .

Theorem 4.1
Assume that the set of feasible drug concentrations C �RC is closed and the mapping F W C!R6

is continuous. Then, C� given by (11) is not empty. Furthermore, if F is convex, F is one-to-one,
and k � k WR6!RC is strictly convex, then C� is a singleton.

Proof
Because C is closed and F is continuous, F is closed. Furthermore, it follows from Theorem 2.1
that there existsG 2 F such that kFstep�Gk D dist.Fstep,F/, and hence,G 2 projF .Fstep/. Because
G 2 F , there exists c� 2 C such that F.c�/ D G, and hence, c� 2 C�, which proves that C� is not
empty. If F is convex and k � k WR6!RC is strictly convex, then it follows from Theorem 2.1 that
projF .Fstep/D ¹Gº. Now, because F is one-to-one, C� D ¹c�º. �

Corollary 4.1
Assume that the set of feasible drug concentrations C �RC is closed and the mapping F W C!R6

is continuous. Then,

F �1.projF .Fstep//D ¹c
� 2 C W c� D argminc2CkFstep �F.c/kº. (12)

Proof
‘�’. Let c� 2 F �1.projF .Fstep//. Then, it follows that kFstep � F.c

�/k D dist.Fstep,F/, where
F D F.C/. Thus,

F.c�/D argminF 2FkFstep �F k

D argminc2CkFstep �F.c/k, (13)

and hence, c� 2 ¹c� 2 C W c� D argminc2CkFstep �F.c/kº, which proves ‘�’.
‘�’. Let c� D argminc2CkFstep �F.c/k. Then, it follows that

kFstep �F.c
�/k Dmin

c2C
kFstep �F.c/k

D min
F 2F
kFstep �F k

D dist.Fstep,F/, (14)

and hence, c� 2 F �1.projF .Fstep//, which proves ‘�’. �
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Note that once C� is identified, an element of C�, denoted by c�eff, can be selected. The selected
value c�eff 2 C� serves as the target drug concentration in the effect-site compartment. By using
Corollary 4.1, c�eff can be identified by solving the optimization problem

min
c2C
kFstep �F.c/k. (15)

Note that because it is desirable to reduce the probabilities associated with undersedation and overse-
dation, a specific norm can be used that enforces these properties. Specifically, we can choose the
norm k � kQ, where Q 2 R6�6 is a positive-definite weighting matrix and k´k2Q , ´TQ´, ´ 2 R6.
The weighting matrix Q can be used to assign weights (penalty) to different sedation levels. In
particular, larger weighting values are assigned to sedation scores associated with undersedation
and oversedation.

The second stage of the proposed optimal drug dosing policy involves an open-loop optimal
control problem whose solution is given by the following theorem.

Theorem 4.2
Consider the pharmacokinetic model (6) with initial condition x0 D Œx10, : : : , xn0, ceff ,0�

T.
Let the optimal sedative drug infusion rate u�.t/, t > 0, be given by the solution to the
minimization problem

min
u.�/2U

Z T

0

L.x.t/,u.t//dt , (16)

subject to

g.x,u/66 0, x 2RnC1, u 2R, (17)

ceff.T /D c
�
eff, (18)

ceff.t/6 cmax, (19)

where

L.x,u/, kF.ceff/�F.c
�
eff/k

2
R1
C
1

2
r2u

2, (20)

g.x,u/, Œg1.x,u/, g2.u/�
T, (21)

g1.x,u/, .ceff � cmax/u, (22)

g2.u/, �u, (23)

c�eff 2 C�, C� is given by (11), U D ¹u W Œ0,T �! R W u.�/ is piecewise continuousº, R1 2 R6�6 is
a given positive-definite matrix, and r2 > 0 and cmax > 0 are given scalars. Then, u�.t/, t > 0, is
given by

u�.t/D
1

r2
Œ��1.t/� .ceff � cmax/�.t/C �.t/�, (24)

where �1.t/, �.t/, and �.t/, t > 0, are the solutions to

P�1.t/D

8<
:
0
@ nX
jD1

@aj1.c/

@c

1
A x1.t/

Vc
C

nX
jD1

aj1.c/�

nX
jD2

@a1j .c/

@c

xj .t/

Vc

9=
;�1.t/

�

nX
jD2

�
@aj1.c/

@c

x1.t/

Vc
C aj1.c/�

@a1j .c/

@c

xj .t/

Vc

�
�j .t/�

aeff

Vc
�nC1, (25)

