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1 | INTRODUCTION

In a recent paper by Rajpurohit and Haddad,! the authors presented a framework for analyzing and designing feed-
back controllers for nonlinear stochastic dynamical systems. Specifically, a stochastic feedback control problem over
an infinite horizon involving a nonlinear-nonquadratic performance functional was considered and the performance
functional was evaluated in closed form as long as the nonlinear-nonquadratic cost functional considered was related
in a specific way to an underlying Lyapunov function that guarantees asymptotic stability in probability of the non-
linear closed-loop system. Furthermore, the Lyapunov function was shown to be the solution of the steady-state
stochastic Hamilton-Jacobi-Bellman equation. The overall framework provides the foundation for extending stochastic
linear-quadratic control to nonlinear-nonquadratic problems.

The approach in the work of the aforementioned authors! focused on the role of the Lyapunov function guaran-
teeing stochastic stability of the closed-loop system and its connection to the steady-state solution of the stochastic
Hamilton-Jacobi-Bellman equation characterizing the optimal nonlinear feedback controller. In order to avoid the com-
plexity in solving the stochastic steady-state, Hamilton-Jacobi-Bellman equation, we do not attempt to minimize a given
given cost functional, but rather, we parameterize a family of stochastically stabilizing controllers that minimizes a derived
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cost functional that provides the flexibility in specifying the control law. This corresponds to addressing an inverse optimal
stochastic control problem.'®

The inverse optimal control design approach provides a framework for constructing the Lyapunov function for the
closed-loop system that serves as an optimal value function and, as shown in Freeman and Kokotovi¢® and Sepulchre et al”
for deterministic systems, achieves desired stability margins. Specifically, nonlinear inverse optimal controllers that min-
imize a meaningful (in the terminology of the aforementioned works®’) nonlinear-nonquadratic performance criterion
involving a nonlinear-nonquadratic nonnegative-definite function of the state and a quadratic positive-definite function
of the feedback control are shown to possess sector margin guarantees to component decoupled input nonlinearities in
the conic sector (%, 00).

Using the framework developed in Rajpurohit and Haddad,! in this paper, we derive stability margins for opti-
mal and inverse optimal nonlinear stochastic feedback regulators. Specifically, sufficient conditions for gain, sector,
and disk margin guarantees are obtained for nonlinear stochastic dynamical systems controlled by nonlinear optimal
and inverse optimal Hamilton-Jacobi-Bellman controllers that minimize a nonlinear-nonquadratic performance crite-
rion with cross-weighting terms. In the case where the cross-weighting term in the performance criterion is deleted
our results recover the gain, sector, and disk margins for the deterministic optimal control problem presented in
Sepulchre et al.”

Alternatively, retaining the cross-terms in the performance criterion and specializing the optimal nonlinear-
nonquadratic problem to a stochastic linear-quadratic problem with a multiplicative noise disturbance, our results
recover the analogous gain and phase margins for the deterministic linear-quadratic optimal control problem given in
Chung et al.!° Even though the inclusion of cross-weighting terms in the performance criterion is shown to degrade gain,
sector, and disk margins, the extra flexibility provided by the cross-weighting terms makes it possible to guarantee opti-
mal and inverse optimal nonlinear controllers that may be far superior in terms of transient performance over meaningful
inverse optimal controllers.

Finally, using the newly developed notion of stochastic dissipativity!!1? for controlled Markov diffusion processes char-
acterized via extended Kalman-Yakubovich-Popov conditions in terms of the drift and diffusion dynamics developed in
Rajpurohit and Haddad,'? we provide explicit connections between stochastic stability margins, stochastic meaningful
inverse optimality, and stochastic dissipativity with respect to a specific quadratic supply rate. In particular, we derive
a stochastic counterpart to the classical return difference inequality for continuous-time systems with continuously
differentiable flows*!3 for stochastic dynamical systems and provide connections between stochastic dissipativity and
optimality for stochastic nonlinear controllers. In particular, we show an equivalence between stochastic dissipativity and
optimality holds for stochastic dynamical systems. Specifically, we show that an optimal nonlinear feedback controller
¢(x) satisfying a return difference condition predicated on the infinitesimal generator of a controlled Markov diffusion
process is equivalent to the fact that the stochastic dynamical system with input u and output y = —¢(x) is stochastically
dissipative with respect to a supply rate of the form [u + y]"[u +y] — uTu.

