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Summary

In this paper, we derive stability margins for optimal and inverse optimal
stochastic feedback regulators. Specifically, gain, sector, and disk margin guaran-
tees are obtained for nonlinear stochastic dynamical systems controlled by non-
linear optimal and inverse optimal Hamilton-Jacobi-Bellman controllers that
minimize a nonlinear-nonquadratic performance criterion with cross-weighting
terms. Furthermore, using the newly developed notion of stochastic dissipa-
tivity, we derive a return difference inequality to provide connections between
stochastic dissipativity and optimality of nonlinear controllers for stochastic
dynamical systems. In particular, using extended Kalman-Yakubovich-Popov
conditions characterizing stochastic dissipativity, we show that our optimal
feedback control law satisfies a return difference inequality predicated on the
infinitesimal generator of a controlled Markov diffusion process if and only if
the controller is stochastically dissipative with respect to a specific quadratic
supply rate.
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1 INTRODUCTION

In a recent paper by Rajpurohit and Haddad,1 the authors presented a framework for analyzing and designing feed-
back controllers for nonlinear stochastic dynamical systems. Specifically, a stochastic feedback control problem over
an infinite horizon involving a nonlinear-nonquadratic performance functional was considered and the performance
functional was evaluated in closed form as long as the nonlinear-nonquadratic cost functional considered was related
in a specific way to an underlying Lyapunov function that guarantees asymptotic stability in probability of the non-
linear closed-loop system. Furthermore, the Lyapunov function was shown to be the solution of the steady-state
stochastic Hamilton-Jacobi-Bellman equation. The overall framework provides the foundation for extending stochastic
linear-quadratic control to nonlinear-nonquadratic problems.

The approach in the work of the aforementioned authors1 focused on the role of the Lyapunov function guaran-
teeing stochastic stability of the closed-loop system and its connection to the steady-state solution of the stochastic
Hamilton-Jacobi-Bellman equation characterizing the optimal nonlinear feedback controller. In order to avoid the com-
plexity in solving the stochastic steady-state, Hamilton-Jacobi-Bellman equation, we do not attempt to minimize a given
given cost functional, but rather, we parameterize a family of stochastically stabilizing controllers that minimizes a derived
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cost functional that provides the flexibility in specifying the control law. This corresponds to addressing an inverse optimal
stochastic control problem.1-9

The inverse optimal control design approach provides a framework for constructing the Lyapunov function for the
closed-loop system that serves as an optimal value function and, as shown in Freeman and Kokotović6 and Sepulchre et al7

for deterministic systems, achieves desired stability margins. Specifically, nonlinear inverse optimal controllers that min-
imize a meaningful (in the terminology of the aforementioned works6,7) nonlinear-nonquadratic performance criterion
involving a nonlinear-nonquadratic nonnegative-definite function of the state and a quadratic positive-definite function
of the feedback control are shown to possess sector margin guarantees to component decoupled input nonlinearities in
the conic sector ( 1

2
,∞).

Using the framework developed in Rajpurohit and Haddad,1 in this paper, we derive stability margins for opti-
mal and inverse optimal nonlinear stochastic feedback regulators. Specifically, sufficient conditions for gain, sector,
and disk margin guarantees are obtained for nonlinear stochastic dynamical systems controlled by nonlinear optimal
and inverse optimal Hamilton-Jacobi-Bellman controllers that minimize a nonlinear-nonquadratic performance crite-
rion with cross-weighting terms. In the case where the cross-weighting term in the performance criterion is deleted
our results recover the gain, sector, and disk margins for the deterministic optimal control problem presented in
Sepulchre et al.7

Alternatively, retaining the cross-terms in the performance criterion and specializing the optimal nonlinear-
nonquadratic problem to a stochastic linear-quadratic problem with a multiplicative noise disturbance, our results
recover the analogous gain and phase margins for the deterministic linear-quadratic optimal control problem given in
Chung et al.10 Even though the inclusion of cross-weighting terms in the performance criterion is shown to degrade gain,
sector, and disk margins, the extra flexibility provided by the cross-weighting terms makes it possible to guarantee opti-
mal and inverse optimal nonlinear controllers that may be far superior in terms of transient performance over meaningful
inverse optimal controllers.

Finally, using the newly developed notion of stochastic dissipativity11,12 for controlled Markov diffusion processes char-
acterized via extended Kalman-Yakubovich-Popov conditions in terms of the drift and diffusion dynamics developed in
Rajpurohit and Haddad,12 we provide explicit connections between stochastic stability margins, stochastic meaningful
inverse optimality, and stochastic dissipativity with respect to a specific quadratic supply rate. In particular, we derive
a stochastic counterpart to the classical return difference inequality for continuous-time systems with continuously
differentiable flows3,13 for stochastic dynamical systems and provide connections between stochastic dissipativity and
optimality for stochastic nonlinear controllers. In particular, we show an equivalence between stochastic dissipativity and
optimality holds for stochastic dynamical systems. Specifically, we show that an optimal nonlinear feedback controller
𝜙(x) satisfying a return difference condition predicated on the infinitesimal generator of a controlled Markov diffusion
process is equivalent to the fact that the stochastic dynamical system with input u and output y = −𝜙(x) is stochastically
dissipative with respect to a supply rate of the form [u + y]T[u + y] − uTu.

2 NOTATION, DEFINITIONS, AND MATHEMATICAL PRELIMINARIES

In this section, we establish notation, definitions, and review some basic results on stability of nonlinear stochastic dynam-
ical systems.14-18 Specifically, R denotes the set of real numbers, R+ denotes the set of positive real numbers, R+ denotes
the set of nonnegative numbers, Z+ denotes the set of positive integers, Rn denotes the set of n × 1 real column vectors,
and Rn×m denotes the set of n × m real matrices. We write 𝜀(x) for the open ball centered at x with radius 𝜀, || · || for
the Euclidean vector norm or an induced matrix norm (depending on context), 𝜎max(·) (respectively, 𝜎min(·)) for the max-
imum (respectively, minimum) singular value, M ≥ 0 (respectively, M > 0) to denote that the Hermitian matrix M is
nonnegative (respectively, positive) definite, AT for the transpose of the matrix A, and In or I for the n× n identity matrix.
Furthermore, 𝔅n denotes the 𝜎-algebra of Borel sets in  ⊆ Rn and 𝔖 denotes a 𝜎-algebra generated on a set  ⊆ Rn.

We define a complete probability space as (Ω, ,P), where Ω denotes the sample space,  denotes a 𝜎-algebra, and P

defines a probability measure on the 𝜎-algebra ; that is,P is a nonnegative countably additive set function on  such that
P(Ω) = 1.16 Furthermore, we assume that w(·) is a standard d-dimensional Wiener process defined by (w(·),Ω, ,Pw0 ),
where Pw0 is the classical Wiener measure,17p10 with a continuous-time filtration {t}t≥0 generated by the Wiener process
w(t) up to time t. We denote by  a stochastic dynamical system generating a filtration {t}t≥0 adapted to the stochastic
process x ∶ R+ × Ω →  on (Ω, ,Px0) satisfying 𝜏 ⊂ t, 0 ≤ 𝜏 < t, such that {𝜔 ∈ Ω ∶ x(t, 𝜔) ∈ } ∈ t, t ≥ 0, for all
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Borel sets  ⊂ Rn contained in the Borel 𝜎-algebra 𝔅n. Here, we use the notation x(t) to represent the stochastic process
x(t, 𝜔) omitting its dependence on 𝜔.

We denote the set of equivalence classes of measurable, integrable, and square-integrable Rn or Rn×m (depending on
context) valued random processes on (Ω, ,P) over the semi-infinite parameter space [0,∞) by 0(Ω, ,P), 1(Ω, ,P),
and 2(Ω, ,P), respectively, where the equivalence relation is the one induced by P-almost-sure equality. In particular,
elements of 0(Ω, ,P) take finite values P-almost surely (a.s.). Hence, depending on the context, Rn will denote either
the set of n × 1 real variables or the subspace of 0(Ω, ,P) comprising of Rn random processes that are constant a.s. All
inequalities and equalities involving random processes on (Ω, ,P) are to be understood to hold P-a.s. Furthermore, E[·]
and Ex0[·] denote, respectively, the expectation with respect to the probability measure P and with respect to the classical
Wiener measure Px0 .

A stochastic process x ∶ R+ × Ω →  on (Ω, ,Px0 ) is called a martingale with respect to the filtration {t}t≥0 if and
only if x(t) is a t-measurable random vector for all t ≥ 0, E[x(t)] < ∞, and x(𝜏) = E[x(t)|𝜏] for all t ≥ 𝜏 ≥ 0,
where, for a given x ∈ 1(Ω, ,P) and a 𝜎-algebra  ⊆  , E[x|] denotes conditional expectation with all moments taken
under the measure P. If we replace the equality in the aforementioned equation with “≤” (respectively, “≥”), then x(·) is
a supermartingale (respectively, submartingale). A random variable 𝜏 ∶ Ω → [0,∞] is called a stopping time with respect
to t if and only if {𝜔 ∈ Ω ∶ 𝜏(𝜔) ≤ t} ∈ t, t ≥ 0.