Copyright © 2012 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2013; 34:547–561
DOI: 10.1002/oca



554 B. GHOLAMI ET AL.

P�i .t/D�a1i .c/Œ�1.t/� �i .t/�, i D 2, : : : ,n, (26)

P�nC1.t/D aeff�nC1.t/� 2ŒF.ceff.t//�F.c
�
eff/�

TR1
@F.ceff/

@ceff

��.t/
1

r2
Œ��1.t/� .ceff � cmax/�.t/C �.t/� , (27)

with boundary conditions

x.0/D x0, (28)

ceff.T /D c
�
eff, (29)

�i .T /D 0, i D 1, : : : ,n, (30)

and x.t/, t > 0, satisfying (6), �.t/> 0, t > 0, if g1.x.t/,u.t//D 0, �.t/D 0 if g1.x.t/,u.t// < 0,
�.t/> 0, t > 0, if g2.u.t//D 0, and �.t/D 0 if g2.u.t// < 0, t > 0. Furthermore, u�.t/> 0, t > 0,

and x.t/>> 0, t > 0, for all x0 2R
nC1

C .

Proof
Equations (24)–(27) are a direct consequence of the first-order necessary conditions for optimality
of the optimization problem (16)–(19). Now, because g.x,u/ 66 0, .x,u/ 2 RnC1 �R, it follows
that u�.t/ > 0, t > 0. Finally, because f .x/ given by (7) is essentially nonnegative, it follows from

Proposition 2.2 that x.t/>> 0, t > 0, for all x0 2R
nC1

C . �

Note that the cost functional given by (16) penalizes the control effort as well as the deviations
from the cumulative distribution function F.c�eff/. In addition, the inequality constraints (17) and
(19) ensure that the control input u.t/, t > 0, is nonnegative and the drug concentration in the
effect-site compartment does not exceed the maximum concentration cmax. Furthermore, the equal-
ity constraint (18) ensures that the drug concentration in the effect-site compartment reaches the
target drug concentration c�eff in finite time T . Finally, the second-order Legendre–Clebsch necessary
condition for optimality [12] is satisfied because r2 > 0.

5. NONLINEAR PHARMACOKINETIC MODEL FOR DISPOSITION OF PROPOFOL

In this section, we use nonnegative and compartmental modeling to model the pharmacokinetics
of the sedative agent propofol. Propofol, or 2,6-diisopropylphenol, is an intravenous hypnotic agent
that, in low doses, can produce anxiolysis and, in higher doses, hypnosis (i.e., lack of responsiveness
and consciousness). Propofol is widely used for ICU sedation because of this spectrum of pharmaco-
dynamic effects and also its pharmacokinetics. It is typically administered as a continuous infusion
and is a short-acting drug that can be readily titrated, that is, if the infusion rate is increased, then
the blood level increases relatively quickly. Hence, the pharmacological effect of the drug can be
quickly varied by varying the infusion rate.

Propofol is a myocardial depressant, that is, it decreases the contractility of the heart and lowers
cardiac output (i.e., the volume of blood pumped by the heart per unit time). As a consequence,
decreased cardiac output slows down redistribution kinetics, that is, the transfer of blood from
the central compartment (heart, brain, kidneys, and liver) to the peripheral compartments (muscle
and fat). In addition, decreased cardiac output could increase drug concentrations in the central
compartment, causing even more myocardial depression and further decrease in cardiac output.
This instability can lead to oversedation.

