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a b s t r a c t

This paper develops semistability and uniform semistability analysis results for switched
linear systems. Semistability is the property whereby the solutions of a dynamical
system converge to Lyapunov stable equilibrium points determined by the system’s initial
conditions. Since solutions to switched systems are a function of the system’s initial
conditions aswell as the switching signals, uniformity here refers to the convergence rate of
the multiple solutions as the switching signal evolves over a given switching set. The main
results of the paper involve sufficient conditions for semistability anduniform semistability
using multiple Lyapunov functions and sufficient regularity assumptions on the class of
switching signals considered.
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1. Introduction

An essential feature of multiagent network systems is that these systems possess a continuum of equilibria [1,2].
Since every neighborhood of a nonisolated equilibrium contains another equilibrium, a non-isolated equilibrium cannot be
asymptotically stable. Hence, asymptotic stability is not the appropriate notion of stability for systems having a continuum
of equilibria. For such systems possessing a continuum of equilibria, semistability [3,4] is the relevant notion of stability.
Semistability is the property whereby every trajectory that starts in the neighborhood of a Lyapunov stable equilibrium
converges to a (possibly different) Lyapunov stable equilibrium. It is important to note that semistability is not equivalent
to set stability of the equilibrium set. Indeed, it is possible for trajectories to approach the equilibrium set without any
trajectory approaching any single equilibrium [4].
Since communication links among multiagent systems are often unreliable due to multipath effects and exogenous

disturbances, the information exchange topologies in network systems are often dynamic. In particular, link failures or
creations in network multiagent systems result in switching of the communication topology. This is the case, for example,
if information between agents is exchanged by means of line-of-sight sensors that experience periodic communication
dropouts due to agent motion. Variation in network topology introduces control input discontinuities, which in turn give
rise to switched dynamical systems. In this case, the vector field defining the dynamical system is a discontinuous function
of the state and/or time, and hence, system stability should involve analysis of semistability of switched systems having a
continuum of equilibria.
Building on the results of [1,5], in this paper we develop semistability and uniform semistability analysis results for

switched linear systems. Since solutions to switched systems are a function of both the system initial conditions and
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the admissible switching signals, uniformity here refers to the convergence rate to a Lyapunov stable equilibrium as
the switching signal ranges over a given switching set. The main results of the paper involve sufficient conditions for
semistability and uniform semistability usingmultiple Lyapunov functions and sufficient regularity assumptions on the class
of switching signals considered. Specifically, usingmultiple Lyapunov functionswhose derivatives are negative semidefinite,
semistability of the switched linear system is established. If, in addition, the admissible switching signals have infinitely
many disjoint intervals of length bounded from below and above, uniform semistability can be concluded. Finally, we note
that the results of the present paper can be viewed as an extension of asymptotic stability results for switched linear systems
developed in [6,7,5].
Although the results of this paper are confined to linear systems, nonlinear semistability theory for switched dynamical

systems is considered in [8].

2. Switched dynamical systems

The notation used in this paper is fairly standard. Specifically, R denotes the set of real numbers, Z denotes the set of
integers, Z+ denotes the set of nonnegative integers, Z+ denotes the set of positive integers, C denotes the set of complex
numbers, Rn denotes the set of n × 1 real column vectors, Re λ denotes the real part of λ ∈ C, (·)T denotes the transpose,
and (·)D denotes the Drazin generalized inverse. For A ∈ Rn×m we write rank A to denote the rank of A, N (A) to denote
the null space of A, R(A) to denote the range space of A, and for A ∈ Rn×n we write spec (A) to denote the spectrum of A.
Furthermore, we write ‖ · ‖ for the Euclidean vector norm,Bε(α), α ∈ Rn, ε > 0, for the open ball centered at α with radius
ε, dist(p,M) for the distance from a point p to the setM, that is, dist(p,M) , infx∈M ‖p− x‖, and x(t)→M as t →∞ to
denote that x(t) approaches the setM, that is, for each ε > 0 there exists T > 0 such that dist(x(t),M) < ε for all t > T .
In this paper, we consider switched linear systems Gσ given by

ẋ(t) = Aσ(t)x(t), σ (t) ∈ S, x(0) = x0, t ≥ 0, (1)

where x(t) ∈ Rn, Aσ(t) ∈ Rn×n, σ : [0,∞) → P denotes a piecewise constant switching signal, and S denotes the set
of switching signals. The switching signal σ effectively switches the right-hand side of (1) by selecting different vector
fields from the parameterized family {Apx : p ∈ P }. The switching times of (1) refer to the time instants at which the
switching signal σ is discontinuous. Our convention here is that σ(·) is left-continuous, that is, σ(t−) = σ(t), where
σ(t−) , limh→0+ σ(t + h). The pair (x, σ ) : [0,∞) × S → Rn is a solution to the switched system (1) if x(·) is piecewise
continuously differentiable and satisfies (1) for all t ≥ 0. The set Sp[τ , T ], τ > 0, T ∈ [0,∞], denotes the set of signals σ for
which there is an infinite number of disjoint intervals of length no smaller than τ on which σ is constant, and consecutive
intervals with this property are separated by no more than T [5] (including the initial time). Finally, a point xe ∈ Rn is an
equilibrium point of (1) if and only if Aσ(t)xe = 0 for all σ(t) ∈ S and for all t ≥ 0.
We assume that the following assumption holds for (1).

Assumption 1.
⋂
p∈P N (Ap)− {0} 6= Ø.

Let E , {xe ∈ Rn : Aσ(t)xe = 0, σ (t) ∈ S, t ≥ 0}. Then E =
⋂
p∈P N (Ap) and E contains an element other than 0. It is

important to note that our results also hold for the case where
⋂
p∈P N (Ap) = {0}. However, due to space limitations, we

do not consider this case in the paper.