Finally, we write tr(·) for the trace operator, (·)−1 for the inverse operator, V ′(x) ≜ 𝜕V(x)
𝜕x

for the Fréchet derivative of V at
x, V ′′(x) ≜ 𝜕2V(x)

𝜕x2 for the Hessian of V at x, and n for the Hilbert space of random vectors x ∈ Rn, ie, n ≜ {x ∶ Ω → Rn}.
For an open set  ⊆ Rn, 

n ≜ {x ∈ n ∶ x ∶ Ω → } denotes the set of all the random vectors in n induced by
. Similarly, for every x0 ∈ Rn, x0

n ≜ {x ∈ n ∶ x
a.s.
= x0}. Furthermore, C2 denotes the space of real-valued functions

V ∶  → R that are two-times continuously differentiable with respect to x ∈  ⊆ Rn.
Consider the nonlinear stochastic dynamical system  given by

dx(t) = 𝑓 (x(t))dt + D(x(t))dw(t), x(t0)
a.s.
= x0, t ≥ t0, (1)

where, for every t ≥ t0, x(t) ∈ 
n is a t-measurable random state vector, x(t0) ∈ x0

n ,  ⊆ Rn is an open set with
0 ∈ , w(t) is a d-dimensional independent standard Wiener process (ie, Brownian motion) defined on a complete filtered
probability space (Ω, , {t}t≥t0 ,P), x(t0) is independent of (w(t) − w(t0)), t ≥ t0, and 𝑓 ∶  → Rn and D ∶  → Rn×d

are continuous functions and satisfy f (0) = 0 and D(0) = 0. The filtered probability space (Ω, , {t}t≥t0 ,P) is clearly a
real vector space with addition and scalar multiplication defined componentwise and pointwise. A Rn-valued stochastic
process x ∶ [t0, 𝜏] × Ω →  is said to be a solution of (1) on the time interval [t0, 𝜏] with initial condition x(t0)

a.s.
= x0 if x(·)

is progressively measurable (ie, x(·) is nonanticipating and measurable in t and 𝜔) with respect to the filtration {t}t≥t0 ,
𝑓 ∈ 1(Ω, ,P), D ∈ 2(Ω, ,P), and

x(t) = x0 + ∫
t

t0

𝑓 (x(s))ds + ∫
t

t0

D(x(s))dw(s) a.s., t ∈ [t0, 𝜏], (2)

where the integrals in (2) are Itô integrals.
Note that, for each fixed t ≥ t0, the random variable 𝜔 → x(t, 𝜔) assigns a vector x(𝜔) to every outcome 𝜔 ∈ Ω of an

experiment, and for each fixed 𝜔 ∈ Ω, the mapping t → x(t, 𝜔) is the sample path of the stochastic process x(t), t ≥ t0. A
pathwise solution t → x(t) of (1) in (Ω, {t}t≥t0 ,P

x0 ) is said to be right maximally defined if x cannot be extended (either
uniquely or nonuniquely) forward in time. We assume that all right maximal pathwise solutions to (1) in (Ω, {t}t≥t0 ,P

x0)
exist on [t0,∞), and hence, we assume that (1) is forward complete. Sufficient conditions for forward completeness or
global solutions of (1) are given in Corollary 6.3.5 in the work of Arnold.16

Furthermore, we assume that 𝑓 ∶  → Rn and D ∶  → Rn×d satisfy the uniform Lipschitz continuity condition

||𝑓 (x) − 𝑓 (𝑦)|| + ||D(x) − D(𝑦)||F ≤ L||x − 𝑦||, x, 𝑦 ∈ , (3)

and the growth restriction condition

||𝑓 (x)||2 + ||D(x)||2F ≤ L2(1 + ||x||2), x ∈ , (4)
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for some Lipschitz constant L > 0, and hence, since x(t0) ∈ 
n and x(t0) are independent of (w(t)−w(t0)), t ≥ t0, it follows

that there exists a unique solution x ∈ 2(Ω, ,P) of (1) in the following sense. For every x ∈ 
n ⧵{0}, there exists 𝜏x > 0

such that if x1 ∶ [t0, 𝜏1] × Ω →  and x2 ∶ [t0, 𝜏2] × Ω →  are two solutions of (1); that is, if x1, x2 ∈ 2(Ω, ,P), with
continuous sample paths a.s., solve (1), and then 𝜏x ≤ min{𝜏1, 𝜏2} and P(x1(t) = x2(t), t0 ≤ t ≤ 𝜏x) = 1.

A weaker sufficient condition for the existence of a unique solution to (1) using a notion of (finite or infinite) escape
time under the local Lipschitz continuity condition (3) without the growth condition (4) is given in Wu et al.19 More-
over, the unique solution determines a Rn-valued, time-homogeneous Feller continuous Markov process x(·), and hence,
its stationary Feller transition probability function is given by (see Theorem 3.4 of Khasminskii18 and Theorem 9.2.8
of Arnold16)

P(x(t) ∈  ∶ x(t0)
a.s.
= x0) = P(t − t0, x0, 0,), x0 ∈ R

n, (5)

for all t ≥ t0 and all Borel subsets  of Rn, where P(s, x, t,), t ≥ s, denotes the probability of transition of the point
x ∈ Rn at time instant s into the set  ⊂ Rn at time instant t. Finally, recall that every continuous process with Feller
transition probability function is also a strong Markov process.18p101

Definition 1 (See Definition 7.7 of Øksendal17). Let x(·) be a time-homogeneous Markov process in 
n and let V ∶

 → R. Then, the infinitesimal generator  of x(t), t ≥ t0, with x(t0)
a.s.
= x0, is defined by

V(x0) ≜ lim
t→0+

Ex0 [V(x(t))] − V(x0)
t

, x0 ∈ . (6)

If V ∈ C2 and has a compact support, and x(t), t ≥ t0, satisfies (1), then the limit in (6) exists for all x ∈  and the
infinitesimal generator  of x(t), t ≥ t0, can be characterized by the system drift and diffusion functions f (x) and D(x)
defining the stochastic dynamical system (1) and is given by (see Theorem 7.9 of Øksendal17)

V(x) ≜ 𝜕V(x)
𝜕x

𝑓 (x) + 1
2

tr DT(x)𝜕
2V(x)
𝜕x2 D(x), x ∈ . (7)

The following definition introduces the notions of Lyapunov and asymptotic stability in probability. Recall that an
equilibrium point xe = 0 of (1) is a point such that f (0) = 0 and D(0) = 0. In this case, xe = 0 is an equilibrium point of (1)
if and only if the zero solution (ie, the zero stochastic process), x(·)

a.s.
= 0 is a solution of (1).

Definition 2 (Kushner14). (i) The zero solution x(t)
a.s.≡ 0 to (1) is Lyapunov stable in probability if, for every 𝜀 > 0 and

𝜌 ∈ (0, 1), there exist 𝛿 = 𝛿(𝜌, 𝜀) > 0 such that, for all x0 ∈ 𝛿(0),

P
x0

(
sup
t≥t0

||x(t)|| > 𝜀

)
≤ 𝜌. (8)

(ii) The zero solution x(t)
a.s.≡ 0 to (1) is locally asymptotically stable in probability if it is Lyapunov stable in probability

and, for every 𝜌 ∈ (0, 1), there exist 𝛿 = 𝛿(𝜌) > 0 such that, for all x0 ∈ 𝛿(0),

P
x0

(
lim
t→∞

||x(t)|| = 0
) ≥ 1 − 𝜌. (9)

(iii) The zero solution x(t)
a.s.≡ 0 to (1) is globally asymptotically stable in probability if it is Lyapunov stable in

probability and, for all x0 ∈ Rn,

P
x0

(
lim
t→∞

||x(t)|| = 0
)
= 1. (10)

Remark 1. A more general stochastic stability notion can also be introduced here involving stochastic stability and
convergence to an invariant (stationary) distribution. In this case, state convergence is not to an equilibrium point
but rather to a stationary distribution. This framework can relax the vanishing perturbation assumption D(0) = 0 and
requires a more involved analysis and synthesis framework showing stability of the underlying Markov semigroup.20
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Finally, we provide sufficient conditions for local and global asymptotic stability in probability for the nonlinear
stochastic dynamical system (1).

Theorem 1 (See Theorem 5.3 and Corollary 5.1 of Khasminskii18). Consider the nonlinear stochastic dynamical
system (1) and assume that there exists a two-times continuously differentiable function V ∶  → R such that

V(0) = 0, (11)

V(x) > 0, x ∈ , x ≠ 0, (12)

𝜕V(x)
𝜕x

𝑓 (x) + 1
2

tr DT(x)𝜕
2V(x)
𝜕x2 D(x) ≤ 0, x ∈ . (13)

Then, the zero solution x(t)
a.s.≡ to (1) is Lyapunov stable in probability. If, in addition,

𝜕V(x)
𝜕x

𝑓 (x) + 1
2

tr DT(x)𝜕
2V(x)
𝜕x2 D(x) < 0, x ∈ , x ≠ 0, (14)

then the zero solution x(t)
a.s.≡ 0 to (1) is asymptotically stable in probability. Moreover, if  = Rn and V(·) is radially

unbounded, then the zero solution x(t)
a.s.≡ 0 to (1) is globally asymptotically stable in probability.

3 DISSIPATIVITY THEORY FOR STOCHASTIC SYSTEMS

In this section, we present several key results on stochastic dissipativity developed in Wu et al11 and Rajpurohit and
Haddad12 that are necessary for the main results of this paper. Specifically, we consider nonlinear stochastic dynamical
systems  of the form

dx(t) = F(x(t),u(t))dt + D(x(t),u(t))dw(t), x(t0)
a.s.
= x0, t ≥ t0, (15)

𝑦(t) = H(x(t),u(t)), (16)

where, for every t ≥ t0, x(t) ∈ 
n ,  is an open set with 0 ∈ , u(t) ∈ U

m , U ⊆ Rm, 𝑦(t) ∈ Y
l , Y ⊆ Rl, F ∶ ×U → Rn,

D ∶  × U → Rn×d, and H ∶  × U → Y . For the dynamical system  given by (15) and (16) defined on the state
space 

n ,  and  define an input and output space, respectively, consisting of measurable bounded U
m-valued and

Y
l -valued stochastic processes on the semi-infinite interval [0,∞). The set U

m contains the set of input values with
measurable sample paths satisfying a nonanticipativity condition, ie, for every u(·) ∈  and t ∈ [t0,∞), u(t) ∈ U

m , and
for all t ≥ s, w(t) − w(s) is independent of u(𝜏),w(𝜏), 𝜏 ≤ s, and x(t0). The set Y

l contains the set of output values, ie,
for every 𝑦(·) ∈  and t ∈ [0,∞), 𝑦(t) ∈ Y

l . The spaces  and  are assumed to be closed under the shift operator, ie, if
u(·) ∈  (respectively, 𝑦(·) ∈ ), then the function defined by uT ≜ u(t + T) (respectively, 𝑦T ≜ 𝑦(t + T)) is contained in
 (respectively, ) for all T ≥ 0.