2 | NOTATION, DEFINITIONS, AND MATHEMATICAL PRELIMINARIES

In this section, we establish notation, definitions, and review some basic results on stability of nonlinear stochastic dynam-
ical systems.!#1® Specifically, R denotes the set of real numbers, R, denotes the set of positive real numbers, @J, denotes
the set of nonnegative numbers, Z, denotes the set of positive integers, R" denotes the set of n x 1 real column vectors,
and R™™ denotes the set of n X m real matrices. We write B.(x) for the open ball centered at x with radius ¢, || - || for
the Euclidean vector norm or an induced matrix norm (depending on context), omax(-) (respectively, omin(-)) for the max-
imum (respectively, minimum) singular value, M > 0 (respectively, M > 0) to denote that the Hermitian matrix M is
nonnegative (respectively, positive) definite, AT for the transpose of the matrix A, and I,, or I for the n x n identity matrix.
Furthermore, 8" denotes the o-algebra of Borel sets in D C R" and © denotes a o-algebra generated on a set S C R".
We define a complete probability space as (2, F, P), where Q denotes the sample space, F denotes a o-algebra, and P
defines a probability measure on the o-algebra F; that is, P is a nonnegative countably additive set function on ¥ such that
P(Q) = 1.1 Furthermore, we assume that w(-) is a standard d-dimensional Wiener process defined by (w(-), Q, F, P¥),
where P" is the classical Wiener measure,'””" with a continuous-time filtration {7, };», generated by the Wiener process
w(t) up to time ¢. We denote by G a stochastic dynamical system generating a filtration {¥;}:>o adapted to the stochastic
process x : ﬁJr X Q — Don (Q, F,P*%) satisfying F, C F;,0 < 7 < t,such that {w € Q : x(t,w) € B} € F;,t > 0, for all



HADDAD AND JIN Wl L EY 5501

Borel sets 3 ¢ R” contained in the Borel o-algebra B". Here, we use the notation x(¢) to represent the stochastic process
x(t, w) omitting its dependence on w.

We denote the set of equivalence classes of measurable, integrable, and square-integrable R"” or R™" (depending on
context) valued random processes on (Q, F, P) over the semi-infinite parameter space [0, c0) by L%(Q, F,P), £L1(Q, F, P),
and £2(Q, T, P), respectively, where the equivalence relation is the one induced by P-almost-sure equality. In particular,
elements of £°(Q, 7, P) take finite values P-almost surely (a.s.). Hence, depending on the context, R" will denote either
the set of n X 1 real variables or the subspace of £L°(Q, 7, P) comprising of R" random processes that are constant a.s. All
inequalities and equalities involving random processes on (€2, ', IP) are to be understood to hold P-a.s. Furthermore, E[-]
and [E%[-] denote, respectively, the expectation with respect to the probability measure P and with respect to the classical
Wiener measure [P*o.

A stochastic process x : Rr X Q — D on (Q, F,P%) is called a martingale with respect to the filtration {F;}o if and
only if x(¢) is a Fy-measurable random vector for all ¢ > 0, E[x(t)] < o0, and x(r) = E[x(¢)|F,] forallt > = > 0,
where, for a given x € L1(Q, F,P) and a 5-algebra £ C F, E[x|€] denotes conditional expectation with all moments taken
under the measure P. If we replace the equality in the aforementioned equation with “<” (respectively, “>"), then x(-) is
a supermartingale (respectively, submartingale). A random variable 7 : Q — [0, o] is called a stopping time with respect
to Fyifandonly if {0 € Q : 7(w) <t} € Fi, t > 0.

Finally, we write tr(-) for the trace operator, (-)~! for the inverse operator, V’(x) £ % for the Fréchet derivative of V at

x, V"' (x) & % for the Hessian of V at x, and H,, for the Hilbert space of random vectors x € R", ie, H, = {x : Q = R"}.
For an openset D C R", HP 2 {x € H, : x : Q — D} denotes the set of all the random vectors in H, induced by
D. Similarly, for every x, € R", Hﬁ" AixeH,: x= Xo}. Furthermore, C? denotes the space of real-valued functions
V : D — R that are two-times continuously differentiable with respect tox € D C R".

Consider the nonlinear stochastic dynamical system G given by

dx(t) = f(()dt + Dex()dw(r),  x(to) = Xo, t > to, (€]

where, for every t > fy, x(t) € H,Zl) is a Fy-measurable random state vector, x(ty) € H;“’, D C R"is an open set with
0 € D, w(t)is a d-dimensional independent standard Wiener process (ie, Brownian motion) defined on a complete filtered
probability space (Q, 7, { T}, P), X(f) is independent of (w(t) — w(ty)),t > fp,and f : D - R"and D : D — Rr>d
are continuous functions and satisfy f(0) = 0 and D(0) = 0. The filtered probability space (Q, 7, {F;}1»,, P) is clearly a
real vector space with addition and scalar multiplication defined componentwise and pointwise. A R"-valued stochastic
process x : [ty, 7] X Q — D is said to be a solution of (1) on the time interval [t,, 7] with initial condition x(¢) = Xo if x(+)
is progressively measurable (ie, x(-) is nonanticipating and measurable in ¢ and ) with respect to the filtration {F;}:;,,

feLyQ,F,P),D e £*>Q,F,P),and

t t
x(t) = xo + / f(x(s))ds + / D(x(s))dw(s) a.s., te€lt, ], 2)
[}

)

where the integrals in (2) are It6 integrals.