Definition 2.1. (i) An equilibrium point xe ∈ E of (1) is Lyapunov stable if for every switching signal σ ∈ S and every
ε > 0, there exists δ = δ(σ , ε) > 0 such that for all ‖x0 − xe‖ ≤ δ, ‖x(t)− xe‖ < ε for all t ≥ 0. An equilibrium point
xe ∈ E of (1) is uniformly Lyapunov stable if for every ε > 0, there exists δ = δ(ε) > 0 such that for all ‖x0 − xe‖ ≤ δ,
‖x(t)− xe‖ < ε for all t ≥ 0.

(ii) An equilibrium point xe ∈ E of (1) is semistable if for every switching signal σ ∈ S, xe is Lyapunov stable and there
exists δ = δ(σ ) > 0 such that for all ‖x0− xe‖ ≤ δ, limt→∞ x(t) = z and z ∈ E is a Lyapunov stable equilibrium point.
An equilibrium point xe ∈ E of (1) is uniformly semistable if xe is uniformly Lyapunov stable and there exists δ > 0 such
that for all ‖x0 − xe‖ ≤ δ, limt→∞ x(t) = z uniformly in σ and z ∈ E is a uniformly Lyapunov stable equilibrium point.

(iii) The switched system (1) is semistable if all the equilibrium points of (1) are semistable. The switched system (1) is
uniformly semistable if all the equilibrium points of (1) are uniformly semistable.

Next, we present the notion of semiobservability which plays a critical role in semistability analysis of linear dynamical
systems. For details, see [9].

Definition 2.2 ([9]). Let A ∈ Rn×n and C ∈ Rl×n. The pair (A, C) is semiobservable if

n⋂
k=1

N
(
CAk−1

)
= N (A). (2)
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Semiobservability is an extension of the classical notion of observability. In particular, semiobservability is an extension
of zero-state observability to equilibrium observability. For details, see [9]. The following lemmas and propositions are needed
for the main results of the paper.

Lemma 2.1. Let A ∈ Rn×n and C ∈ Rl×n. If the pair (A, C) is semiobservable, then

N (A) ∩N (C) = N (A). (3)

Proof. Note that, by definition of semiobservability, N (A) ∩ N (C) ⊆ N (A). Let x ∈ N (A). Then it follows from (2) that
Cx = 0, and hence,N (A) ⊆ N (A) ∩N (C). Thus, (3) holds. �

Lemma 2.2 ([10,9]). Consider the switched dynamical system (1). Assume that there exists a family {Pp : p ∈ P } of symmetric,
nonnegative-definite matrices such that, for every σ ∈ S,

0 = ATpPp + PpAp + Rp, p ∈ P , (4)

where Rp = CTpCp, Cp ∈ Rl×n, and the pair (Ap, Cp) is semiobservable for every p ∈ P and for an appropriately defined set of
symmetric, nonnegative-definite matrices {Rp : p ∈ P }. Then the following statements hold:

(i) N (Pp) ⊆ N (Ap) ⊆ N (Rp), p ∈ P .
(ii) N (Ap) ∩R(Ap) = {0}, p ∈ P .

Proposition 2.1. Consider the switched dynamical system (1). Assume that there exists a compact family {Pp : p ∈ P } of
symmetric, nonnegative-definite matrices such that, for every σ ∈ S, (4) holds, the pair (Ap, Cp) is semiobservable for every
p ∈ P and for an appropriately defined set of symmetric, nonnegative-definite matrices {Rp : p ∈ P }, and

xT(t)(Pσ(t) + LTσ(t)Lσ(t))x(t) ≤ x
T(t)(Pσ(t−) + L

T
σ(t−)Lσ(t−))x(t), t ≥ 0, (5)

where Lp , In − ApADp . Then (1) is Lyapunov stable. If, in addition, {Ap : p ∈ P } is a compact set, then (1) is uniformly Lyapunov
stable.

Proof. Let p ∈ P . Since, by Lemma 2.2,N (Ap)∩R(Ap) = {0}, it follows from Lemma 4.14 of [11] that Ap is group invertible.
Furthermore, since L2p = Lp, Lp is the unique n × n matrix satisfying N (Lp) = R(Ap), R(Lp) = N (Ap), and Lpx = x for all
x ∈ N (Ap).
Consider the multiple nonnegative functions

Vp(x) = xTPpx+ xTLTpLpx, p ∈ P , x ∈ Rn, (6)

where Pp satisfies (4). If Vp(x) = 0 for some x ∈ Rn, then Ppx = 0 and Lpx = 0. It follows from (i) of Lemma 2.2 that
x ∈ N (Ap), while Lpx = 0 implies x ∈ R(Ap). Now, it follows from (ii) of Lemma 2.2 that x = 0. Hence, the family of
functions Vp(·) are positive definite. Now, for every xe ∈ E , consider the multiple Lyapunov function candidates Vp(x− xe),
p ∈ P . Note that since Apxe = 0 for all p ∈ P , it follows that x(t)− xe, t ≥ 0, is also a solution of (1). Now, it follows from
(5) that

Vσ(t)(x(t)− xe) ≤ Vσ(t−)(x(t)− xe), t ≥ 0. (7)

Next, note that

V̇σ(t)(x(t)− xe) = −(x(t)− xe)TRσ(t)(x(t)− xe)+ 2(x(t)− xe)TLTσ(t)Lσ(t)Aσ(t)(x(t)− xe)

= −(x(t)− xe)TRσ(t)(x(t)− xe)

≤ 0, t ≥ 0. (8)

Now, it follows from Theorem 2.3 of [12] that (1) is Lyapunov stable. Finally, if {Ap : p ∈ P } is compact, then {LTpLp : p ∈ P }
is compact. Hence, it follows from Theorem 3 of [5] that (1) is uniformly Lyapunov stable. �

Proposition 2.2. Consider the switched dynamical system (1). Assume that every point in E is Lyapunov stable. Furthermore,
assume that for a given σ(t) ∈ S and x0 ∈ Rq, the trajectory of (1) satisfies x(t)→ E as t → ∞. Then x(t)→ z as t → ∞,
where z ∈ E . Alternatively, assume that every point in E is uniformly Lyapunov stable and for a given x0 ∈ Rq, the trajectory of
(1) satisfies x(t)→ E as t →∞ uniformly in σ(t) ∈ S. Then x(t)→ z as t →∞ uniformly in σ(t) ∈ S, where z ∈ E .