Furthermore, for the nonlinear stochastic dynamical system , we assume that the conditions for existence and unique-
ness of solutions are satisfied, ie, u(·) satisfies sufficient regularity conditions such that the system (15) has a unique
solution forward in time. Specifically, we assume that the control process u(·) in (15) is restricted to the class of admissi-
ble controls consisting of measurable functions u(·) adapted to the filtration {t}t≥t0 such that u(·) is nonanticipative and
takes values in a compact metrizable set  . Furthermore, we assume the uniform Lipschitz continuity and growth condi-
tions (3) and (4) hold for the controlled drift and diffusion terms F(x,u) and D(x,u) uniformly in u. In this case, it follows
from Theorem 2.2.4 of Arapostathis et al21 that there exists a pathwise unique solution to (15) in (Ω, {t≥t0},P

x0).
For the stochastic dynamical system  given by (15) and (16), a function r ∶ U

m × Y
l → 1 such that r(0, 0)

a.s.
= 0 is

called a supply rate if r(u(t), y(t)) is locally Lebesgue integrable for all input-output pairs satisfying (15) and (16), ie, for all
input-output pairs u(·) ∈  and 𝑦(·) ∈  satisfying (15) and (16), r(·, ·) satisfies E[∫ t2

t1
|r(u(s), 𝑦(s))|ds] < ∞, t1, t2 ≥ 0.

Definition 3. A stochastic dynamical system  of the form (15) and (16) is stochastically dissipative with respect to the
supply rate r(u, y) if there exists a measurable and nonnegative function Vs ∶  → R, called a storage function for ,
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such that Vs(0) = 0 and Vs(x(t)) − ∫ t
t0

r(u(s), 𝑦(s))ds, t ≥ t0, is a t-supermartingale for all t0, t ≥ 0, where x(t), t ≥ t0,
is the solution of (15) with u(·) ∈  ; or, equivalently,

E[Vs(x(t))|𝜏0] ≤ Vs(x(𝜏0)) + E

[
∫

𝜏

𝜏0

r(u(s), 𝑦(s))ds
|||||𝜏0

]
, 𝜏

a.s.≥ 𝜏0, (17)

where 𝜏 and 𝜏0 are finite t-stopping times.

Definition 4. A nonlinear stochastic dynamical system  is completely stochastically reachable if, for all x0 ∈  ⊆ Rn

and 𝜀 > 0, there exist a finite random variable 𝜏𝜀(x0)
a.s.≥ 0, called the first hitting time, defined by 𝜏𝜀(x0)(𝜔) ≜ inf{t ≥

0 ∶ x(t, 𝜔) ∈ 𝜀(x0)}, and a square integrable input u(t) defined on [0, 𝜏𝜀(x0)] such that the state x(t), t ≥ 0, can be
driven from x(0)

a.s.
= 0 to x(𝜏𝜀(x0)) and E[𝜏x0] < ∞, where 𝜏x0 ≜ sup𝜀>0𝜏𝜀(x0) and the supremum is taken pointwise. A

nonlinear stochastic dynamical system  is zero-state observable if u(t)
a.s.≡ 0 and 𝑦(t)

a.s.≡ 0 implies x(t)
a.s.≡ 0.

If Vs(·) is two-times continuously differentiable, then an equivalent statement for the stochastic dissipativeness of 
with respect to the supply rate r(u, y) can be characterized by the infinitesimal generator .

Proposition 1 (Wu et al11 and Rajpurohit and Haddad12). Consider the nonlinear stochastic dynamical system  given
by (15) and (16). If Vs ∶  ⊆ Rn → R is two-times continuously differentiable and has a compact support, then  is
stochastically dissipative with respect to supply rate r(·, ·) if and only if

Vs(x) ≜ 𝜕V(x)
𝜕x

F(x,u) + 1
2

tr DT(x,u)𝜕
2V(x)
𝜕x2 D(x,u)

≤ r(u,H(x,u)), (x,u) ∈  × U. (18)

Next, we show that stochastic dissipativeness of nonlinear affine stochastic dynamical systems  of the form

dx(t) = [𝑓 (x(t)) + G(x(t))u(t)]dt + D(x(t))dw(t), x(t0)
a.s.
= x0, t ≥ t0, (19)

𝑦(t) = h(x(t)) + J(x(t))u(t), (20)
where, for every t ≥ t0, x(t) ∈ 

n ,  is an open set with 0 ∈ , u(t) ∈ U
m , U ⊆ Rm is an open set with 0 ∈ U, 𝑦(t) ∈ Y

l ,
Y ⊆ Rl, 𝑓 ∶  → Rn, G ∶  → Rn×m, D ∶  → Rn×d, h ∶  → Rl, and J ∶  → Rl×m, can be characterized in
terms of the system functions f(·), G(·), D(·), h(·), and J(·). We assume that f(·), G(·), D(·), h(·), and J(·) are continuously
differentiable mappings and  has at least one equilibrium so that, without loss of generality, f(0) = 0, D(0) = 0, and
h(0) = 0. Furthermore, for the nonlinear stochastic dynamical system , we assume that the required properties for the
existence and uniqueness of solutions in forward time are satisfied.

For the following result, we consider the special case of dissipative systems with quadratic supply rates.22-25 Specifically,
we set  = Rn, U = Rm, Y = Rl; let Q ∈ Sl, R ∈ Sm, and S ∈ Rl×m be given, where Sq denotes the set of q × q symmetric
matrices, and assume r(u, y) = yTQy + 2yTSu + uTRu. Furthermore, we assume that there exists a function 𝜅 ∶ Rl → Rm

such that 𝜅(0) = 0 and r(𝜅(y), y) < 0, y ≠ 0, so that, as shown by Theorem 3.2 in Rajpurohit and Haddad,12 all storage
functions for  are positive definite. Moreover, we assume that there exists a two-times continuously differentiable storage
function Vs(x), x ∈ Rn, for the stochastic dynamical system .

Theorem 2 (Rajpurohit and Haddad12). Let Q ∈ Sl, S ∈ Rl×m, R ∈ Sm, and let be zero-state observable and completely
stochastically reachable.  is stochastically dissipative with respect to the quadratic supply rate r(u, y) = yTQy +2yTSu +
uTRu if and only if there exist functions Vs ∶ Rn → R, 𝓁 ∶ Rn → Rp, and  ∶ Rn → Rp×m such that Vs(·) is two-times
continuously differentiable and positive definite, Vs(0) = 0, and, for all x ∈ Rn,

0 = V ′
s (x)𝑓 (x) +

1
2

tr DT(x)V ′′
s (x)D(x) − hT(x)Qh(x) + 𝓁T(x)𝓁(x), (21)

0 = 1
2

V ′
s (x)G(x) − hT(x)(QJ(x) + S) + 𝓁T(x)(x), (22)

0 = R + STJ(x) + JT(x)S + JT(x)QJ(x) −T(x)(x). (23)
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FIGURE 1 Multiplicative input uncertainty of  and input operator Δ(·)

If, alternatively,
 (x) ≜ R + STJ(x) + JT(x)S + JT(x)QJ(x) > 0, x ∈ R

n,

then  is stochastically dissipative with respect to the quadratic supply rate r(u, y) = yTQy +2yTSu + uTRu if and only if
there exists a two-times continuously differentiable function Vs ∶ Rn → R such that Vs(·) is positive definite, Vs(0) = 0,
and, for all x ∈ Rn,

0 ≥ V ′
s (x)𝑓 (x) +

1
2

tr DT(x)V ′′
s (x)D(x) − hT(x)Qh(x) +

[1
2

V ′
s (x)G(x) − hT(x)(QJ(x) + S)

]
· −1(x)

[1
2

V ′
s (x)G(x) − hT(x)(QJ(x) + S)

]T
. (24)

4 STABILITY MARGINS FOR STOCHASTIC FEEDBACK REGULATORS

To develop relative stability margins for nonlinear stochastic regulators, consider the nonlinear stochastic dynamical
system  given by

dx(t) = [𝑓 (x(t)) + G(x(t))u(t)] dt + D(x(t))dw(t), x(0)
a.s.
= x0, t ≥ 0, (25)

𝑦(t) = −𝜙(x(t)), (26)
where 𝑓 ∶ Rn → Rn satisfies f (0) = 0, G ∶ Rn → Rn×m, D ∶ Rn → Rn×d satisfies D(0) = 0, and 𝜙 ∶ Rn → Rm is an
admissible feedback controller such that  is globally asymptotically stable in probability with u = −y. Furthermore, we
assume that  is zero-state observable.

Next, we define the relative stability margins for  given by (25) and (26). Specifically, let uc ≜ −𝑦, 𝑦c ≜ u, and consider
the negative feedback interconnection u = Δ(−y) of  and Δ(·) given in Figure 1, where Δ(·) is either a linear operator
Δ(uc) = Δuc, a nonlinear static operator Δ(uc) = 𝜎(uc), or a nonlinear dynamic operator Δ(·) with input uc and output
yc. Furthermore, we assume that, in the nominal case, Δ(·) = I(·) so that the nominal closed-loop system is globally
asymptotically stable in probability.

Definition 5. Let 𝛼, 𝛽 ∈ R be such that 0 < 𝛼 ≤ 1 ≤ 𝛽 < ∞. Then, the nonlinear stochastic dynamical system 
given by (25) and (26) is said to have a gain margin (𝛼, 𝛽) if the negative feedback interconnection of  andΔ(uc) = Δuc
is globally asymptotically stable in probability for all Δ = diag[k1, … , km], where ki ∈ (𝛼, 𝛽), i = 1, … ,m.

Definition 6. Let 𝛼, 𝛽 ∈ R be such that 0 < 𝛼 ≤ 1 ≤ 𝛽 < ∞. Then, the nonlinear stochastic dynamical system 
given by (25) and (26) is said to have a sector margin (𝛼, 𝛽) if the negative feedback interconnection of  and Δ(uc) =
𝜎(uc) is globally asymptotically stable in probability for all nonlinearities 𝜎 ∶ Rm → Rm such that 𝜎(0) = 0, 𝜎(uc) =
[𝜎1(uc1), … , 𝜎m(ucm)]T, and 𝛼u2

ci < 𝜎i(uci)uci < 𝛽u2
ci, for all uci ≠ 0, i = 1, … ,m.