Note that, for each fixed t > f,, the random variable w — X(t, w) assigns a vector x(w) to every outcome w € Q of an
experiment, and for each fixed w € Q, the mapping ¢ — X(t, w) is the sample path of the stochastic process x(f), t > t,. A
pathwise solution ¢ — x(f) of (1) in (, {F;} >, P©) is said to be right maximally defined if x cannot be extended (either
uniquely or nonuniquely) forward in time. We assume that all right maximal pathwise solutions to (1) in (Q, {F;}»,, P*)
exist on [fy, ), and hence, we assume that (1) is forward complete. Sufficient conditions for forward completeness or
global solutions of (1) are given in Corollary 6.3.5 in the work of Arnold.!®

Furthermore, we assume that f : D — R" and D : D — R satisfy the uniform Lipschitz continuity condition

I/ G = F DI+ ID&x) = DWle < Lllx = yll, x,y €D, (3)
and the growth restriction condition

I £COII* + IDOIIE < L*(A + |Ix|I*), x € D, “4)
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for some Lipschitz constant L > 0, and hence, since x(ty) € H? and x(ty) are independent of (w(t)—w(to)), t > to, it follows
that there exists a unique solution x € £2(Q, F,P) of (1) in the following sense. For every x € HP? \ {0}, there exists 7, > 0
such thatifx; : [fo, 1] X Q — D and x, : [ty, 2] X Q — D are two solutions of (1); that is, if x;,x, € £2(Q, F,P), with
continuous sample paths a.s., solve (1), and then 7, < min{r, 7,} and P (t) = x(t), to <t <1y) = 1.

A weaker sufficient condition for the existence of a unique solution to (1) using a notion of (finite or infinite) escape
time under the local Lipschitz continuity condition (3) without the growth condition (4) is given in Wu et al.!® More-
over, the unique solution determines a R"-valued, time-homogeneous Feller continuous Markov process x(-), and hence,
its stationary Feller transition probability function is given by (see Theorem 3.4 of Khasminskii'® and Theorem 9.2.8
of Arnold!®)

Px(t) € B : x(to) = xo) = P(t — to, %0, 0, B), X, € R", (5)

for all t > t; and all Borel subsets B of R”, where P(s, x, t, B),t > s, denotes the probability of transition of the point

x € R" at time instant s into the set B C R" at time instant ¢. Finally, recall that every continuous process with Feller
transition probability function is also a strong Markov process.'s""

Definition 1 (See Definition 7.7 of @ksendal'?). Let x(-) be a time-homogeneous Markov process in H? and let V :
a.s.

D — R. Then, the infinitesimal generator L of x(t), t > t,, with x(ty) = Xy, is defined by

Xo € D. (6)

Xo —
LV(o) 2 Tim E%[V(x(1))] V(xo),
t—>0* t
If V € C? and has a compact support, and x(f), t > t, satisfies (1), then the limit in (6) exists for all x € D and the
infinitesimal generator £ of x(t), t > to, can be characterized by the system drift and diffusion functions f(x) and D(x)
defining the stochastic dynamical system (1) and is given by (see Theorem 7.9 of @ksendal'7)

oV (x)
ox

0*V(x)

LV(x) & =

D(x), xe€D. 7

fx) + %tr DT (x)

The following definition introduces the notions of Lyapunov and asymptotic stability in probability. Recall that an
equilibrium point x, = 0 of (1) is a point such that f(0) = 0 and D(0) = 0. In this case, x. = 0 is an equilibrium point of (1)
if and only if the zero solution (ie, the zero stochastic process), x(-) 2 0 is a solution of (1).

Definition 2 (Kushner'#). (i) The zero solution x(t) Z0to (1) is Lyapunov stable in probability if, for every e > 0 and
p € (0,1), there exist § = 6(p, €) > 0 such that, for all x, € B;(0),

o <sup [|x(D]| > £> <p. €]

21,

(ii) The zero solution x(t) Z0to (1) is locally asymptotically stable in probability if it is Lyapunov stable in probability
and, for every p € (0, 1), there exist § = 6(p) > 0 such that, for all x, € Bs(0),

P (Jim x@ll =0) > 1-p. )

(iii) The zero solution x(t) L0 to (1) is globally asymptotically stable in probability if it is Lyapunov stable in
probability and, for all x, € R",

P <}ij§o x| = 0) -1, (10)

Remark 1. A more general stochastic stability notion can also be introduced here involving stochastic stability and
convergence to an invariant (stationary) distribution. In this case, state convergence is not to an equilibrium point
but rather to a stationary distribution. This framework can relax the vanishing perturbation assumption D(0) = 0 and
requires a more involved analysis and synthesis framework showing stability of the underlying Markov semigroup.’



HADDAD AND JIN Wl L EY 5503

Finally, we provide sufficient conditions for local and global asymptotic stability in probability for the nonlinear
stochastic dynamical system (1).

Theorem 1 (See Theorem 5.3 and Corollary 5.1 of Khasminskii'®). Consider the nonlinear stochastic dynamical
system (1) and assume that there exists a two-times continuously differentiable function V : D — R such that

V(0) =0, an
V(x) >0, x €D, X #0, 12)
2
VO ro+ Lt 'Y ®pxy <0, xeD. 13)
ox 2 0x?