Oversedation increases risk to the patient because liberation from mechanical ventilation, one of
the most common life-saving procedures performed in the ICU, may not be possible because of a
diminished level of consciousness and respiratory depression from sedative drugs resulting in pro-
longed length of stay in the ICU. Prolonged ventilation is expensive and is associated with known

Copyright © 2012 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2013; 34:547–561
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Figure 2. Pharmacokinetic model for disposition of propofol.

risks, such as inadvertent extubation, laryngotracheal trauma, and ventilator-associated pneumonia.
Alternatively, undersedation leads to agitation and can result in dangerous situations for both the
patient and the intensivist. Specifically, agitated patients can do physical harm to themselves by
dislodging their endotracheal tube, which can potentially endanger their lives.

The pharmacokinetics of propofol are described by the three-compartment model [4, 13] shown
in Figure 2, where x1 denotes the mass of drug in the central compartment, which, as discussed
in Section 3, is the site for drug administration and is generally thought to be comprised of the
intravascular blood volume as well as highly perfused organs such as the heart, brain, kidneys, and
liver. These organs receive a large fraction of the cardiac output. The remainder of the drug in the
body is assumed to reside in two peripheral compartments, one identified with muscle and one with
fat; the masses in these compartments are denoted by x2 and x3, respectively. These compartments
receive less than 20% of the cardiac output.

A mass balance of the three-state compartmental model yields

Px1.t/D�Œa11.c.t//C a21.c.t//C a31.c.t//�x1.t/C a12.c.t//x2.t/C a13.c.t//x3.t/C u.t/,

x1.0/D x10, t > 0, (31)

Px2.t/D a21.c.t//x1.t/� a12.c.t//x2.t/, x2.0/D x20, (32)

Px3.t/D a31.c.t//x1.t/� a13.c.t//x3.t/, x3.0/D x30, (33)

where c.t/ D x1.t/=V c, V c is the volume of the central compartment (about 15 l for a 70-kg
patient), aij .c/, i ¤ j , is the rate of transfer of drug from the j th to the i th compartment, a11.c/
is the rate of drug metabolism and elimination (metabolism typically occurs in the liver), and u.t/,
t > 0, is the infusion rate of the sedative drug propofol into the central compartment. The trans-
fer coefficients are assumed to be functions of the drug concentration c because it is well known
that the pharmacokinetics of propofol are influenced by cardiac output [14] and, in turn, cardiac
output is influenced by propofol plasma concentrations, both due to venodilation (pooling of blood
in dilated veins) [15] and myocardial depression [16].

Experimental data indicate that the transfer coefficients aij .�/ are nonincreasing functions of the
propofol concentration [15, 16]. The most widely used empirical models for pharmacodynamic
concentration–effect relationships are modifications of the Hill equation [17]. Applying this almost
ubiquitous empirical model to the relationship between transfer coefficients implies that

aij .c/D AijQij .c/, Qij .c/D
Q0
QC
˛ij
50,ij

. QC
˛ij
50,ij C c

˛ij /
, (34)

where, for i , j 2 ¹1, 2, 3º, i ¤ j , QC50,ij is the drug concentration associated with a 50% decrease
in the transfer coefficient, ˛ij is a parameter that determines the steepness of the concentration–
effect relationship, and Aij are positive constants. Note that both pharmacokinetic parameters
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are functions of i and j , that is, there are distinct Hill equations for each transfer coefficient.
Furthermore, because for many drugs the rate of metabolism a11.c/ is proportional to the rate of
transport of drug to the liver, we assume that a11.c/ is also proportional to the cardiac output so that
a11.c/ D A11Q11.c/. Finally, the relationship between the effect-site and the central compartment
is given by (5).

6. OPTIMAL DRUG DOSING POLICY FOR PROPOFOL

The framework presented in Section 4 is applicable to sedative agents for which a valid compart-
mental model capturing the pharmacokinetics and an associated probabilistic model capturing drug
concentration and sedation score exist. In this section, we use the framework developed in Section 4
to model the pharmacokinetics and pharmacodynamics of propofol as a hybrid deterministic–
stochastic model. Specifically, we use the deterministic pharmacokinetic model developed in
Section 5. Next, we use this model to develop an open-loop optimal drug dosing control policy
for ICU sedation.