Definition 7. Let 𝛼, 𝛽 ∈ R be such that 0 < 𝛼 ≤ 1 ≤ 𝛽 < ∞. Then, the nonlinear stochastic dynamical system
 given by (25) and (26) is said to have a disk margin (𝛼, 𝛽) if the negative feedback interconnection of  and Δ(·)
is globally asymptotically stable in probability for all dynamic operators Δ(·) such that Δ(·) is zero-state observable
and stochastically dissipative with respect to the supply rate r(uc, 𝑦c) = uT

c 𝑦c − 1
�̂�+𝛽

𝑦T
c 𝑦c − �̂�𝛽

�̂�+𝛽
uT

c uc, where �̂� = 𝛼 + 𝛿,
𝛽 = 𝛽 − 𝛿, and 𝛿 ∈ R such that 0 < 2𝛿 < 𝛽 − 𝛼.

Definition 8. Let 𝛼, 𝛽 ∈ R be such that 0 < 𝛼 ≤ 1 ≤ 𝛽 < ∞. Then, the nonlinear stochastic dynamical system
 given by (25) and (26) is said to have a structured disk margin (𝛼, 𝛽) if the negative feedback interconnection of
 and Δ(·) is globally asymptotically stable in probability for all dynamic operators Δ(·) such that Δ(·) is zero-state
observable, Δ(uc) = diag[𝛿1(uc1), … , 𝛿m(ucm)], and 𝛿i(·), i = 1, … ,m, is stochastically dissipative with respect to the
supply rate r(uci, 𝑦ci) = uci𝑦ci − 1

�̂�+𝛽
𝑦2

ci −
�̂�𝛽

�̂�+𝛽
u2

ci, where �̂� = 𝛼 + 𝛿, 𝛽 = 𝛽 − 𝛿, and 𝛿 ∈ R such that 0 < 2𝛿 < 𝛽 − 𝛼.
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Remark 2. Note that, if  has a disk margin (𝛼, 𝛽), then  has gain and sector margins (𝛼, 𝛽).

5 NONLINEAR-NONQUADRATIC OPTIMAL REGULATORS FOR
STOCHASTIC DYNAMICAL SYSTEMS

In this section, we consider a control problem involving a notion of optimality with respect to a nonlinear-nonquadratic
cost functional. In particular, consider the controlled nonlinear stochastic dynamical system (15), where u(·) is restricted
to the class of admissible controls consisting of measurable functions u(·) adapted to the filtration {t}t≥t0 such that u(t) ∈
U

m for almost all t ≥ t0 and u(·) is nonanticipative and takes values in a given compact, metrizable set  .
A measurable function 𝜙 ∶  → U satisfying 𝜙(0) = 0 is called a control law. If u(t) = 𝜙(x(t)), t ≥ t0, where 𝜙(·) is a

control law and x(t), t ≥ t0, satisfies (15), then we call u(·) a feedback control law. Note that the feedback control law is an
admissible control since 𝜙(·) has values in U. Given a control law 𝜙(·) and a feedback control law u(t) = 𝜙(x(t)), t ≥ t0,
the closed-loop system (15) has the form

dx(t) = F(x(t), 𝜙(x(t)))dt + D(x(t), 𝜙(x(t)))dw(t), x(t0)
a.s.
= x0, t ≥ t0. (27)

Next, we present a main theorem for stochastic stabilization characterizing feedback controllers that guarantee local
and global closed-loop stability in probability and minimize a nonlinear-nonquadratic performance measure. For the
statement of this result, let L ∶  × U → R be jointly continuous in x and u, and, for every 𝜌 ∈ (0, 1), define the set of
stochastic regulation controllers given by

(x0, 𝜌) ≜
{

u(·) ∶ u(·) is admissible and x(·) given by (15) is such that Px0

(
𝔅u(·)

x0

) ≥ 1 − 𝜌,

where 𝔅u(·)
x0

≜ {
x({t ≥ t0}, 𝜔) ∶ lim

t→∞
||x(t, 𝜔)|| = 0, 𝜔 ∈ Ω

}}
.

Furthermore, define the indicator function of the set 𝔅u(·)
x0

by

1𝔅u(·)
x0
(𝜔) ≜

{
1, if x({t ≥ t0}, 𝜔) ∈ 𝔅u(·)

x0
,

0, otherwise.

The set 𝔅u(·)
x0

denotes the set of all controlled sample paths of (15) for which limt→∞||x(t, 𝜔)|| = 0 and x({t ≥ t0}, 𝜔) ∈
𝔅u(·)

x0
, 𝜔 ∈ Ω. Since in local stochastic stability theory there exists a probability of less than or equal to 𝜌 that the system

solution x(t, 𝜔) leaves the subset 𝜀(0) for every x0 ∈ 𝛿(0), ie, the probability of escape is continuous at x0 = 0 with
small deviations from the equilibrium implying a small probability of escape, the set 𝔅u(·)

x0
and Px0(𝔅u(·)

x0
) are necessary for

defining a well-posed cost functional for the optimal control problem formulation given in Theorem 3.

Theorem 3 (Rajpurohit and Haddad1). Consider the nonlinear stochastic controlled dynamical system (15) with
performance measure

J
(

x0,u(·),𝔅u(·)
x0

) ≜ 1

Px0

(
𝔅u(·)

x0

)Ex0

[
∫

∞

t0

L(x(t),u(t))1𝔅u(·)
x0
(𝜔)dt

]
, (28)

where u(·) is an admissible control and 1𝔅u(·)
x0
(𝜔) denotes the indicator function of the set 𝔅u(·)

x0
. Assume that there exist a

two-times continuously differentiable function V ∶  → R and a control law 𝜙 ∶  → U such that

V(0) = 0, (29)

V(x) > 0, x ∈ , x ≠ 0, (30)

𝜙(0) = 0, (31)
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V ′(x)F(x, 𝜙(x)) + 1
2

tr DT(x, 𝜙(x))V ′′(x)D(x, 𝜙(x)) < 0, x ∈ , x ≠ 0, (32)

H(x, 𝜙(x)) = 0, x ∈ , (33)

H(x,u) ≥ 0, x ∈ , u ∈ U, (34)

where
H(x,u) ≜ L(x,u) + V ′(x)F(x,u) + 1

2
tr DT(x,u)V ′′(x)D(x,u). (35)

Then, with the feedback control u(·) = 𝜙(x(·)), the zero solution x(t)
a.s.≡ 0 of the closed-loop system (27) is locally asymp-

totically stable in probability and, for every 𝜌 ∈ (0, 1), there exist 𝛿 = 𝛿(𝜌) and 𝔅𝜙(x(·))
x0

with Px0 (𝔅𝜙(x(·))
x0

) ≥ 1− 𝜌 such that,
for all x0 ∈ 𝛿(0) ⊆ ,

J
(

x0, 𝜙(x(·)),𝔅𝜙(x(·))
x0

)
= V(x0). (36)

In addition, if x0 ∈ 𝛿(0), then the feedback control u(·) = 𝜙(x(·)) minimizes (28) in the sense that

J
(

x0, 𝜙(x(·)),𝔅𝜙(x(·))
x0

)
= min

u(·)∈(x0,𝜌)
J
(

x0,u(·),𝔅u(·)
x0

)
. (37)

Finally, if  = Rn, U = Rm, and V(x) → ∞ as ||x|| → ∞, then the zero solution x(t)
a.s.≡ 0 of the closed-loop system (27) is

globally asymptotically stable in probability and (37) holds with 𝜌 = 0 and Px0 (𝔅𝜙(x(·))
x0

) = 1, x0 ∈ Rn.

It is important to note here that, in the case where the optimal feedback control 𝜙(·) guarantees global asymptotic
stability in probability, Px0(𝔅𝜙(·)

x0
) = 1, and hence, 1𝔅𝜙(·)

x0
(𝜔)

a.s.
= 1. Moreover, all the admissible controls u(·) that guarantee

global attraction in probability also satisfy Px0 (𝔅u(·)
x0

) = 1 for all x0 ∈ Rn, and hence, 𝜌 = 0 and 1𝔅u(·)
x0
(𝜔)

a.s.
= 1. In this case,

J
(

x0,u(·),𝔅u(·)
x0

)
= 1

Px0

(
𝔅u(·)

x0

)Ex0

[
∫

∞

t0

L(x(t),u(t))1𝔅u(·)
x0
(𝜔)dt

]

= E
x0

[
∫

∞

t0

L(x(t),u(t))dt
]

(38)

and

J
(

x0, 𝜙(·),𝔅𝜙(·)
x0

)
= 1

Px0

(
𝔅𝜙(·)

x0

)Ex0

[
∫

∞

t0

L(x(t), 𝜙(x(t)))1𝔅𝜙(·)
x0
(𝜔)dt

]

= E
x0

[
∫

∞

t0

L(x(t), 𝜙(x(t)))dt
]
. (39)

Thus, in the remainder of this paper, we omit the dependence on 𝔅𝜙(·)
x0

and 𝔅u(·)
x0

in the cost functional and we write (x0)
for (x0, 𝜌) for all the results concerning globally stabilizing controllers in probability.

Next, we specialize Theorem 3 to affine stochastic dynamical systems. Specifically, we construct nonlinear feedback
controllers using an optimal control framework that minimizes a nonlinear-nonquadratic performance criterion. This is
accomplished by choosing the controller such that the infinitesimal generator is negative along the closed-loop system
sample trajectories while providing sufficient conditions for the existence of stochastically asymptotically stabilizing solu-
tions to the stochastic Hamilton-Jacobi-Bellman equation. Thus, these results provide a family of globally stochastically
stabilizing controllers parameterized by the cost functional that is minimized.