Proof. Let xe ∈ E . Choosing x0 sufficiently close to xe, it follows from Lyapunov stability of xe that the trajectories of (1)
starting sufficiently close to xe are bounded, and hence, there exists an increasing sequence {ti}∞i=1 such that limi→∞ x(ti)
exists. Next, since x(t) → E as t → ∞, it follows that limi→∞ x(ti) ∈ E . Let z , limi→∞ x(ti) ∈ E . We show that
limt→∞ x(t) = z. Note that, by assumption, z ∈ E is a Lyapunov stable equilibrium point. Let ε > 0 and note that since
z is Lyapunov stable, it follows that there exists δ > 0 such that x(t) ∈ Bε(z) for all x0 ∈ Bδ(z) and t ≥ 0. Next, since
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z = limi→∞ x(ti), it follows that there exists k ≥ 1 such that x(tk) ∈ Bδ(z). We claim that x(t) ∈ Bε(z) for all t ≥ tk.
Suppose, ad absurdum, x(t) 6∈ Bε(z) for some t ≥ tk. Then, by continuity of x(·), there exists τi > ti such that x(τi) 6∈ Bε(z)
for every i ≥ k. Namely, there exists a divergent sequence {τi}∞i=1 such that x(τi) 6∈ Bε(z) for all τi > tk. This contradicts the
Lyapunov stability of z. Since ε is arbitrary, it follows that z = limt→∞ x(t). The proof of the second assertion is similar and,
hence, is omitted. �

Lemma 2.3. Let A ∈ Rn×n. Assume that there exists a symmetric, nonnegative-definite matrix P ∈ Rn×n such that

0 = ATP + PA+ R, (9)

where R = CTC, C ∈ Rl×n, and the pair (A, C) is semiobservable. Then spec(A) ⊆ {λ ∈ C : Re λ < 0} ∪ {0} and, if 0 ∈ spec(A),
then 0 is semisimple. Alternatively, assume that there exists a symmetric, positive-definitematrix P ∈ Rn×n such that (9) holds and

rank
[
A− ȷωIn
C

]
= n (10)

for every nonzero ω ∈ R. Then spec(A) ⊆ {λ ∈ C : Re λ < 0} ∪ {0} and, if 0 ∈ spec(A), then 0 is semisimple.

Proof. Consider the dynamical system G given by ẋ = Ax. Then it follows from Theorem 2.2 of [9] that G is semistable.
Note that G is semistable if and only if the matrix A is semistable. Hence, it follows from (ii) of Definition 11.7.1 of [13] that
spec(A) ⊆ {λ ∈ C : Re λ < 0} ∪ {0} and, if 0 ∈ spec(A), then 0 is semisimple. The second assertion is a direct consequence
of Corollary 11.8.1 of [13]. �

Lemma 2.4. Let A ∈ Rn×n and C ∈ Rl×n. If rank A < n and the pair (A, C) is semiobservable, then there exists an invertible
matrix S ∈ Rn×n such that

S−1AS =
[

Â11 0(n−1)×1
[01×(n−3), 1, 01×1] 01×1

]
, CS =

[
Ĉ1 0l×1

]
, (11)

where Â11 ∈ R(n−1)×(n−1) and Ĉ1 ∈ Rl×(n−1). Furthermore, if rank A = n − 1 and the pair (A, C) is semiobservable, then there
exists an invertible matrix T ∈ Rn×n such that

T−1AT =

[A11 0(n−r−1)×r 0(n−r−1)×1
A21 A22 0r×1
A31 A32 01×1

]
, CT =

[
C1 0l×(r+1)

]
, (12)

where the pair (A11, C1) is observable, A22 is asymptotically stable, A11 ∈ R(n−r−1)×(n−r−1), A21 ∈ Rr×(n−r−1), A22 ∈ Rr×r ,
A31 ∈ R1×(n−r−1), A32 ∈ R1×r , [A31, A32] = [01×(n−3), 1, 01×1]U−1, U ∈ R(n−1)×(n−1) is nonsingular, and C1 ∈ Rl×(n−r−1).

Proof. Since rank A < n, it follows that 0 is an eigenvalue of A. Now, since the pair (A, C) is semiobservable, it follows from
Lemma 2.1 thatN (A) ∩N (C) = N (A), that is,

N

([
A
C

])
= N (A). (13)

Next, it follows from the real Jordan decomposition (Theorem 5.3.5 of [13]) that there exists an invertible matrix S ∈ Rn×n
such that

S−1AS =
[

Â11 0(n−1)×1
[01×(n−3), 1, 01×1] 01×1

]
, (14)

where Â11 ∈ R(n−1)×(n−1). Note thatN (AS) = N (S−1AS) and

N

([
AS
CS

])
= N (AS). (15)

Hence,

N

S [ Â11 0(n−1)×1
[01×(n−3), 1, 01×1] 01×1

]
[
Ĉ1 Ĉ2

]
 = N

([
Â11 0(n−1)×1

[01×(n−3), 1, 01×1] 01×1

])
, (16)

where [Ĉ1, Ĉ2] = CS. Now, it follows from (16) that Ĉ2 = 0l×1, which implies that (11) holds.
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To show the second assertion, consider the pair (Â11, Ĉ1). Then it follows from the Kalman decomposition (Proposition
12.9.11 of [13]) that there exists an invertible matrix U ∈ R(n−1)×(n−1) such that

U−1Â11U =
[
A11 0
A21 A22

]
, Ĉ1U =

[
C1 0

]
. (17)

Now, with

T , S
[

U 0(n−1)×1
01×(n−1) 1

]
(18)

and [A31, A32] , [01×(n−3), 1, 0]U−1, it follows that (12) holds. �

3. Semistability of switched linear systems

In this section, we present several sufficient conditions for semistability of switched linear systems.