In [6], the authors investigate the relationship between drug concentration and the ICU patient’s
sedation score. Specifically, the sedation score is modeled as a random variable and an empirical
cumulative distribution function, for this random variable is developed and validated for propofol-
based sedation where the cumulative distribution function is a function of drug concentration at
the effect site.

To develop our optimal control policy for ICU sedation, we rewrite the pharmacokinetic
system (5), (31)–(33) as

Px.t/D f .x.t//CBu.t/, x.0/D x0, t > 0, (35)

where x D Œx1, x2, x3, ceff�
T, B D Œ1, 0, 0, 0�T, and

f .x/,

2
64
�.a11.c/C a21.c/C a31.c//x1C a12.c/x2C a13.c/x3

a21.c/x1 � a12.c/x2
a31.c/x1 � a13.c/x3

aeff.c � ceff/

3
75 . (36)

Next, let the output y.t/ of the dynamical system (35) be given by a stochastic process. Specifically,
for every t > 0, y.t/D S.t/ is a random variable with range.S.t//D S , where S , ¹1, : : : , 6º. The
first-order distribution of the stochastic process S.t/ is given by [6],

FS .s, ceff/D P.S.t/6 s/D

8̂<
:̂
0 s < 1,

1�
c
�
eff.t/

c
�
eff.t/CC

�

50,bscC1
, 16 s < 6,

1, s > 6,

(37)

where s 2 R, FS W S � C ! R is a first-order distribution function of the stochastic process S.t/,
C � RC is a closed set of feasible drug concentrations in the effect-site compartment, b�c denotes
the floor function defined by bsc , max´2Z ´ 6 s, and � > 0 is a factor determining the steepness
of the concentration–effect relationship. Finally, note that F W C!R6 given by (8) is continuous.

The second stage of the proposed optimal drug dosing policy involves an open-loop optimal
control problem. Specifically, it follows from Theorem 4.2 that the optimal propofol infusion rate
u�.t/, t > 0, is given by the solution to the minimization problem (16) subject to (17)–(19), where
c�eff 2 C�, and C� is given by (11). In particular, u�.t/, t > 0, is given by

u�.t/D
1

r2
Œ��1.t/� .ceff � cmax/�.t/C �.t/�, (38)
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where �1.t/, �.t/, and �.t/, t > 0, are the solutions to

P�1.t/D

��
@a11.c/

@c
C
@a21.c/

@c
C
@a31.c/

@c

�
x1.t/

Vc
C a11.c/C a21.c/C a31.c/

�
@a12.c/

@c

x2.t/

Vc
�
@a13.c/

@c

x3.t/

Vc

�
�1.t/

C

�
�
@a21.c/

@c

x1.t/

Vc
� a21.c/C

@a12.c/

@c

x2.t/

Vc

�
�2.t/

C

�
�
@a31.c/

@c

x1.t/

Vc
� a31.c/C

@a13.c/

@c

x3.t/

Vc

�
�3.t/�

aeff

Vc
�4.t/, (39)

P�2.t/D�a12.c/�1.t/C a12�2.t/, (40)

P�3.t/D�a13.c/�1.t/C a13.c/�3.t/, (41)

P�4.t/D aeff�4.t/� 2ŒF.ceff.t//�F.c
�
eff/�

TR1
@F.ceff/

@ceff

��.t/
1

r2
Œ��1.t/� .ceff � cmax/�.t/C �.t/�, (42)