The controllers obtained next are predicated on an inverse optimal stochastic control problem.1-9 Consider the nonlinear
affine stochastic dynamical system given by (25) with performance integrands L(x,u) of the form

L(x,u) = L1(x) + L2(x)u + uTR2(x)u, (40)
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where L1 ∶ Rn → R,L2 ∶ Rn → R1×m, and R2 ∶ Rn → Rm×m, where R2(x) > 0, x ∈ Rn, so that

J(x0,u(·)) = E
x0

[
∫

∞

0
[L1(x(t)) + L2(x(t))u(t) + uT(t)R2(x(t))u(t)]dt

]
. (41)

Theorem 4 (Rajpurohit and Haddad1). Consider the nonlinear controlled affine stochastic dynamical system (25) with
performance measure (41). Assume that there exist a two-times continuously differentiable function V ∶ Rn → R and a
function L2 ∶ Rn → R1×m such that

V(0) = 0, (42)

L2(0) = 0, (43)

V(x) > 0, x ∈ R
n, x ≠ 0, (44)

V ′(x)
[
𝑓 (x) − 1

2
G(x)R−1

2 (x)LT
2 (x) −

1
2

G(x)R−1
2 (x)GT(x)V ′T(x)

]
+ 1

2
tr DT(x)V ′′ (x)D(x) < 0, x ∈ R

n, x ≠ 0, (45)

and V(x) → ∞ as ||x|| → ∞. Then, the zero solution x(t)
a.s.≡ 0 of the closed-loop system

dx(t) = [𝑓 (x(t)) + G(x(t))𝜙(x(t))]dt + D(x(t))dw(t), x(0)
a.s.
= x0, t ≥ 0, (46)

is globally asymptotically stable in probability with the feedback control law

𝜙(x) = −1
2

R−1
2 (x)

[
V ′(x)G(x) + L2(x)

]T
, (47)

and the performance measure (41), with

L1(x) = 𝜙T(x)R2(x)𝜙(x) − V ′(x)𝑓 (x) − 1
2

tr DT(x)V ′′(x)D(x), (48)

is minimized in the sense that
J(x0, 𝜙(x(·))) = min

u(·)∈(x0)
J(x0,u(·)), x0 ∈ R

n. (49)

Finally,
J(x0, 𝜙(x(·))) = V(x0), x0 ∈ R

n. (50)

Note that (45) is equivalent to

V(x) ≜ V ′(x)[𝑓 (x) + G(x)𝜙(x)] + 1
2

tr DT(x)V ′′(x)D(x) < 0, x ∈ R
n, x ≠ 0, (51)

with 𝜙(x) given by (47). Furthermore, conditions (42), (44), and (51) ensure that V(·) is a Lyapunov function for the
closed-loop system (46). As discussed in Rajpurohit and Haddad,1 it is important to recognize that the function L2(x),
which appears in the integrand of the performance measure (40), is an arbitrary function of x ∈ Rn subject to conditions
(43) and (45). Thus, L2(x) provides flexibility in choosing the control law.

With L1(x) given by (48) and 𝜙(x) given by (47), L(x,u) can be expressed as

L(x,u) = uTR2(x)u − 𝜙T(x)R2(x)𝜙(x) + L2(x)(u − 𝜙(x)) − V ′(x)[𝑓 (x) + G(x)𝜙(x)] − 1
2

tr DT(x)V ′′ (x)D(x)

=
[

u + 1
2

R−1
2 (x)LT

2 (x)
]T

R2(x)
[

u + 1
2

R−1
2 (x)LT

2 (x)
]
− V ′(x)[𝑓 (x) + G(x)𝜙(x)]

− 1
2

tr DT(x)V ′′ (x)D(x) − 1
4

V ′(x)G(x)R−1
2 (x)GT(x)V ′T(x). (52)
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Since R2(x) > 0, x ∈ Rn, the first term on the right-hand side of (52) is nonnegative, while (51) implies that the second,
third, and fourth terms collectively are nonnegative. Thus, it follows that

L(x,u) ≥ −1
4

V ′(x)G(x)R−1
2 (x)GT(x)V ′T(x), (53)

which shows that L(x,u)may be negative. As a result, there may exist a control input u for which the performance measure
J(x0,u) is negative. However, if the control u is a regulation controller, ie, u ∈ (x0), then it follows from (49) and (50) that

J(x0,u(·)) ≥ V(x0) ≥ 0, x0 ∈ R
n, u(·) ∈ (x0). (54)

Furthermore, in this case, substituting u = 𝜙(x) into (52) yields

L(x, 𝜙(x)) = −V ′(x)[𝑓 (x) + G(x)𝜙(x)] − 1
2

tr DT(x)V ′′(x)D(x), (55)

which, by (51), is positive.

6 GAIN, SECTOR, AND DISK MARGINS OF NONLINEAR-NONQUADRATIC
OPTIMAL REGULATORS FOR STOCHASTIC DYNAMICAL SYSTEMS

In this section, we derive guaranteed gain, sector, and disk margins for nonlinear optimal and inverse optimal regulators
that minimize a nonlinear-nonquadratic performance criterion for stochastic dynamical systems. Specifically, sufficient
conditions that guarantee gain, sector, and disk margins are given in terms of the state, control, and cross-weighting
nonlinear-nonquadratic weighting functions.

In particular, we consider the nonlinear stochastic dynamical system given by

dx(t) = [𝑓 (x(t)) + G(x(t))u(t)] dt + D(x(t))dw(t), x(0)
a.s.
= x0, t ≥ 0, (56)

𝑦(t) = −𝜙(x(t)), (57)

where 𝜙 ∶ Rn → Rm, with a nonlinear-nonquadratic performance criterion

J(x0,u(·)) = E
x0

[
∫

∞

0
[L1(x(t)) + L2(x(t))u(t) + uT(t)R2(x(t))u(t)]dt

]
, (58)

where L1 ∶ Rn → R, L2 ∶ Rn → R1×m, and R2 ∶ Rn → Rm×m are given such that R2(x) > 0, x ∈ Rn, and L2(0) = 0. In
this case, the optimal nonlinear feedback controller u = 𝜙(x) that minimizes the nonlinear-nonquadratic performance
criterion (58) is given by the following result.

Theorem 5. Consider the nonlinear stochastic dynamical system (56) and (57) with performance functional (58).
Assume that there exists a two-times continuously differentiable function V ∶ Rn → R such that

V(0) = 0, (59)

V(x) > 0, x ∈ R
n, x ≠ 0, (60)

L2(0) = 0, (61)

V ′(x)
[
𝑓 (x) − 1

2
G(x)R−1

2 (x)LT
2 (x) −

1
2

G(x)R−1
2 (x)GT(x)V ′T(x)

]
+ 1

2
tr DT(x)V ′′(x)D(x) < 0, x ∈ R

n, x ≠ 0, (62)
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0 = L1(x) + V ′(x)𝑓 (x) + 1
2

tr DT(x)V ′′(x)D(x) − 1
4
[
V ′(x)G(x) + L2(x)

]
· R−1

2 (x)
[
V ′(x)G(x) + L2(x)

]T
, x ∈ R

n, (63)

and

V(x) → ∞ as ||x|| → ∞. (64)

Then, the zero solution x(t)
a.s.≡ 0 of the closed-loop system

dx(t) = [𝑓 (x(t)) + G(x(t))𝜙(x(t))] dt + D(x(t))dw(t), x(0)
a.s.
= x0, t ≥ 0, (65)

is globally asymptotically stable in probability with the feedback control law

𝜙(x) = −1
2

R−1
2 (x)

[
V ′(x)G(x) + L2(x)

]T
, (66)

and the performance functional (58) is minimized in the sense that

J(x0, 𝜙(x(·))) = min
u(·)∈(x0)

J(x0,u(·)), x0 ∈ R
n. (67)

Finally,

J(x0, 𝜙(x(·))) = V(x0), x0 ∈ R
n. (68)

Proof. The proof is identical to the proof of Theorem 4 given in Rajpurohit and Haddad.1

The following key lemma is needed for developing the main result of this section.

Lemma 1. Consider the nonlinear stochastic dynamical system  given by (25) and (26), where 𝜙(x) is a stochastically
stabilizing feedback control law given by (47) and where V(x), x ∈ Rn, satisfies

0 = V ′(x)𝑓 (x) + L1(x) −
1
4
[
V ′(x)G(x) + L2(x)

]
R−1

2 (x)
[
V ′(x)G(x) + L2(x)

]T + 1
2

tr DT(x)V ′′(x)D(x). (69)

Furthermore, suppose there exists 𝜃 ∈ R such that 0 < 𝜃 < 1 and

(1 − 𝜃2)L1(x) −
1
4

L2(x)R−1
2 (x)LT

2 (x) ≥ 0, x ∈ R
n. (70)

Then, for all u(·) ∈  and t1, t2 ≥ 0, t1 < t2, the solution x(t), t ≥ 0, to (25) and (26) satisfies

V(x) ≤ [u + 𝑦]TR2(x)[u + 𝑦] − 𝜃2uTR2(x)u, (71)

which implies

E
[
V(x(t2))|t1

] ≤ V(x(t1)) + E

[
∫

t2

t1

(
[u(s) + 𝑦(s)]TR2(x(s))[u(s) + 𝑦(s)] − 𝜃2uT(s)R2(x(s))u(s)

)
ds
|||||t1

]
. (72)
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Proof. Note that it follows from (69) and (70) that, for all x ∈ Rn and u ∈ Rm,

𝜃2uTR2(x)u ≤ 𝜃2uTR2(x)u +

[
1

2
√

1 − 𝜃2
L2(x)R−1

2 (x) +
√

1 − 𝜃2uT

]

· R2(x)

[
1

2
√

1 − 𝜃2
L2(x)R−1

2 (x) +
√

1 − 𝜃2uT

]T

= uTR2(x)u + 1
4(1 − 𝜃2)

L2(x)R−1
2 (x)LT

2 (x) + L2(x)u

≤ uTR2(x)u + L2(x)u + L1(x)

= uTR2(x)u + L2(x)u − V ′(x)𝑓 (x) + 𝜙T(x)R2(x)𝜙(x) −
1
2

tr DT(x)V ′′ (x)D(x)

= [u + 𝑦]TR2(x)[u + 𝑦] − V ′(x)[𝑓 (x) + G(x)u] − 1
2

tr DT(x)V ′′ (x)D(x),

which implies that, for all u(·) ∈  ,

𝜃2uTR2(x)u ≤ [u + 𝑦]TR2(x)[u + 𝑦] − V(x). (73)

Now, using Dynkin's formula (see Theorem 7.12 of Øksendal17),

E
[
V(x(t2))|t1

] ≤ V(x(t1)) + E

[
∫

t2

t1

(
[u(s) + 𝑦(s)]TR2(x(s))[u(s) + 𝑦(s)] − 𝜃2uT(s)R2(x(s))u(s)

)
ds
|||||t1

]
, (74)

is immediate.

Next, we present disk margins for the nonlinear-nonquadratic optimal regulator given by Theorem 4. First, we consider
the case in which R2(x), x ∈ Rn, is a constant diagonal matrix.