Then, the zero solution x(t) o (1) is Lyapunov stable in probability. If, in addition,

aV(x)
ox

2V (x)

e Dx)<0, xeD, x#0, (14)

f0) + %tr DT(x)

then the zero solution x(t) = 0 to (1) is asymptotically stable in probability. Moreover, if D = R" and V(-) is radially
unbounded, then the zero solution x(t) Z0t0 (1) is globally asymptotically stable in probability.

3 | DISSIPATIVITY THEORY FOR STOCHASTIC SYSTEMS

In this section, we present several key results on stochastic dissipativity developed in Wu et al'! and Rajpurohit and
Haddad!? that are necessary for the main results of this paper. Specifically, we consider nonlinear stochastic dynamical
systems G of the form

dx(t) = F(x(t), u(t))dt + D(x(2), u(t))dw(r), x(to) = Xo, 2> to, (15)

y(t) = H(x(1), u(t)), (16)

where, for every t > t,x(t) € HP, D is an open set with 0 € D, u(t) € HY, U CR™, y() e HY,Y CRLF : DxU — R",
D:DxU - R*™ andH : Dx U — Y. For the dynamical system G given by (15) and (16) defined on the state
space HP, U and Y define an input and output space, respectively, consisting of measurable bounded H-valued and
HIY -valued stochastic processes on the semi-infinite interval [0, co). The set HJ contains the set of input values with
measurable sample paths satisfying a nonanticipativity condition, ie, for every u(-) € U and t € [ty, o), u(t) € HY, and
forall t > s, w(t) — w(s) is independent of u(z), w(r),r < s, and x(fy). The set HIY contains the set of output values, ie,
for every y(-) € Y and t € [0, ), y(t) € HIY. The spaces U" and Y are assumed to be closed under the shift operator, ie, if
u(-) € U (respectively, y(-) € Y), then the function defined by ur = u(t + T) (respectively, yr = y(t + T)) is contained in
U (respectively, Y) forall T > 0.

Furthermore, for the nonlinear stochastic dynamical system G, we assume that the conditions for existence and unique-
ness of solutions are satisfied, ie, u(-) satisfies sufficient regularity conditions such that the system (15) has a unique
solution forward in time. Specifically, we assume that the control process u(-) in (15) is restricted to the class of admissi-
ble controls consisting of measurable functions u(-) adapted to the filtration {¥;},, such that u(-) is nonanticipative and
takes values in a compact metrizable set . Furthermore, we assume the uniform Lipschitz continuity and growth condi-
tions (3) and (4) hold for the controlled drift and diffusion terms F(x, u) and D(x, u) uniformly in u. In this case, it follows
from Theorem 2.2.4 of Arapostathis et al?! that there exists a pathwise unique solution to (15) in (€, {Frog, 1, ).

For the stochastic dynamical system ¢ given by (15) and (16), a function r : HY x HIY — H; such that r(0, 0) Z0is

called a supply rate if r(u(t), y(t)) is locally Lebesgue integrable for all input-output pairs satisfying (15) and (16), ie, for all
input-output pairs u(-) € U and y(-) € Y satisfying (15) and (16), r(-, -) satisfies E[ /[ltz [r(u(s), y(s))|ds] < oo, t1,t, > O.

Definition 3. A stochastic dynamical system G of the form (15) and (16) is stochastically dissipative with respect to the
supply rate r(u,y) if there exists a measurable and nonnegative function Vs : D — R, called a storage function for G,
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such that V5(0) = 0 and Vs(x(t)) — ft: r(u(s), y(s))ds, t > to, is a Fi-supermartingale for all #, ¢t > 0, where x(¢), t > to,
is the solution of (15) with u(-) € U’; or, equivalently,

E[Vs(x(®))[F7,] < Vs(x(10)) + E l / r(u(s), y(s))ds

0

a.s.
PTO ) T Z 70, (17)

where 7 and 7, are finite 7;-stopping times.

Definition 4. A nonlinear stochastic dynamical system G is completely stochastically reachable if, for all x, € D C R"

a.s.
and £ > 0, there exist a finite random variable 75 () > 0, called the first hitting time, defined by 7 (x,)(®) 2 inf{t >
0 : x(t,w) € Be(xo)}, and a square integrable input u(f) defined on [0, 75 ()] such that the state x(¢), ¢ > 0, can be

driven from x(0) Z0to X(tB,(x)) and E[zy ] < oo, where 7, = Sup,.(7s,(, and the supremum is taken pointwise. A
a.s. a.s. a.s.
nonlinear stochastic dynamical system G is zero-state observable if u(t) = 0 and y(t) = 0 implies x(¢) = 0.

If V5(-) is two-times continuously differentiable, then an equivalent statement for the stochastic dissipativeness of G
with respect to the supply rate r(u,y) can be characterized by the infinitesimal generator L.