Theorem 3.1. Consider the switched dynamical system (1). Assume that there exists a compact family {Pp : p ∈ P } of symmetric,
nonnegative-definite matrices such that, for every σ ∈ S, (4) and (5) hold, and the pair (Ap, Cp) is semiobservable for every p ∈ P
and for an appropriately defined compact set of matrices {Cp : p ∈ P }. Furthermore, assume that {Ap : p ∈ P } is compact. Then
the following statements hold:

(i) If S ⊂ Sp[τ , T ] for some τ > 0, 0 < T <∞, andN (Aσ(t)) ⊆
⋂
s∈[0,t]N (Aσ(s)), t ≥ 0, then (1) is uniformly semistable.

(ii) If S ⊂
⋃
τ>0,0<T≤∞ Sp[τ , T ] andN (Aσ(t)) ⊆

⋂
s∈[0,t]N (Aσ(s)), t ≥ 0, then (1) is semistable.

Proof. (i) It follows from Proposition 2.1 that (1) is uniformly Lyapunov stable. To show uniform semistability, it follows
from Proposition 2.2 that we need to show x(t)→ E as t →∞ uniformly in σ . Let σ ∈ S, let x(t), t ≥ 0, be a solution to
(1), and let T , {t1, τ1, t2, τ2, . . . , tk, τk} ⊂ (0, t) be an increasing sequence of time instants in the interval (0, t) such that
the lengths of the intervals [ti, τi) are no smaller than τ on which σ = pi and the intervals between these have length no
larger than T , that is, τi ≥ ti + τ for i ∈ {1, 2, . . . , k}, ti+1 ≤ τi + T for i ∈ {1, 2, . . . , k− 1}, t ≤ τk + T , and t1 ≤ T . Next, it
follows from Lemma 2.3 and Assumption 1 that spec(Ap) = {λ ∈ C : Re λ < 0} ∪ {0} and 0 is semisimple for every p ∈ P .
Now, it follows from Lemma 2.4 that there exists an invertible matrix Sp ∈ Rn×n such that, with [xTa, xs]

T
= Spx, (1) can be

transformed into the form[
ẋa
ẋs

]
=

[
Âp11 0(n−1)×1

[01×(n−3), 1, 01×1] 01×1

] [
xa
xs

]
, y =

[
Ĉp1 0l×1

] [xa
xs

]
, (19)

where xa ∈ Rn−1, xs ∈ R, and Âp11 is asymptotically stable. Since Âp11 is asymptotically stable, it follows that ‖eÂp11t‖ < 1
for every t > 0 and p ∈ P .
Let J be the set of all sequences p1, p2, . . . , pq ∈ P with length of at most dT/τe, where d·e is a ceiling function defined

by dxe , min{n ∈ Z : x ≤ n}. Define

µ , max
τ1∈[τ ,τ+T ]

max
τ2∈[τ ,τ+T ]

· · · max
τq∈[τ ,τ+T ]

max
J
‖eÂpq11τq · · · eÂp211τ2eÂp111τ1‖. (20)

Note that J is a finite set and [τ , τ + T ] is compact. Hence, it follows that

µ ≤ max
J

q∏
i=1

max
τi∈[τ ,τ+T ]

‖eÂpi11τi‖ < 1. (21)

Next, it follows from (20) that

‖eÂσ(ti)11(ti+1−ti)‖ ≤ µ, i ∈ {1, 2, . . . , k}. (22)

LetΦσ (t, s) denote the state transition matrix of ẋa = Âσ11xa and note that

Φσ (t, 0) = Φσ (t, tk)Φσ (tk, tk−1) · · ·Φσ (t1, 0), t > 0. (23)

If t < T + τ , then T = Ø. Hence, for t ≥ T + τ , it follows thatΦσ (ti+1, ti) = e
Âσ(ti)11(ti+1−ti), i ∈ {1, 2, . . . , k− 1}. Hence, it

follows from (22) and (23) that

‖Φσ (t, 0)‖ ≤ ‖Φσ (t, tk)‖ · ‖Φσ (tk, tk−1)‖ · · · ‖Φσ (t1, 0)‖ ≤ µk. (24)

Since xa(t) = Φσ (t, 0)xa(0) and 0 < µ < 1, it follows from (24) that limt→∞ xa(t) = 0. Furthermore, since t1 ≤ T , and µ
and k are independent of the switching signal σ , it follows that x(t)→ 0 as t →∞ uniformly in σ .
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Next, note that ẋs(t) = [01×(n−3), 1, 0]xa(t), t ≥ 0. Hence, xs(t) is continuously differentiable and limt→∞ ẋs(t) = 0
uniformly in σ . Thus, for every h > 0,

|xs(t + h)− xs(t)| ≤ h|ẋ(ξ)|, t < ξ < t + h, (25)

which implies that limt→∞ |xs(t+h)−xs(t)| = 0 uniformly in σ , and hence, limt→∞ xs(t) exists. Let limt→∞ xs(t) = αs ∈ R.
Now, since

x(ti + hi)− x(ti) = Sσ(ti)

[
xa(ti + hi)− xa(ti)
xs(ti + hi)− xs(ti)

]
, (26)

where 0 < hi < ti+1 − ti, i ∈ Z+, and {Sp : p ∈ P } is compact, it follows that limi→∞ ‖x(ti + hi)− x(ti)‖ = 0. Furthermore,
since for i ∈ Z+,

x(t−i+1)− x(ti) = Sσ(t−i+1)

[
xa(t−i+1)
xs(t−i+1)

]
− Sσ(ti)

[
xa(ti)
xs(ti)

]
= Sσ(ti)