Theorem 6. Consider the nonlinear stochastic dynamical system  given by (25) and (26), where 𝜙(x) is a stochastically
stabilizing feedback control law given by (47) and where V(x), x ∈ Rn, satisfies (48). If R2(x) ≡ diag[r1, … , rm], where
ri > 0, i = 1, … ,m, and there exists 𝜃 ∈ R such that 0 < 𝜃 < 1 and (70) is satisfied; then, the nonlinear stochastic
dynamical system  has a structured disk margin ( 1

1+𝜃
,

1
1−𝜃

). If, in addition, R2(x) ≡ I and there exists 𝜃 ∈ R such that
0 < 𝜃 < 1 and (70) is satisfied, then the nonlinear stochastic dynamical system  has a disk margin ( 1

1+𝜃
,

1
1−𝜃

).

Proof. Note that, for all u(·) ∈  , it follows from Lemma 1 that the solution x(t), t ≥ 0, to (25) satisfies

V(x) ≤ [u + 𝑦]TR2[u + 𝑦] − 𝜃2uTR2u. (75)

Hence, with the storage function Vs(x) = 1
2

V(x), it follows from Proposition 1 that  is stochastically dissipative with
respect to the supply rate r(u, 𝑦) = uTR2𝑦+ 1−𝜃2

2
uTR2u+𝑦TR2𝑦. Now, the result is a direct consequence of Definitions 7

and 8 with 𝛼 = 1
1+𝜃

and 𝛽 = 1
1−𝜃

.

Example 1. Consider the nonlinear stochastic dynamical system given by

dx1(t) = −x1(t) + x1(t)x2
2(t) + g1x1(t)dw(t), x1(0)

a.s.
= x10, t ≥ 0, (76)

dx2(t) = −x2(t) + x1(t)u(t) + g2x2(t)dw(t), x2(0)
a.s.
= x20, (77)

where g1 <
√

2 and g2 <
√

2, with performance functional

J(x10, x20,u(·)) = E
x0

[
∫

∞

0

[(
2 − g2

1
)

x2
1(t) +

(
2 − g2

2
)

x2
2(t) +

1
2

u2(t)
]

dt
]
. (78)
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To design an optimal control law 𝜙(x1, x2) that minimizes (78), we use Theorem 5 with x = [x1, x2]T, 𝑓 (x) =
[−x1 + x1x2

2 ,−x2]T, G(x) = [0, x1]T, D(x) = [g1x1, g2x2]T, L1(x) = (2 − g2
1)x

2
1 + (2 − g2

2)x
2
2, L2(x) = 0, and R2(x) = 1

2
. In

particular, it follows from (63) that

0 = V ′(x)
[
−x1 + x1x2

2
−x2

]
− 1

2
V ′(x)

[
0 0
0 x2

1

]
V ′T(x)

+ 1
2

tr[g1x1 g2x2]V ′′(x)
[
g1x1
g2x2

]
+
(
2 − g2

1
)

x2
1 +

(
2 − g2

2
)

x2
2 , (79)

which implies that V ′(x) = [2x1, 2x2]. Furthermore, since V(0) = 0, V(x) = x2
1 + x2

2. Hence, the optimal feedback
control law is given by 𝜙(x) = − 1

2
R−1

2 (x)GT(x)V ′T(x) = −2x1x2.
Finally, note that (62) implies

V(x) =
[

2x1 2x2
] [ −x1 + x1x2

2
−x2 − 2x2

1x2

]
+ g2

1x2
1 + g2

2x2
2

= −
(
2 − g2

1
)

x2
1 −

(
2 − g2

2
)

x2
2 − 2x2

1x2
2 < 0, (80)

for all (x1, x2) ≠ (0, 0), and hence, 𝜙(x1, x2) = −2x1x2 is a global stabilizer for (76) and (77). Now, with L1(x) > 0 and
L2(x) = 0, (70) is always satisfied with 𝜃 ∈ (0, 1). Therefore, the largest value that 𝜃 can attain such that (70) holds is
𝜃max = 1, which leads to a disk margin of ( 1

2
,∞).

Next, we consider the case in which R2(x), x ∈ Rn, is not a diagonal constant matrix. For the following result, define

�̄� ≜ sup
x∈Rn

𝜎max(R2(x)), 𝛾 ≜ inf
x∈Rn

𝜎min(R2(x)), (81)

where R2(x) is such that �̄� < ∞ and 𝛾 > 0.

Theorem 7. Consider the nonlinear stochastic dynamical system  given by (25) and (26), where 𝜙(x) is a stochastically
stabilizing feedback control law given by (47) and where V(x), x ∈ Rn, satisfies (48). If there exists 𝜃 ∈ R such that
0 < 𝜃 < 1 and (70) is satisfied, then the nonlinear stochastic system  has a disk margin ( 1

1+𝜂𝜃
,

1
1−𝜂𝜃

), where 𝜂 ≜ √
𝛾∕�̄� .

Proof. Note that, for all u(·) ∈  , it follows from Lemma 1 that the solution x(t), t ≥ 0, to (25) satisfies

V(x) ≤ [u + 𝑦]TR2(x)[u + 𝑦] − 𝜃2uTR2(x)u
≤ �̄�[u + 𝑦]T[u + 𝑦] − 𝛾𝜃2uTu. (82)

Hence, with the storage function Vs(x) = 1
2𝛾

V(x), it follows from Proposition 1 that  is stochastically dissipative with

respect to the supply rate r(u, 𝑦) = uT𝑦+ 1−𝜂2𝜃2

2
uTu + 𝑦T𝑦. Now, the result is a direct consequence of Definition 7 with

𝛼 = 1
1+𝜂𝜃

and 𝛽 = 1
1−𝜂𝜃

.

Next, we provide an alternative result that guarantees sector and gain margins for the case in which R2(x), x ∈ Rn, is
diagonal.

Theorem 8. Consider the nonlinear stochastic dynamical system  given by (25) and (26), where 𝜙(x) is a stochasti-
cally stabilizing feedback control law given by (47) and where V(x), x ∈ Rn, satisfies (48). Furthermore, let R2(x) =
diag[r1(x), … , rm(x)], where ri ∶ Rn → R, ri(x) > 0, i = 1, … ,m. If  is zero-state observable and there exists 𝜃 ∈ R such
that 0 < 𝜃 < 1 and

(1 − 𝜃2)L1(x) −
1
4

L2(x)R−1
2 (x)LT

2 (x) ≥ 0, x ∈ R
n, (83)

then the nonlinear stochastic dynamical system  has a sector (and, hence, gain) margin ( 1
1+𝜃

, 1
1−𝜃

).
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Proof. Let Δ(−y) = 𝜎(−y), where 𝜎 ∶ Rm → Rm is a static nonlinearity such that 𝜎(0) = 0, 𝜎(v) =
[𝜎1(v1), … , 𝜎m(vm)]T, and 𝛼v2

i < 𝜎i(vi)vi < 𝛽v2
i , for all vi ≠ 0, i = 1, … ,m, where 𝛼 = 1

1+𝜃
and 𝛽 = 1

1−𝜃
; or, equiva-

lently, (𝜎i(vi) − 𝛼vi)(𝜎i(vi) − 𝛽vi) < 0, for all vi ≠ 0, i = 1, … ,m. In this case, the closed-loop system (25) and (26) with
u = 𝜎(−y) is given by

dx(t) = [𝑓 (x(t)) + G(x(t))𝜎(𝜙(x(t)))]dt + D(x(t))dw(t), x(0)
a.s.
= x0, t ≥ 0. (84)

Next, consider the Lyapunov function candidate V(x), x ∈ Rn, satisfying (48) and let V(x) denote the Lyapunov
infinitesimal generator of the closed-loop system (84). Now, it follows from (48) and (83) that

V(x) = V ′(x)𝑓 (x) + V ′(x)G(x)𝜎(𝜙(x)) + 1
2

tr DT(x)V ′′(x)D(x)

≤ V ′(x)𝑓 (x) + V ′(x)G(x)𝜎(𝜙(x)) + 1
2

tr DT(x)V ′′(x)D(x) + L1(x)

− 1
4(1 − 𝜃2)

L2(x)R−1
2 (x)LT

2 (x)

+ (1 − 𝜃2)
[
𝜎(𝜙(x)) + 1

2(1 − 𝜃2)
R−1

2 (x)LT
2 (x)

]T

R2(x)

·
[
𝜎(𝜙(x)) + 1

2(1 − 𝜃2)
R−1

2 (x)LT
2 (x)

]
= V ′(x)𝑓 (x) + L1(x) + V ′(x)G(x)𝜎(𝜙(x)) + 1

2
tr DT(x)V ′′(x)D(x)

+ (1 − 𝜃2)𝜎T(𝜙(x))R2(x)𝜎(𝜙(x)) + L2(x)𝜎(𝜙(x))
= 𝜙T(x)R2(x)𝜙(x) − 2𝜙T(x)R2(x)𝜎(𝜙(x))
+ (1 − 𝜃2)𝜎T(𝜙(x))R2(x)𝜎(𝜙(x))

=
m∑

i=1
ri(x)

(
1
𝛽
𝜎i(−𝑦i) + 𝑦i

)( 1
𝛼
𝜎i(−𝑦i) + 𝑦i

)
= 1

𝛼𝛽

m∑
i=1

ri(x) (𝜎i(−𝑦i) + 𝛼𝑦i) (𝜎i(−𝑦i) + 𝛽𝑦i)

≤ 0, x ∈ R
n,

which, by Theorem 1, implies that the closed-loop system (84) is Lyapunov stable in probability.
Next, it follows from Corollary 4.1 of Mao26 that V(x)

a.s.
→ 0 as t → ∞, and note that V(x) = 0 if and only if y = 0.

Now, since  is zero-state observable, it follows that x(t)
a.s.
→ 0 as t → ∞. Thus, since Vs(·) is radially unbounded, the

closed-loop system (84) is globally asymptotically stable in probability for all 𝜎(·) such that 𝛼v2
i < 𝜎i(vi)vi < 𝛽v2

i , vi ≠ 0,
i = 1, … ,m, which implies that the nonlinear stochastic system  given by (25) and (26) has sector (and, hence, gain)
margins (𝛼, 𝛽).

Note that, in the case where R2(x), x ∈ Rn, is diagonal, Theorem 8 guarantees larger gain and sector margins to the gain
and sector margin guarantees provided by Theorem 7. However, Theorem 8 does not provide disk margin guarantees.