where

@aij .c/

@c
D
�˛ij c

˛ij�1AijQ0
QC
˛ij
50,ij

. QC
˛ij
50,ij C c

˛ij /2
, i D 1, j D 1, and i , j 2 ¹1, 2, 3º, i ¤ j ,

@F.ceff/

@ceff
D

�
�
�c
��1
eff C

�
50,2

.c
�
effCC

�
50,2/

2
, �

�c
��1
eff C

�
50,3

.c
�
effCC

�
50,3/

2
, �

�c
��1
eff C

�
50,4

.c
�
effCC

�
50,4/

2
, �

�c
��1
eff C

�
50,5

.c
�
effCC

�
50,5/

2
, �

�c
��1
eff C

�
50,6

.c
�
effCC

�
50,6/

2
, 0

�T
,

with boundary conditions (28), (29), and �1.T /D �2.T /D �3.T /D 0, and x.t/, t > 0, satisfying
(35), �.t/ > 0, t > 0, if g1.x.t/,u.t// D 0, �.t/ D 0 if g1.x.t/,u.t// < 0, �.t/ > 0, t > 0, if
g2.u.t// D 0, and �.t/ D 0 if g2.u.t// < 0, t > 0. Furthermore, u�.t/ > 0, t > 0, and x.t/ >> 0,

t > 0, for all x0 2R
4

C.

Remark 6.1
The framework in this paper can be used for other sedative agents for which a valid compartmental
model capturing the pharmacokinetics and an associated probabilistic model capturing drug con-
centration and sedation score exist. For example, the pharmacokinetics of midazolam (an alternative
intravenous sedative agent used as a hypnotic) is described by a two-compartment model [18]. The
empirical relationship between drug concentration and sedation score for midazolam is developed
in [7]. By using an identical procedure as outlined previously, the optimal drug dosing policy for the
midazolam infusion rate can be found.

7. ILLUSTRATIVE NUMERICAL EXAMPLE

In this section, we present a numerical example to demonstrate the efficacy of the proposed frame-
work. For simplicity of exposition and to provide a nonlinear model to illustrate implementation
of our open-loop optimal controller, we assume that QC50 and ˛ in (34) are independent of i and j
[4]. Furthermore, because decreases in cardiac output are observed at clinically utilized propofol
concentrations, we arbitrarily assign QC50 a value of 4 �g/ml because this value is in the mid-range
of clinically utilized values. We also arbitrarily assign ˛ a value of 3 [19]. This value is within
the typical range of those observed for ligand–receptor binding [20]. Note that these assumptions
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on QC50 and ˛ (both the independence from i and j and the assumed values) are done to pro-
vide a numerical framework for simulation. Even if these assumptions are incorrect, the basic Hill
equations relating the transfer coefficients to propofol concentration are consistent with standard
pharmacodynamic modeling.

For our simulation, we assume V c D .0.228 l/kg/.M kg), where M D 70 kg is the mass
of the patient, A21Q0 D 0.112 min�1, A12Q0 D 0.055 min�1, A31Q0 D 0.0419 min�1,
A13Q0 D 0.0033 min�1, A11Q0 D 0.119 min�1, ˛ D 3, and QC50 D 4 �g/ml [13, 19]. Note
that the parameter values for ˛ and QC50 probably exaggerate the effect of propofol on cardiac out-
put. They have been selected to accentuate nonlinearity, but they are not biologically unrealistic.
Furthermore, in (37), we assume C50,2 D 0.13�g/ml, C50,3 D 0.50�g/ml, C50,4 D 0.74�g/ml,
C50,5 D 1.48�g/ml, C50,6 D 2.34�g/ml, and � D 1.7 [6]. In addition, we assume T D 5 min,
Q D R1 D diagŒ17, 2, 1, 2, 17, 82�, and r2 D 0.01. By using (15), the optimal effect-site drug
concentration was found to be c�eff D 0.60294�g/ml.

For our simulation, we choose the diagonal matrix R1 with diagonal entries given by R1.i ,i/ D
.i � 3/4 C 1, i D 1, : : : , 6. This ensures that a larger weight (penalty) is assigned to sedation
scores associated with undersedation and oversedation. The drug concentration of the central and
the effect-site compartments as well as control input as a function of time are shown in Figures 3
and 4, respectively. The probability mass function of the sedation score is given in Figure 5 for
t D 0, 1, 3, and 5 min. Note that at t D 5 min, the probability that the patient has an MRSS seda-
tion score of 2, 3, or 4 (i.e., the patient is lightly sedated, moderately sedated and follows simple
commands, or deeply sedated and responds to nonpainful stimuli) is 75%.
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Figure 3. Drug concentration c.t/D x1.t/
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Figure 4. Control input as a function of time.
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Figure 5. Probability mass function for sedation score S.t/ for t D 0, 1, 3, and 5.