[
xa(ti+1)− xa(ti)
xs(ti+1)− xs(ti)

]
,

it follows that limi→∞ ‖x(ti+1)− x(ti)‖ = 0. Hence, for every t ≥ 0 and h > 0, it follows that

x(t + h)− x(t) = x(t + h)− x(ti+j)+
j−1∑
k=0

x(ti+k)− x(ti+k−1)+ x(ti−1)− x(t), (27)

where ti−1 < t ≤ ti < ti+1 < · · · < ti+j < t + h ≤ ti+j+1. Hence,

‖x(t + h)− x(t)‖ ≤ ‖x(t + h)− x(ti+j)‖ +
j−1∑
k=0

‖x(ti+k)− x(ti+k−1)‖ + ‖x(t)− x(ti−1)‖,

which implies that limt→∞ ‖x(t + h)− x(t)‖ = 0, and hence, limt→∞ x(t) exists. Let limt→∞ x(t) = β ∈ Rn. Note that this
convergence is also uniform in σ .
Define zσ , S−1σ [01×(n−1), αs]

T. Then x(t) − zσ(t) = S−1σ(t)[x
T
a(t), xs(t) − αs]

T. Since the set {S−1p : p ∈ P } is compact, it
follows that there exists b > 0 such that ‖S−1p ‖ ≤ b for all p ∈ P . Hence,

‖x(t)− zσ(t)‖ ≤ b
∥∥∥∥[ xTa(t)
xs(t)− αs

]∥∥∥∥ , t ≥ 0, (28)

which implies that limt→∞ ‖β − zσ(t)‖ = 0. Hence, limt→∞ zσ(t) = β . Note that zσ ∈ N (Aσ ) for every σ ∈ S. Now, it
follows from N (Aσ(ti)) ⊆

⋂i
l=0N (Aσ(tl)), i ∈ Z+, that β ∈

⋂
∞

i=0N (Aσ(ti)) =
⋂
p∈P N (Ap) = E . Hence, x(t) → E as

t →∞, uniformly in σ . Finally, it follows from Proposition 2.2 that (1) is uniformly semistable.
(ii) It follows from Proposition 2.1 that (1) is Lyapunov stable. To show semistability, it follows from Proposition 2.2 that

we need to show x(t)→ E as t →∞. Let σ ∈ S and let x(t), t ≥ 0, be a solution to (1). Then σ ∈ Sp[τ , T ] for some τ > 0
and T ≤ ∞. However, τ and T are not uniform over all switching signals σ(·). If T = ∞, then it follows that there exists
a switching time instant tm < ∞ such that x(t) is continuously differentiable for all t > tm. In this case, it follows from
Lemma 2.3 that x(t)→ E as t →∞.
Now we consider the case where T <∞. Let T , {t1, τ1, t2, τ2, . . . , tk, τk} ⊂ (0, t) be as defined in (i). Next, it follows

from Lemma 2.4 that there exists an invertible matrix Tp ∈ Rn×n such that with [xTo, x
T
u, xs]

T
= Tpx, (1) can be transformed

into the form[ẋo
ẋu
ẋs

]
=

[Ap11 0(n−r−1)×r 0(n−r−1)×1
Ap21 Ap22 0r×1
Ap31 Ap32 01×1

][xo
xu
xs

]
, y =

[
Cp1 0l×(r+1)

] [xo
xu
xs

]
, (29)

where xo ∈ Rn−r−1, xu ∈ Rr , xs ∈ R, y ∈ Rl, the pair (Ap11, Cp1) is observable, and Ap22 is asymptotically stable. Since
(Ap11, Cp1) is observable, it follows from Lemma 1 of [14] that for λ, δ > 0 there exists a matrix Kp ∈ R(n−r−1)×l such that
‖e(Ap11+KpCp1)t‖ ≤ δe−λ(t−τ), t ≥ τ , p ∈ P .
Now, consider ẋo = (Aσ11 + KσCσ1)xo − Kσ y. First, we show that

∫
∞

0 ‖y(t)‖
2dt <∞. Note that it follows from (8) that

V̇σ(t)(x(t)) = −xT(t)CTσ(t)Cσ(t)x(t) = −‖y(t)‖
2. Hence,

∫
∞

0 ‖y(t)‖
2dt ≤ Vσ(0)(x(0)) <∞. Next, note that

xo(t) = e(Ap11+KpCp1)txo(τk)−
∫ t

τk

e(Ap11+KpCp1)(t−s)Kpy(s)ds, t ∈ [τk, tk+1). (30)

Hence, for every t ∈ [τk, tk+1), it follows from the Cauchy–Schwarz inequality that

‖xo(t)‖ ≤ δe−λ(t−τ)‖xo(τk)‖ + α
(∫ t

τk

‖y(s)‖2ds
)1/2

, (31)
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where α , (
∫
∞

0 ‖e
(Aσ11+Kσ Cσ1)sKσ‖2ds)1/2 < ∞ since {Ap : p ∈ P } and {Cp : p ∈ P } are compact. Since (1) is Lyapunov

stable, ‖xo(t)‖, t ≥ 0, is bounded.
Next, we show that limt→∞ xo(t) = 0. Suppose, ad absurdum, xo(t) 6→ 0 as t → ∞. Then limt→∞ xo(t) = ν 6= 0 or

lim inft→∞ xo(t) 6= lim supt→∞ xo(t). Note that τk was chosen so that τk → ∞ as t → ∞. Since
∫
∞

0 ‖y(t)‖
2dt < ∞,

it follows that limτk→∞
∫
∞

tk
‖y(t)‖2dt = 0. Hence, limt→∞

∫ t
τk
‖y(s)‖2ds = 0. Thus, if limt→∞ xo(t) = ν 6= 0, then by

taking the limit on both sides of (31), it follows that ‖ν‖ ≤ δ‖ν‖, which is a contradiction since δ is arbitrary. Next, let
a , lim inft→∞ ‖xo(t)‖ and b , lim supt→∞ ‖xo(t)‖ and note that 0 ≤ a < b < ∞. Choose an unbounded sequence
{ηn}