Proposition 1 (Wu et al'! and Rajpurohit and Haddad'?). Consider the nonlinear stochastic dynamical system G given
by (15) and (16). If Vs : D C R" — R is two-times continuously differentiable and has a compact support, then G is
stochastically dissipative with respect to supply rate r(-, -) if and only if

2
LV () & a‘;ix)F(x, )+ %tr DT(x. )2 ;;gx) D(x, 1)
<r(u,H(x,u)), @x,ueDxU. (18)

Next, we show that stochastic dissipativeness of nonlinear affine stochastic dynamical systems G of the form

a.s.

dx(t) = [f (x()) + Gx(@®))u®)]dt + Dx()dw(?),  x(to) = X0, = to, 19)

y(t) = h(x(1)) + J(x(O)u(t), (20)
where, for every t > t, x(t) € HP, D is an open set with 0 € D, u(t) € HY, U C R™ is an open set with 0 € U, y(t) € HY,
YCR,f:D->R,G:D->R>* D:D->R> K :D-> R andJ : D - R>” can be characterized in
terms of the system functions f(-), G(-), D(-), h(-), and J(-). We assume that f{-), G(:), D(-), h(-), and J(-) are continuously
differentiable mappings and G has at least one equilibrium so that, without loss of generality, f{0) = 0, D(0) = 0, and
h(0) = 0. Furthermore, for the nonlinear stochastic dynamical system G, we assume that the required properties for the
existence and uniqueness of solutions in forward time are satisfied.

For the following result, we consider the special case of dissipative systems with quadratic supply rates.?>?> Specifically,
wesetD=R", U=R" Y =R;letQ €S, R €S™ and S € R*™ be given, where S? denotes the set of g X g symmetric
matrices, and assume r(u,y) = y'Qy + 2y"Su + uTRu. Furthermore, we assume that there exists a function « : R! — R™
such that x(0) = 0 and r(x(y),y) < 0,y # 0, so that, as shown by Theorem 3.2 in Rajpurohit and Haddad,'? all storage
functions for G are positive definite. Moreover, we assume that there exists a two-times continuously differentiable storage
function Vi(x), x € R", for the stochastic dynamical system G.

Theorem 2 (Rajpurohit and Haddad'?). Let Q € S, S € RX™, R € S™, and let G be zero-state observable and completely
stochastically reachable. G is stochastically dissipative with respect to the quadratic supply rate r(u,y) = yTQy +2y"Su +
uTRu if and only if there exist functions Vs : R" - R, Z : R" - RP, and W : R" — RP*™ such that Vi(-) is two-times
continuously differentiable and positive definite, V(0) = 0, and, for allx € R",

0=VI)f(x) + %tr D (x)V! (x)D(x) — KT (x)Qh(x) + £T(x)Z(x), (21)

0= LV @60) - eI +8) + £ W), (22)

0=R+ ST +JT00)S + JT()QI(x) = WIx)W(x). (23)
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= A() g

FIGURE1 Multiplicative input uncertainty of G and input operator A(-)

If, alternatively,
N 2R+ STTx) +TT0)S +JT(x)QJ(x) >0, xe&R",

then G is stochastically dissipative with respect to the quadratic supply rate r(u,y) = y*Qy +2y"Su + u"Ru if and only if
there exists a two-times continuously differentiable function Vs : R" — R such that V(-) is positive definite, Vs(0) = 0,
and, forall x € R",

0> Vi) f(x) + %tr D'V ()D(x) - kT (x)Qh(x) + [%Vs, (0G(x) = KT (X)(QI(x) + S)
T

NI 3VI66) - KT @QIW) + 5)] @4

4 | STABILITY MARGINS FOR STOCHASTIC FEEDBACK REGULATORS

To develop relative stability margins for nonlinear stochastic regulators, consider the nonlinear stochastic dynamical
system G given by

dx(t) = [£ () + GOe(e)u(D)] dt + D(D)dw(t), x(0) = X, ¢ >0, (25)

Y1) = —p(x()), (26)
where f : R" — R" satisfies f(0) = 0, G : R" - R™™ D : R* - R™ gatisfies D(0) = 0, and ¢ : R* — R™is an
admissible feedback controller such that G is globally asymptotically stable in probability with u = —y. Furthermore, we
assume that G is zero-state observable.

Next, we define the relative stability margins for G given by (25) and (26). Specifically, let u. £ —y, y. £ u, and consider
the negative feedback interconnection u = A(-y) of G and A(-) given in Figure 1, where A(:) is either a linear operator
A(uc) = Auc, a nonlinear static operator A(u.) = o(u.), or a nonlinear dynamic operator A(-) with input u. and output
Y. Furthermore, we assume that, in the nominal case, A(-) = I(:) so that the nominal closed-loop system is globally
asymptotically stable in probability.

Definition 5. Leta,f € Rbesuchthat0 < a < 1 < f < o0. Then, the nonlinear stochastic dynamical system G
given by (25) and (26) is said to have a gain margin (a, f) if the negative feedback interconnection of G and A(u.) = Au,
is globally asymptotically stable in probability for all A = diag[k;, ..., kn], where k; € (a,f),i=1, ..., m.