8. DISCUSSION AND DIRECTIONS FOR FUTURE RESEARCH

The distribution of sedation scores given in Figure 5 reflects equation (37) and the effect of drug
concentrations that result from the infusion illustrated in Figure 4. At t D 5 min, the drug concen-
tration at the effect-side compartment ceff reaches the target level given by (15). The reader will note
that the mode of the distribution at t D 5 min is actually a score of 2 rather than the target of 3.
However, this distribution is in fact the closest achievable sedation score distribution in the family of
distributions defined by (37) to the ‘ideal’ distribution given by (9) using the weighted norm k � kQ.
In addition, the penalty implicit in the term r2u

2 in (20) included in L.x.t/,u.t// penalizes rapid
infusion of the drug and is a reflection of how clinicians actually administer propofol. The clinician
has no a priori knowledge of how the patient will respond to propofol, and although achievement
of adequate sedation is important, it cannot be achieved at the cost of an overdose with subse-
quent cardiovascular compromise. Thus, the typical behavior of clinicians is to administer the drug
relatively slowly.

It should be emphasized that this optimal control strategy is not adaptive and is inherently chal-
lenged by interpatient variability. Implementation will require clinical investigation to find the ‘best’
parameters, including those reflective of interpatient variability (pharmacokinetic and pharmacody-
namic parameters) as well as those that quantify the deviation of the sedation score distribution
from the ideal distribution, and penalize overdoses (i.e., Q, R1, r2, and cmax). And although this
is a shortcoming of any optimal control strategy, this approach is inherently conservative and errs
on the side of safety (as demonstrated by the mode of the distribution of sedation scores shown in
Figure 5) because it does have these penalty terms. Actual clinical implementation would have
to allow the clinician to ‘tune’ the parameters in real time (as in the OR or ICU), and given the
multiplicity of these parameters, it might be best to have the option to tune R1 and r2 because
they penalize deviation from the ideal sedation score distribution as well as overdoses, and this is
the thing the clinician most wants to prevent. We have not yet investigated the simple option of
changing either R1 or r2 in real time.

Finally, note that the drug infusion illustrated in Figure 4 resembles the input that skilled clin-
icians usually create when administering propofol manually. It begins with a rapid infusion rate
that rapidly declines to a plateau value. Multiple investigations in the anesthesia literature confirm
that a target blood concentration of propofol (and almost all other drugs) is best achieved by this
type of algorithm, whether administered continuously as loading dose followed by exponentially
declining infusions [21], or by an approximation with an instantaneous loading dose followed by
stepwise decreasing infusions [22]. The authors in [6] have investigated ICU sedation by using
a pharmacokinetic–pharmacodynamic model, but it is neither an adaptive nor an optimal control
strategy. Several investigators have developed adaptive closed-loop control models for operative
anesthesia by using processed EEG feedback (e.g., [23]), but the goals of operative anesthesia are
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quite distinct from ICU sedation. To our knowledge, this is the first investigation of optimal control
for ICU sedation. Thus, it is very difficult to compare our results with other standard methods, other
than to note that the infusion scheme is quite similar to what an expert clinician would create using
manual administration.

9. CONCLUSION

In this paper, we modeled the pharmacokinetics and pharmacodynamics of a general sedative agent
by using a hybrid deterministic–stochastic model involving deterministic pharmacokinetics and
stochastic pharmacodynamics. Specifically, we used nonnegative and compartmental modeling to
model the pharmacokinetics of propofol, and a stochastic process to represent the patient’s sedation
score and model the pharmacodynamics of propofol. Next, we used this deterministic–stochastic
model to develop an open-loop optimal control policy for ICU sedation. Specifically, we first found
the optimal effect-site drug concentration corresponding to a high probability for the desired seda-
tion score (i.e., MRSS score of 3) and a low probability for all other sedation scores. Then, we used
optimal control theory to drive the effect-site drug concentration to the optimal value found in the
previous step while minimizing a given cost functional.
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