∞

n=1 with τk ≤ ηnk < tk+1 so that lim supn→∞ ‖xo(ηn)‖ = b. By taking t = ηnk in (31) and nk → ∞, it follows that
b ≤ δb, which is a contradiction since δ is arbitrary. Thus, limt→∞ xo(t) = 0.
Next, since U−1p [0, x

T
u]
T belongs to the unobservable subspace of the pair (Âp11, Ĉp1), where Up ∈ R(n−1)×(n−1) denotes the

Kalman transformationmatrix of the pair (Âp11, Ĉp1), and Âp11 and Ĉp1 are given by (19), it follows thatU−1p [0, x
T
u]
T belongs to

the smallest subspaceM that is Âp11-invariant1 for all p ∈ P and contains the unobservable subspaces of all pairs (Âp11, Ĉp1),
p ∈ P . Since Âp11 is a full rank matrix, it follows thatM = {0}. Hence, limt→∞ xu(t) = 0.
Note that[

Ap11 0(n−r−1)×r
Ap21 Ap22

]
∈ R(n−1)×(n−1) (32)

is a full rank matrix and [Ap31, Ap32] ∈ R1×(n−1). Then it follows that there exists gp ∈ R1×(n−1) such that

[Ap31, Ap32] = gp

[
Ap11 0(n−r−1)×r
Ap21 Ap22

]
. (33)

Hence,

ẋs(t) = [Ap31, Ap32]
[
xo(t)
xu(t)

]
= gp

[
Ap11 0(n−r−1)×r
Ap21 Ap22

] [
xo(t)
xu(t)

]
= gp

[
ẋo(t)
ẋu(t)

]
. (34)

Now, it follows that

xs(ti + hi)− xs(ti) = gσ(ti)

[
xo(ti + hi)− xo(ti)
xu(ti + hi)− xu(ti)

]
, 0 < hi ≤ ti+1 − ti, i ∈ Z+, (35)

which implies that limi→∞ |xs(ti + hi) − xs(ti)| = 0. Using similar arguments as in the proof of (i), it follows that
limt→∞ |x(t+h)− x(t)| = 0 for h > 0, and hence, limt→∞ xs(t) exists. The rest of the proof is similar to the proof of (i). �

Next, we present a stronger result for ensuring semistability for the switched linear system (1).

Theorem 3.2. Consider the switched dynamical system (1). Assume that there exists a compact family {Pp : p ∈ P } of symmetric,
positive-definite matrices such that, for every σ ∈ S, (4) holds and

xT(t)Pσ(t)x(t) ≤ xT(t)Pσ(t−)x(t), t ≥ 0, (36)

for every p ∈ P and for an appropriately defined compact set of matrices {Cp : p ∈ P }. Assume that {Ap : p ∈ P } is compact
and rank Ap < n for every p ∈ P . Furthermore, assume that there exists an invertible matrix Sp ∈ Rn×n, p ∈ P , such that (1)
can be transformed into (19). If S ⊂

⋃
τ>0,0<T<∞ Sp[τ , T ] andN (Aσ(t)) ⊆

⋂
s∈[0,t]N (Aσ(s)), t ≥ 0, then (1) is semistable.

Proof. The proof is similar to the proof of (ii) of Theorem 3.1 and, hence, is omitted. �

The next result uses the geometric (rank) condition given in Lemma 2.3 to develop a sufficient condition for semistability.

Theorem 3.3. Consider the switched dynamical system (1). Assume that there exists a compact family {Pp : p ∈ P } of symmetric,
positive-definite matrices such that, for every σ ∈ S, (4) and (36) hold, and

rank
[
Ap − ȷωIn
Cp

]
= n (37)

for every nonzero ω ∈ R and every p ∈ P , and for an appropriately defined compact set of matrices {Cp : p ∈ P }. Furthermore,
assume that {Ap : p ∈ P } is compact. Then the following statements hold:

(i) If S ⊂ Sp[τ , T ] for some τ > 0, 0 < T <∞, andN (Aσ(t)) ⊆
⋂
s∈[0,t]N (Aσ(s)), t ≥ 0, then (1) is uniformly semistable.

(ii) If S ⊂
⋃
τ>0,0<T<∞ Sp[τ , T ] andN (Aσ(t)) ⊆

⋂
s∈[0,t]N (Aσ(s)), t ≥ 0, then (1) is semistable.

1 Given a matrix A ∈ Rn×n , a subspaceM of Rn is A-invariant if and only if the state of ẋ(t) = Ax(t) starting at time τ is such that x(τ ) ∈ M, then
x(t) ∈M for all t ≥ τ .
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Proof. The proofs of Lyapunov stability and uniform Lyapunov stability are similar to the proof of Proposition 2.1 by
considering the family of Lyapunov functions Vp(x) = xTPpx. Next, it follows from Lemma 2.3 and Assumption 1 that
spec(Ap) = {λ ∈ C : Re λ < 0} ∪ {0} and 0 is semisimple for every p ∈ P . Now, the proofs of (i) and (ii) are similar
to the proofs of (i) and (ii) of Theorem 3.1, respectively. �

Finally, we develop sufficient conditions for semistability of switched linear systems involving less restrictive hypothesis
than those assumed in Theorems 3.1 and 3.3.

Theorem 3.4. Consider the switched dynamical system (1). Assume that there exists a compact family {Pp : p ∈ P } of symmetric,
positive-definite matrices such that, for every p ∈ P and σ ∈ S, (4) and (36) hold, and there exists an infinite sequence of
nonempty, bounded, nonoverlapping time-intervals [tij , tij+kj), i ∈ Z+, j ∈ Z+, where tk denotes the switching time instant, such
that the switching times tk satisfy tk+1 − tk ≥ τ > 0, k ∈ Z+, t0 , 0, with the property that across each such interval,

rank

[
Aσ(tij+`) − ȷω`In
Cσ(tij+`)

]
= n (38)

for all nonzero ω` ∈ R and every ` = 0, 1, . . . , kj − 1, and an appropriately defined compact set of matrices {Cp : p ∈ P }.
Furthermore, assume that {Ap : p ∈ P } is compact. If N (Aσ(ti)) ⊆

⋂i
l=0N (Aσ(tl)), i ∈ Z+, then (1) is semistable.