Definition 6. Let a,§ € Rbesuchthat0 < a < 1 < f < o0. Then, the nonlinear stochastic dynamical system G
given by (25) and (26) is said to have a sector margin (a, p) if the negative feedback interconnection of G and A(u.) =
o(u.) is globally asymptotically stable in probability for all nonlinearities ¢ : R™ — R™ such that ¢(0) = 0, o(u.) =

[61(Uc1), .., Om(enm)]”, and aul, < oi(uc)ue < pu?, forallu #0,i=1, ..., m.

Definition 7. Let @,/ € Rbesuchthat0 < @« < 1 < f < 0. Then, the nonlinear stochastic dynamical system
G given by (25) and (26) is said to have a disk margin (a, p) if the negative feedback interconnection of G and A(-)
is globally asymptotically stable in probability for all dynamic operators A(-) such that A(:) is zero-state observable
and stochastically dissipative with respect to the supply rate r(uc, yc) = Ul ye — #ﬁ ye — 2L uTu., where & = a + 5,

a+p
f=p—6,and 6 € Rsuchthat0 <26 < f —a.

Definition 8. Let «,§ € Rbe suchthat0 < @ < 1 < f < oo. Then, the nonlinear stochastic dynamical system

G given by (25) and (26) is said to have a structured disk margin (a, f) if the negative feedback interconnection of

G and A(-) is globally asymptotically stable in probability for all dynamic operators A(:) such that A(-) is zero-state

observable, A(u.) = diag[61(Uc1), ---, Om(Uem)], and 6;(-), i = 1, ..., m, is stochastically dissipative with respect to the
ap

supply rate r(ie;, yei) = UciVei — ﬁﬁyii - @uii, where @ =a+6, = —6,and 6 € Rsuch that 0 < 26 < f — a.
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Remark 2. Note that, if G has a disk margin (a, #), then G has gain and sector margins (a, f).

5 | NONLINEAR-NONQUADRATIC OPTIMAL REGULATORS FOR
STOCHASTIC DYNAMICAL SYSTEMS

In this section, we consider a control problem involving a notion of optimality with respect to a nonlinear-nonquadratic
cost functional. In particular, consider the controlled nonlinear stochastic dynamical system (15), where u(-) is restricted
to the class of admissible controls consisting of measurable functions u(-) adapted to the filtration {7}, such that u(t) €
HY for almost all t > to and u(-) is nonanticipative and takes values in a given compact, metrizable set U'.

A measurable function ¢ : D — U satisfying ¢(0) = 0 is called a control law. If u(t) = ¢(x(t)), t > ty, where ¢(-) is a
control law and x(t), t > to, satisfies (15), then we call u(-) a feedback control law. Note that the feedback control law is an
admissible control since ¢(-) has values in U. Given a control law ¢(-) and a feedback control law u(t) = ¢p(x(t)), t > to,
the closed-loop system (15) has the form

dx(t) = FQx(t), $Oe(t)dt + Dex(t), pee(O)dw(t),  X(to) = Xo, £ to. 27

Next, we present a main theorem for stochastic stabilization characterizing feedback controllers that guarantee local
and global closed-loop stability in probability and minimize a nonlinear-nonquadratic performance measure. For the
statement of this result, let L : D X U — R be jointly continuous in x and u, and, for every p € (0, 1), define the set of
stochastic regulation controllers given by

S, p) 2 {u(~) : u(-) is admissible and x(-) given by (15) is such that P* (%z(f)) >1-p,

where 81 2 {x({t > to},@) : lim x(t, )| = 0, @ € Q}} .
Furthermore, define the indicator function of the set 23;5') by

1, ifx({t>to},w) € B,
]l%u(J(CO) A ({ ' 0} ) Xo
%0 0, otherwise.

The set 23,’?5') denotes the set of all controlled sample paths of (15) for which lim;_,||x(t, ®)|| = 0 and x({t > t,},w) €

23;:;'), @ € Q. Since in local stochastic stability theory there exists a probability of less than or equal to p that the system
solution x(t, w) leaves the subset B, (0) for every xo € B;(0), ie, the probability of escape is continuous at x, = 0 with
small deviations from the equilibrium implying a small probability of escape, the set %;;') and IP"O(?Bz;')) are necessary for
defining a well-posed cost functional for the optimal control problem formulation given in Theorem 3.