7 INVERSE OPTIMALITY OF NONLINEAR STOCHASTIC FEEDBACK
REGULATORS

In this section, we give sufficient conditions that guarantee that a given nonlinear feedback controller has prespecified
disk, sector, and gain margins.

Proposition 2. Let 𝜃 ∈ (0, 1) and let R2 ∈ Rm×m be a positive-definite matrix. Consider the nonlinear stochastic dynam-
ical system  given by (25) and (26), where 𝜙(x) is a stochastically stabilizing feedback control law. Then, there exist
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functions V ∶ Rn → R, L1 ∶ Rn → R, and L2 ∶ Rn → R1×m such that 𝜙(x) = − 1
2

R−1
2 [V ′(x)G(x) + L2(x)]T, V(·) is

two-times continuously differentiable, V(0) = 0, V(x) > 0, x ∈ Rn, x ≠ 0, and, for all x ∈ Rn,

0 = V ′(x)𝑓 (x) + L1(x) −
1
4
[
V ′(x)G(x) + L2(x)

]
R−1

2
[
V ′(x)G(x) + L2(x)

]T + 1
2

tr DT(x)V ′′(x)D(x), (85)

0 ≤ (1 − 𝜃2)L1(x) −
1
4

L2(x)R−1
2 LT

2 (x), (86)
if and only if, for all u(·) ∈  , there exists V ∶ Rn → R such that V(0) = 0, V(x) > 0, x ∈ Rn, x ≠ 0, and the solution x(t),
t ≥ 0, to (25) satisfies

V(x) ≤ [u + 𝑦]TR2(x)[u + 𝑦] − 𝜃2uTR2(x)u. (87)

Proof. If there exist functions V ∶ Rn → R, L1 ∶ Rn → R, and L2 ∶ Rn → R1×m such that 𝜙(x) =
− 1

2
R−1

2 [V ′(x)G(x) + L2(x)]T and (85) and (86) are satisfied, then it follows from Lemma 1 that (87) is satisfied. Con-
versely, if for u(·) ∈  the solution x(t), t ≥ 0, to (25) satisfies (87), then with Q = R2, S = R2, and R = (1 − 𝜃2)R2, it
follows from (24) of Theorem 2 that

0 ≥ V ′(x)𝑓 (x) + 1
2

tr DT(x)V ′′(x)D(x) − 𝜙T(x)R2𝜙(x) +
1

4(1 − 𝜃2)
[
2𝜙T(x)R2 + V ′(x)G(x)

]
· R−1

2
[
2𝜙T(x)R2 + V ′(x)G(x)

]T
, x ∈ R

n.

The result now follows with L1(x) = −V ′(x)𝑓 (x) + 𝜙T(x)R2𝜙(x) − 1
2
tr DT(x)V ′′(x)D(x) and L2(x) = −[2𝜙T(x)R2 +

V′ (x)G(x)].

Note that, if (85) and (86) are satisfied, then it follows from Theorem 4 that the feedback control law 𝜙(x) =
− 1

2
R−1

2 [V ′(x)G(x) + L2(x)]T minimizes the cost functional (41). Hence, Proposition 2 provides necessary and suffi-
cient conditions for optimality of a given stochastically stabilizing feedback control law with prespecified disk margin
guarantees.

The following result presents specific disk margin guarantees for inverse optimal controllers.

Theorem 9. Let 𝜃 ∈ (0, 1) be given. Consider the nonlinear stochastic dynamical system  given by (25) and (26),
where 𝜙(x) is a stochastically stabilizing feedback control law. Assume that there exist functions V ∶ Rn → R and
R2 ∶ Rn → Rm×m such that V(·) is two-times continuously differentiable, R2(x) > 0, x ∈ Rn, and

V(0) = 0, (88)

V(x) > 0, x ∈ R
n, x ≠ 0, (89)

V ′(x) [𝑓 (x) + G(x)𝜙(x)] + 1
2

tr DT(x)V ′′(x)D(x) < 0, x ∈ R
n, x ≠ 0, (90)

V ′(x)𝑓 (x) + 1
2

tr DT(x)V ′′(x)D(x) − 𝜙T(x)R−1
2 (x)𝜙(x) + 1

1 − 𝜃2

(
𝜙T(x) + 1

2
V ′(x)G(x) · R−1

2 (x)
)

R2(x)
(
𝜙T(x) + 1

2
V ′(x)G(x)R−1

2 (x)
)T ≤ 0, x ∈ R

n, (91)

and
V(x) → ∞ as ||x|| → ∞. (92)

Then, the nonlinear stochastic dynamical system  has a disk margin ( 1
1+𝜂𝜃

,
1

1−𝜂𝜃
), where 𝜂 =

√
𝛾∕�̄� and 𝛾 and �̄� are

given by (81). Furthermore, with the feedback control law 𝜙(x), the performance functional

J(x0,u(·)) = E
x0

[
∫

∞

0

[
−V ′(x(t))(𝑓 (x(t)) + G(x(t))u(t)) + (𝜙(x(t)) − u(t))TR2(x(t))(𝜙(x(t)) − u(t))

]
dt
]

(93)

is minimized in the sense that
J(x0, 𝜙(x(·))) = min

u(·)∈(x0)
J(x0,u(·)), x0 ∈ R

n. (94)
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Proof. The result is a direct consequence of Theorems 4 and 7 with L1(x) = −V ′(x)𝑓 (x) + 𝜙T(x)R2(x)𝜙(x) −
1
2
tr DT(x)V ′′(x)D(x) and L2(x) = −(2𝜙T(x)R2(x) + V′(x)G(x)). Specifically, in this case, all the conditions of Theorem 4

are trivially satisfied. Furthermore, note that (91) is equivalent to (70). The result is now immediate.

The next result provides sufficient conditions that guarantee that a given nonlinear feedback controller has prespecified
gain and sector margins.

Theorem 10. Let 𝜃 ∈ (0, 1) be given. Consider the nonlinear stochastic dynamical system  given by (25) and (26), where
𝜙(x) is a stochastically stabilizing feedback control law. Assume there exist functions R2(x) = diag[r1(x), … , rm(x)], where
ri ∶ Rn → R, ri(x) > 0, i = 1, … ,m, and V ∶ Rn → R such that V(·) is two-times continuously differentiable and
satisfies (88)–(92). Then, the nonlinear stochastic dynamical system  has a disk margin ( 1

1+𝜃
,

1
1−𝜃

). Furthermore, with
the feedback control law 𝜙(x), the performance functional (93) is minimized in the sense that

J(x0, 𝜙(x(·))) = min
u(·)∈(x0)

J(x0,u(·)), x0 ∈ R
n. (95)

Proof. The result is a direct consequence of Theorems 4 and 8 with the proof being identical to the proof of
Theorem 9.

8 LINEAR- QUADRATIC OPTIMAL STOCHASTIC REGULATORS

In this section, we specialize Theorems 6 and 7 to the case of linear stochastic systems with multiplicative disturbance
noise. Specifically, consider the stabilizable stochastic system given by

dx(t) = [Ax(t) + Bu(t)]dt + xgTdw(t), x(0)
a.s.
= x0, t ≥ 0, (96)

𝑦(t) = −Kx(t), (97)
where A ∈ Rn×n, B ∈ Rn×m, K ∈ Rm×n, and g ∈ Rd, and assume that (A,K) is detectable and the system (96) and (97) is
asymptotically stable in probability with the feedback u = −y; or, equivalently, Ã+BK is Hurwitz, where Ã = A+ 1

2
||g||2In.

Furthermore, assume that K is an optimal regulator that minimizes the quadratic performance functional given by

J(x0,u(·)) = E
x0

[
∫

∞

0

[
xT(t)R1x(t) + 2xT(t)R12u(t) + uT(t)R2u(t)

]
dt
]
, (98)

where R1 ∈ Rn×n, R12 ∈ Rn×m, and R2 ∈ Rm×m are such that R2 > 0, R1 − R12R−1
2 RT

12 ≥ 0, and (A,R1) is observable. In
this case, it follows from Theorem 4 with f (x) = Ax, G(x) = B, L1(x) = xTR1x, L2(x) = 2xTR12, R2(x) = R2, 𝜙(x) = Kx, and
V(x) = xTPx that the optimal control law K is given by K = −R−1

2 (BTP + R12), where P > 0 is the solution to the algebraic
regulator Riccati equation given by

0 =
(

Ã − BR−1
2 RT

12
)TP + P

(
Ã − BR−1

2 RT
12
)
+ R1 − R12R−1

2 RT
12 − PBR−1

2 BTP. (99)

The following results provide guarantees of disk, sector, and gain margins for the system (96) and (97).

Corollary 1. Consider the stochastic dynamical system with multiplicative noise given by (96) and (97) and with per-
formance functional (98), and let 𝜎2

max(R12) < 𝜎min(R1)𝜎min(R2). Then, with K = −R−1
2 (BTP +R12), where P > 0 satisfies

(99), the system (96) and (97) has disk margin (and, hence, sector and gain margins) ( 1
1+𝜂𝜃

,
1

1−𝜂𝜃
), where

𝜂 = 𝜎min(R2)
𝜎max(R2)

, 𝜃 =
(

1 −
𝜎2

max(R12)
𝜎min(R1)𝜎min(R2)

)1∕2

. (100)

Proof. The result is a direct consequence of Theorem 7 with f (x) = Ax, G(x) = B, 𝜙(x) = Kx, V(x) = xTPx, L1(x) =
xTR1x, and L2(x) = 2xTR12. Specifically, note that (99) is equivalent to (48). Now, with 𝜃 given by (100), it follows that
(1 − 𝜃2)R1 − R12R−1

2 RT
12 ≥ 0, and hence, (83) is satisfied so that all the conditions of Theorem 7 are satisfied.
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Corollary 2. Consider the stochastic dynamical system with multiplicative noise given by (96) and (97) and with perfor-
mance functional (98), and let 𝜎2

max(R12) < 𝜎min(R1)𝜎min(R2), where R2 is diagonal. Then, with K = −R−1
2 (BTP + R12),

where P > 0 satisfies (99), the system (96) and (97) has structured disk margin (and, hence, gain and sector) margin
( 1

1+𝜃
,

1
1−𝜃

), where

𝜃 =
(

1 −
𝜎2

max(R12)
𝜎min(R1)𝜎min(R2)

)1∕2

. (101)

Proof. The result is a direct consequence of Theorem 6 with f(x) = Ax, G(x) = B, 𝜙(x) = Kx, V(x) = xTPx, L1(x) =
xTR1x, and L2(x) = 2xTR12. Specifically, note that (99) is equivalent to (48). Now, with 𝜃 given by (101), it follows that
(1 − 𝜃2)R1 − R12R−1

2 RT
12 ≥ 0, and hence, (83) is satisfied so that all the conditions of Theorem 6 are satisfied.

The gain margins obtained in Corollary 2 are precisely the gain margins given in Chung et al10 for determinis-
tic linear-quadratic optimal regulators with cross-weighting terms in the performance criterion. Furthermore, since
Corollary 2 guarantees structured disk margins of ( 1

1+𝜃
,

1
1−𝜃

), it follows that the system has a phase margin 𝜙 given by

cos(𝜙) = 1 − 𝜃2

2
, (102)

or, equivalently,

sin
(
𝜙

2

)
= 𝜃

2
. (103)

In the case where R12 = 0, it follows from (101) that 𝜃 = 1, and hence, Corollary 2 guarantees a phase margin of ±60◦ in
each input-output channel. In addition, requiring that R1 ≥ 0, it follows from Corollary 2 that the system given by (96)
and (97) has a gain and sector margin of ( 1

2
,∞).