Proof. The proof of Lyapunov stability is similar to the proof of Proposition 2.1 by considering the family of Lyapunov
functions Vp(x) = xTPpx. Since Aσ is Lyapunov stable for σ ∈ S, it follows from (i) of Definition 11.7.1 of [13] that
spec(Aσ ) ⊆ {λ ∈ C : Re λ ≤ 0} and, if λ ∈ spec(Aσ ) and Re λ = 0, then λ is semisimple. Since, by assumption,⋂
p∈P N (Ap) − {0} 6= Ø, it follows that there exists z ∈ Rn, z 6= 0, such that Aσ(t)z = 0 for all t ≥ 0, which further

implies that 0 is a common eigenvalue of Aσ(t) for all t ≥ 0. Hence, 0 ∈ spec(Aσ ) and 0 is semisimple. Then, using similar
arguments as in the proof of Lemma 2.4, it follows that for every σ ∈ S there exists an invertible matrix Sσ ∈ Rn×n such
that the matrix Aσ can be transformed into the form

S−1σ Aσ Sσ =
[

Âσ11 0(n−1)×1
[01×(n−3), 1, 01×1] 01×1

]
, (39)

where Âσ11 ∈ R(n−1)×(n−1) is Lyapunov stable. Furthermore, since

rank

[
Aσ(tij+`) − ȷω`In
Cσ(tij+`)

]
= n (40)

for all nonzero ω` ∈ R and every ` = 0, 1, . . . , kj − 1, it follows from Lemma 2.3 that Âσ(tij+`)11 ∈ R(n−1)×(n−1),

` = 0, 1, . . . , kj − 1, is asymptotically stable. Since Âσ11 is Lyapunov stable, it follows from Proposition 11.2.3 of [13] that

‖eÂσ(ti)11(ti+1−ti)‖ ≤ 1, i ∈ Z+. (41)

Moreover, since Âσ(tij+`)11 ∈ R is asymptotically stable, it follows that ‖e
Âσ(tij+`)11

t
‖ < 1 for every t > 0 and ` = 0,

1, . . . , kj − 1.
Consider the switched dynamical system given by[

ẋa(t)
ẋs(t)

]
=

[
Âσ(t)11 0(n−1)×1

[01×(n−3), 1, 01×1] 01×1

] [
xa(t)
xs(t)

]
,

[
xa(0)
xs(0)

]
= Sσ(0)x(0), t ≥ 0. (42)

Clearly, [xTa(t), xs(t)]
T
= Sσ(t)x(t), where x(t) denotes the solution of (1). By assumption there exists a finite upper bound T

on the lengths of the intervals [tij , tij+kj) across which

rank

[
Aσ(tij+`) − ȷω`In
Cσ(tij+`)

]
= n (43)

for all nonzero ω` ∈ R and every ` = 0, 1, . . . , kj − 1. Since ti+1 − ti ≥ τ , i ≥ 0, it follows that kj ≤ dT/τe, j ≥ 1.
Let J be the set of all sequences p1, p2, . . . , pq ∈ P with length of at most dT/τe for which

rank

[
Aσ(tij+`) − ȷω`In
Cσ(tij+`)

]
= n (44)
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for all nonzero ω` ∈ R and every ` = 0, 1, . . . , kj − 1, and define

µ , max
τ1∈[τ ,T ]

max
τ2∈[τ ,T ]

· · · max
τq∈[τ ,T ]

max
J
‖eÂpq11 · · · eÂp211τ2eÂp111τ1‖. (45)

Note that since J is a finite set and [τ , T ] is compact, it follows that

µ ≤ max
J

q∏
i=1

max
τi∈[τ ,T ]

‖eÂpi11τi‖ < 1. (46)

Next, it follows from (45) that

‖e
Âσ(tij+kj−1)

(tij+kj−tij+kj−1)
· · · e

Âσ(tij+1)
(tij+2−tij+1)e

Âσ(tij )
(tij+1−tij )

‖ ≤ µ, j ≥ 1. (47)

Furthermore, note that

e
Âσ(tij+1−1)

(tij+1−tij+1−1)
· · · e

Âσ(tij+1)
(tij+2−tij+1)e

Âσ(tij )
(tij+1−tij )

=

(
e
Âσ(tij+1−1)

(tij+1−tij+1−1)
· · · e

Âσ(tij+kj )
(tij+kj+1−tij+kj )

)
×

(
e
Âσ(tij+kj−1)

(tij+kj−tij+kj−1)
· · · e

Âσ(tij+1)
(tij+2−tij+1)e

Âσ(tij )
(tij+1−tij )

)
. (48)

Then it follows from (41) and (47) that

‖e
Âσ(tij+1−1)

(tij+1−tij+1−1)
· · · e

Âσ(tij+1)
(tij+2−tij+1)e

Âσ(tij )
(tij+1−tij )

‖ ≤ µ, j ≥ 1. (49)

Now, it follows from (49) that

‖xa(tij+1)‖ ≤ µ‖xa(tij)‖, j ≥ 1. (50)

Hence, ‖xa(tij)‖ ≤ µ
j−1
‖xa(ti1)‖, which implies that limt→∞ xa(t) = 0. Furthermore, note that ẋs(t) = [01×(n−3), 1, 0]xa(t),

t ≥ 0. Hence, xs(·) is continuously differentiable and limt→∞ ẋs(t) = 0. Thus, for every h > 0,

|xs(t + h)− xs(t)| ≤ h|ẋ(ξ)|, t < ξ < t + h, (51)

which implies that limt→∞ |xs(t + h)− xs(t)| = 0, and hence, limt→∞ xs(t) exists. Let limt→∞ xs(t) = αs ∈ R.
Next, since

x(ti + hi)− x(ti) = Sσ(ti)