Theorem 3 (Rajpurohit and Haddad!). Consider the nonlinear stochastic controlled dynamical system (15) with
performance measure

T (0, u0), B ) £

0

— L p= [ / L(x(8), u(1))Lyguo (@)dt | (28)
Px (23;5)) t X0

where u(-) is an admissible control and 1y (w) denotes the indicator function of the set EBJL;S'). Assume that there exist a
X0
two-times continuously differentiable function V : D — R and a control law ¢ : D — U such that

V(0) =0, (29)

V(x) >0, x €D, x # 0, (30)

$(0) =0, (31
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V' (X)F(x, p(x)) + %tr D (x, p(x))V" (x)D(x, $(x)) < 0, x €D, x #0, (32)
H(x, ¢p(x)) =0, x € D, (33)
H(x,u) >0, x €D, ueU, (34)
where
H@e,u) 2 Lix, u) + V' (X)F(x, u) + %tr DT(x, u)V" (x)D(x, ). (35)

Then, with the feedback control u(-) = ¢(x(-)), the zero solution x(t) =0 of the closed-loop system (27) is locally asymp-
totically stable in probability and, for every p € (0, 1), there exist 5 = 6(p) and %fo(x(')) with ]P’XO(SB;Z(X('))) > 1— psuch that,
forall xg € Bs(0) C D,

T (0, e, BE ) = Vo) (36)

In addition, if xo € Bs(0), then the feedback control u(-) = ¢(x(-)) minimizes (28) in the sense that

T (%0, g, BE ) = min T (xo,u(), BY ). (37)

u(-)eS(xy.p)

Finally, if D = R", U = R™, and V(x) — oo as ||x|| — oo, then the zero solution x(t) Lo of the closed-loop system (27) is
globally asymptotically stable in probability and (37) holds with p = 0 and ]I”xt)(?Bi(X('))) =1,x € R

It is important to note here that, in the case where the optimal feedback control ¢(-) guarantees global asymptotic
stability in probability, IP”‘O(%Z’O(')) = 1, and hence, 1 g () =N Moreover, all the admissible controls u(-) that guarantee
X0

global attraction in probability also satisfy ]P’XO(%;E')) = 1forall x, € R", and hence, p = 0 and 1 g (@) Z'1. In this case,

J (xo,u(~), ?B)f[f')) = ! )Exo [ / c’OL(x(r), u(t) g (@)dt
t 0

P <%u<->

Xo

=% [ / ooL(x(t), u(t))dt] (38)
by
and

J (xo,qs(-), %;‘;j”) = WE‘O [ / LOu(®), $Oe(0)) g (@)dt
P %xo f 0

= % [/ L(x(¢), d)(x(t)))dt] . (39

fy

Thus, in the remainder of this paper, we omit the dependence on 58;’;(') and %zs') in the cost functional and we write S(xp)
for S(xo, p) for all the results concerning globally stabilizing controllers in probability.

Next, we specialize Theorem 3 to affine stochastic dynamical systems. Specifically, we construct nonlinear feedback
controllers using an optimal control framework that minimizes a nonlinear-nonquadratic performance criterion. This is
accomplished by choosing the controller such that the infinitesimal generator is negative along the closed-loop system
sample trajectories while providing sufficient conditions for the existence of stochastically asymptotically stabilizing solu-
tions to the stochastic Hamilton-Jacobi-Bellman equation. Thus, these results provide a family of globally stochastically
stabilizing controllers parameterized by the cost functional that is minimized.

The controllers obtained next are predicated on an inverse optimal stochastic control problem.!® Consider the nonlinear
affine stochastic dynamical system given by (25) with performance integrands L(x, u) of the form

Lee,u) = Li(x) + LyoOu + uTRy(x)u, (40)
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where L, : R" - R, L, : R* - R and R, : R* - R™"™ where R,(x) > 0, x € R", so that
J(xo, u(-)) = E* [ / [L1(x(8)) + La(x(0)u(t) + u" (HR(x()u(t)]dt | . (41)
0

Theorem 4 (Rajpurohit and Haddad!). Consider the nonlinear controlled affine stochastic dynamical system (25) with
performance measure (41). Assume that there exist a two-times continuously differentiable function V : R" — R and a
function L, : R* — R™™ such that

V(0) =0, (42)
L,(0) =0, (43)
V(x) >0, x e R", X #0, (44)

V') [£60 - GRS LI - S GOOR; G V)|
+ %tr D)V (x)D(x) <0, xe€R" x#0, (45)
and V(x) —» oo as ||x|| = oo. Then, the zero solution x(t) z 0 of the closed-loop system
dx(t) = [ (1)) + GO(D)PCe(e)IdE + DEe(t)dw(D), x(0) =xg, ¢ >0, (46)
is globally asymptotically stable in probability with the feedback control law
Px) = —%R;%x) [V/0)6@) + L) . 47
and the performance measure (41), with
Li(x) = ¢" )OR()p(x) — V' (%) f (x) — %tr D' ()V" (x)D(x), (48)

is minimized in the sense that

J(x0, p(x(-))) = min  J(xo, u(-)), X € R". (49)
u(-ES(x)
Finally,
J (0, p(x(-))) = V(x0), X € R". (50)
Note that (45) is equivalent to
LV() 2V X[ fX) + Gx)p(x)] + %tr DY) V"(x)D(x) <0, xeR" x#0, (51)

with ¢(x) given by (47). Furthermore, conditions (42), (44), and (51) ensure that V{(-) is a Lyapunov function for the
closed-loop system (46). As discussed in Rajpurohit and Haddad,! it is important to recognize that the function L,(x),
which appears in the integrand of the performance measure (40), is an arbitrary function of x € R” subject to conditions
(43) and (45). Thus, L,(x) provides flexibility in choosing the control law.