9 STABILITY MARGINS, MEANINGFUL INVERSE OPTIMALITY,
AND STOCHASTIC DISSIPATIVITY

In this section, we specialize the results of Section 4 to the case where L(x,u) is nonnegative for all (x,u) ∈ Rn × Rm. In
the terminology of Sepulchre et al7 and Freeman and Kokotović,9 this corresponds to a meaningful cost functional. Here,
we assume L2(x) ≡ 0 and L1(x) ≥ 0, x ∈ Rn. In this case, we establish connections between stochastic dissipativity and
optimality for nonlinear stochastic controllers. The first result specializes Theorem 4 to the case in which L2(x) ≡ 0.

Theorem 11. Consider the nonlinear stochastic dynamical system (25) with performance functional (41) with L2(x) ≡ 0
and L1(x) ≥ 0, x ∈ Rn. Assume there exists a two-times continuously differentiable function V ∶ Rn → R such that

V(0) = 0, (104)

V(x) > 0, x ∈ R
n, x ≠ 0, (105)

0 = L1(x) + V ′(x)𝑓 (x) + 1
2

tr DT(x)V ′′ (x)D(x) − 1
4

V ′(x)G(x)R−1
2 (x)GT(x)V ′T(x), x ∈ R

n, (106)

and
V(x) → ∞ as ||x|| → ∞. (107)

Furthermore, assume that the system (26) and (41) is zero-state observable with y = L1(x). Then, the zero solution x(t)
a.s.≡ 0

of the closed-loop system

dx(t) = [𝑓 (x(t)) + G(x(t))𝜙(x(t))]dt + D(x(t))dw(t), x(0)
a.s.
= x0, t ≥ 0. (108)
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is globally asymptotically stable in probability with the feedback control law

𝜙(x) = −1
2

R−1
2 (x)GT(x)V ′T(x), (109)

and the performance functional (41) is minimized in the sense that

J(x0, 𝜙(x(·))) = min
u(·)∈(x0)

J(x0,u(·)), x0 ∈ R
n. (110)

Finally,
J(x0, 𝜙(x(·))) = V(x0), x0 ∈ R

n. (111)

Proof. The proof is similar to the proof of Theorem 4.

Next, we show that, for a given nonlinear stochastic dynamical system  given by (25) and (26), there exists an equiv-
alence between optimality and stochastic dissipativity. For the following result, we assume that, for a given nonlinear
stochastic system (25), if there exists a feedback control law 𝜙(x) that minimizes the performance functional (41) with
R2(x) ≡ I, L2(x) ≡ 0, and L1(x) ≥ 0, x ∈ Rn, then there exists a two-times continuously differentiable positive-definite
function V(x), x ∈ Rn, such that (106) is satisfied.

Theorem 12. Consider the nonlinear stochastic dynamical system  given by (25) and (26). The feedback control law
u = 𝜙(x) is optimal with respect to a performance functional (40) with R2(x) ≡ I, L2(x) ≡ 0, and L1(x) ≥ 0, x ∈ Rn, if and
only if the nonlinear stochastic system  is stochastically dissipative with respect to the supply rate r(u, y) = yTy + 2uTy
and has a two-times continuously differentiable positive-definite radially unbounded storage function V(x), x ∈ Rn.

Proof. If the control law 𝜙(x) is optimal with respect to a performance functional (40) with R2(x) ≡ I, L2(x) ≡ 0, and
L1(x) ≥ 0, x ∈ Rn, then, by assumption, there exists a two-times continuously differentiable positive-definite function
V(x) such that (106) is satisfied. Hence, it follows from Proposition 2 that the solution x(t), t ≥ 0, to (25) satisfies

V(x) ≤ [u + 𝑦]TR2(x)[u + 𝑦] − 𝜃2uTR2(x)u, (112)

which implies, by Proposition 1, that  is stochastically dissipative with respect to the supply rate r(u, y) = yTy+ 2uTy.
Conversely, if  is stochastically dissipative with respect to the supply rate r(u, y) = yTy + 2uTy and has a two-times

continuously differentiable positive-definite storage function, then, with h(x) = −𝜙(x), J(x) ≡ 0, Q = I, R = 0, and
S = 2I, it follows from Theorem 2 that there exists a function 𝓁 ∶ Rn → Rp such that 𝜙(x) = − 1

2
GT(x)V ′T(x) and, for

all x ∈ Rn,

0 = V ′(x)𝑓 (x) + 1
2

tr DT(x)V ′′(x)D(x) − 1
4

V ′(x)G(x)GT(x)V ′T(x) + 𝓁T(x)𝓁(x).

Now, the result follows from Theorem 11 with L1(x) = 𝓁T(x)𝓁(x).

Example 2. Consider the nonlinear stochastic dynamical system given by

dx(t) = −x(t) + u(t) + gx(t)dw(t), x(0)
a.s.
= x0, t ≥ 0, (113)

where g <
√

3, with performance functional

J(x0,u(·)) = E
x0

[
∫

∞

0

[
(3 − g2)x2(t) + u2(t)

]
dt
]
. (114)

To design an optimal control law 𝜙(x) that minimizes (114), we use Theorem 5 with f (x) = −x, G(x) = 1, D(x) =gx,
L1(x) = (3 − g2)x2, L2(x) = 0, and R2(x) = 1. Now, note that (63) holds with V(x) = x2. Therefore, the optimal control
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law is given by

𝜙(x) = −1
2

R−1
2 (x)

[
V ′(x)G(x) + L2(x)

]T = −x. (115)

Now, from Proposition 2, since (85) and (86) hold with 𝜃 = 1, we have

V(x) ≤ (u + 𝑦)2 − u2 = 𝑦2 + 2u𝑦, (116)

where y = −𝜙(x) = x, which implies, by Proposition 1, that  is stochastically dissipative with respect to the supply
rate r(u, y) = y2 + 2uy.

The next result gives disk and structured disk margins for the nonlinear stochastic dynamical system  given by (25)
and (26).

Corollary 3. Consider the nonlinear stochastic dynamical system  given by (25) and (41), where 𝜙(x) is a stochastically
stabilizing feedback control law given by (47) with L2(x) ≡ 0 and where V(x), x ∈ Rn, satisfies (48). Furthermore, assume
R2(x) = diag[r1, … , rm], where ri > 0, i = 1, … ,m, and L1(x) ≥ 0, x ∈ Rn. Then, the nonlinear stochastic dynamical
system  has a structured disk margin ( 1

2
,∞). If, in addition, R2(x) ≡ Im, then the nonlinear stochastic system  has a

disk margin ( 1
2
,∞)

Proof. The result is a direct consequence of Theorem 6. Specifically, if L1(x) ≥ 0, x ∈ Rn, and L2(x) ≡ 0, then (70) is
trivially satisfied for all 𝜃 ∈ (0, 1). Now, the result follows immediately by letting 𝜃 → 1.

Finally, we provide sector and gain margins for the nonlinear stochastic dynamical system  given by (25) and (26).

Corollary 4. Consider the nonlinear stochastic dynamical system  given by (25) and (26), where 𝜙(x) is a stochastically
stabilizing feedback control law given by (47) with L2(x) ≡ 0 and where V(x), x ∈ Rn, satisfies (48). Furthermore, assume
R2(x) = diag[r1(x), … , rm(x)], where ri ∶ Rn → R, ri(x) > 0, i = 1, … ,m, and L1(x) ≥ 0, x ∈ Rn. Then, the nonlinear
stochastic dynamical system  has a sector (and, hence, gain) margin ( 1

2
,∞).

Proof. The result is a direct consequence of Theorem 8. Specifically, if L1(x) ≥ 0, x ∈ Rn, and L2(x) ≡ 0, then (70) is
trivially satisfied for all 𝜃 ∈ (0, 1). Now, the result follows immediately by letting 𝜃 → 1.

10 CONCLUSION

In this paper, we have used the notions of stochastic stability and stochastic dissipativity theory to develop sufficient
conditions for gain, sector, and disk margin guarantees for nonlinear stochastic dynamical systems controlled by non-
linear optimal and inverse optimal regulators that minimize a nonlinear-nonquadratic performance criterion. Using
these results, connections between stochastic dissipativity and optimality of nonlinear stochastic systems were estab-
lished. These results provide a generalization of the deterministic meaningful inverse optimal nonlinear regulator stability
margins and the classical linear-quadratic optimal regulator gain and phase margins to stochastic nonlinear feedback
regulators.

Extensions of this framework for exploring connections between optimal finite-time stabilization27,28 and finite-time
stabilization29 for stochastic dynamical systems are currently under development. The proposed framework can also allow
us to further explore connections with stochastic inverse optimal control, stochastic dissipativity, and stability margins
for finite-time stabilizing regulators that minimize a derived cost functional involving subquadratic terms.
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8. Deng H, Krstić M. Stochastic nonlinear stabilization–part II: inverse optimality. Syst Control Lett. 1997;32:151-159.
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