[
xa(ti + hi)− xa(ti)
xs(ti + hi)− xs(ti)

]
, (52)

where 0 < hi < ti+1 − ti, i ∈ Z+, and {Sp : p ∈ P } is compact, it follows that limi→∞ ‖x(ti + hi)− x(ti)‖ = 0. Furthermore,
since

x(t−i+1)− x(ti) = Sσ(t−i+1)

[
xa(t−i+1)
xs(t−i+1)

]
− Sσ(ti)

[
xa(ti)
xs(ti)

]
= Sσ(ti)

[
xa(ti+1)− xa(ti)
xs(ti+1)− xs(ti)

]
, (53)

i ∈ Z+, it follows that limi→∞ ‖x(ti+1)− x(ti)‖ = 0. Hence, for every t ≥ 0 and h > 0, it follows that

x(t + h)− x(t) = x(t + h)− x(ti+j)+
j−1∑
k=0

x(ti+k)− x(ti+k−1)+ x(ti−1)− x(t), (54)

where ti−1 < t ≤ ti < ti+1 < · · · < ti+j < t + h ≤ ti+j+1. Hence,

‖x(t + h)− x(t)‖ ≤ ‖x(t + h)− x(ti+j)‖ +
j−1∑
k=0

‖x(ti+k)− x(ti+k−1)‖ + ‖x(t)− x(ti−1)‖,

which implies that limt→∞ ‖x(t + h)− x(t)‖ = 0, and hence, limt→∞ x(t) exists. Let limt→∞ x(t) = β ∈ Rn.
Define zσ , S−1σ [01×(n−1), αs]

T. Then x(t) − zσ(t) = S−1σ(t)[x
T
a(t), xs(t) − αs]

T. Since the set {S−1p : p ∈ P } is compact, it
follows that there exists b > 0 such that ‖S−1p ‖ ≤ b for all p ∈ P . Hence,

‖x(t)− zσ(t)‖ ≤ b
∥∥∥∥[ xTa(t)
xs(t)− αs

]∥∥∥∥ , t ≥ 0, (55)



352 Q. Hui, W.M. Haddad / Nonlinear Analysis: Hybrid Systems 3 (2009) 343–353

Fig. 1. State trajectories versus time.

which implies that limt→∞ ‖β − zσ(t)‖ = 0. Hence, limt→∞ zσ(t) = β . Note that zσ ∈ N (Aσ ) for every σ ∈ S. Now, it
follows from N (Aσ(ti)) ⊆

⋂i
l=0N (Aσ(tl)), i ∈ Z+, that β ∈

⋂
∞

i=0N (Aσ(ti)) =
⋂
p∈P N (Ap) = E . Hence, x(t) → E as

t →∞. Finally, it follows from Proposition 2.2 that (1) is semistable. �

Theorem 3.5. Consider the switched dynamical system (1). Assume that there exists a compact family {Pp : p ∈ P } of symmetric,
positive-definite matrices such that, for every p ∈ P and σ ∈ S, (4) and (36) hold, and there exists an infinite sequence of
nonempty, bounded, nonoverlapping time-intervals [tij , tij+kj), i ∈ Z+, j ∈ Z+, where tk denotes switching time instants, such
that the switching times tk satisfy tk+1 − tk ≥ τ > 0, k ∈ Z+, t0 , 0, with the property that across each such interval the
pair (Aσ(tij+`), Cσ(tij+`)) is semiobservable for every ` = 0, 1, . . . , kj − 1 and an appropriately defined compact set of matrices

{Cp : p ∈ P }. Furthermore, assume that {Ap : p ∈ P } is compact. If N (Aσ(ti)) ⊆
⋂i
l=0N (Aσ(tl)), i ∈ Z+, then (1) is semistable.

Proof. Note that since the pair (Aσ(tij+`), Cσ(tij+`)) is semiobservable for every ` = 0, 1, . . . , kj−1, it follows from Lemma 2.3

that Âσ(tij+`) in (39) is asymptotically stable. Now, the rest of the proof is similar to the proof of Theorem 3.4. �

4. Illustrative numerical example

In this section, we present an example to demonstrate the proposed approach. Specifically, consider the two-agent
network consensus problem given by the switched linear system (1) where Ap is given by [1]

Ap = p2
[
−1 1
1 −1

]
, (56)

where p ∈ P = {1, 2}. Note that
⋂
p∈P N (Ap) − {0} = {(x1, x2) ∈ R2 : x1 = x2 = α, α 6= 0, α ∈ R} and

E = {(x1, x2) ∈ R2 : x1 = x2 = α, α ∈ R}. Let
Cp = p[1,−1]. (57)

It is easy to verify that (4) holds with

Pp =
1
2

[
1 0
0 1

]
. (58)

Furthermore, note thatN (Cp) ∩N (Ap) = N (Ap), and hence, the pair (Ap, Cp) is semiobservable.
Next, let V (x) = 1

2x
Tx. Then V̇ (x) = 0 for all x ∈ R2, and hence, (36) holds. Clearly,N (Aσ(t)) ⊆

⋂
s∈[0,t]N (Aσ(s)). Thus, if

we take the switching time instant to be tk = k, k ∈ Z+, then it follows from Theorem 3.1 that (1) is semistable. Fig. 1 shows
the state trajectories versus time for x(0) = [4,−2].

5. Conclusion

This paper extends the notions of uniform asymptotic stability of switched linear systems to uniform semistability of
switched linear systems. In particular, semistability and uniform semistability are established using multiple Lyapunov
functions. In Part II of this paper [8] we extend this theory to nonlinear switched systems.
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