With L; (x) given by (48) and ¢(x) given by (47), L(x, u) can be expressed as

L%, 1) = WTR(01 — TIRE) + La(0)1t = $(6) = VL) + Geg)] - 2t DTV D)
T
= [u+ SR @LI00| Ro) [+ SR OLI0] - VL) + Gpo]

- %tr DY)V (x)D(x) — iV’(x)G(x)R;l(x)GT(x)V’T(x). (52)
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Since R,(x) > 0, x € R", the first term on the right-hand side of (52) is nonnegative, while (51) implies that the second,
third, and fourth terms collectively are nonnegative. Thus, it follows that

Lo uw) > —}‘V’ OGEOR; ) GT )V (), (53)

which shows that L(x, u) may be negative. As a result, there may exist a control input u for which the performance measure
J(xo, u) is negative. However, if the control u is a regulation controller, ie, u € S(xp), then it follows from (49) and (50) that

J (0, u(+)) = V(x) = 0, x € R", u(-) € S(xp). (54)

Furthermore, in this case, substituting u = ¢(x) into (52) yields
L(x, p(x)) = =V' )L (%) + G)p(x)] — %tr D' (x)V" (x)D(x), (55)

which, by (51), is positive.

6 | GAIN, SECTOR, AND DISK MARGINS OF NONLINEAR-NONQUADRATIC
OPTIMAL REGULATORS FOR STOCHASTIC DYNAMICAL SYSTEMS

In this section, we derive guaranteed gain, sector, and disk margins for nonlinear optimal and inverse optimal regulators
that minimize a nonlinear-nonquadratic performance criterion for stochastic dynamical systems. Specifically, sufficient
conditions that guarantee gain, sector, and disk margins are given in terms of the state, control, and cross-weighting
nonlinear-nonquadratic weighting functions.

In particular, we consider the nonlinear stochastic dynamical system given by

dx(t) = [/ (x(0) + GE(O)u(®] dt + De(D)dw(®),  x(0) = xp, £ >0, (56)

W(t) = =p(x(1)), (57)

where ¢ : R" - R™, with a nonlinear-nonquadratic performance criterion
J(xo, u()) = E* [ / [Ly (e(1)) + LoGe()u(t) + u' (R (e(0)u()]dt | , (58)
0

where L; : R*" - R, L, : R* - R™" and R, : R" — R™ "™ are given such that R,(x) > 0, x € R", and L,(0) = 0. In
this case, the optimal nonlinear feedback controller u = ¢(x) that minimizes the nonlinear-nonquadratic performance
criterion (58) is given by the following result.

Theorem 5. Consider the nonlinear stochastic dynamical system (56) and (57) with performance functional (58).
Assume that there exists a two-times continuously differentiable function V : R" — R such that

V(0) =0, (59)
V(x) >0, x € R", x #0, (60)
L,(0) =0, (61)

V') [ 760 = 2GRS ILIM) - S GOOR; G V)|

+ %tr DIx)V"(x)D(x) <0, xeR", x#0, (62)
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0=Lix)+ VX)) + %tr D)V (x)D(x) — i [V/(06) + Ly)|

Ry 0[V0G) + L)', xeRY, (63)

and

V(x) —» o as ||x]| = . (64)

Then, the zero solution x(t) Zo of the closed-loop system
dx(t) = [£(x(1)) + GE(D)p(x(t)] dt + Dex()dw(®),  x(0) =xo, 20, (65)
is globally asymptotically stable in probability with the feedback control law
B0 = ~3 R |V ()G + L] (66)

and the performance functional (58) is minimized in the sense that

J(Xo, p(x(-))) = min J(x,u(), X €R" (67)
u(-)ES(xy)
Finally,
J(xo, p(x())) = V(xo), X € R™ (68)
Proof. The proof is identical to the proof of Theorem 4 given in Rajpurohit and Haddad.! O

The following key lemma is needed for developing the main result of this section.

Lemma 1. Consider the nonlinear stochastic dynamical system G given by (25) and (26), where ¢(x) is a stochastically
stabilizing feedback control law given by (47) and where V(x), x € R", satisfies
, 1 -1 y T, 1 T "
0=V'X)f(x)+L(x)— 2 [V'0)GX) + La(0)] Ry ) [V (0)G(x) + Ly(x)|* + 5trD V" (x)D(x). (69)
Furthermore, suppose there exists 0 € R such that0 < 0 <1 and
(1 = 62)Ly(x) — %Lz(x)Rgl(x)Lg(x) >0, xeR" (70)
Then, forallu(-) € U and t;,t, > 0, t; < t,, the solution x(t), t > 0, to (25) and (26) satisfies
LV() < [u+ yI"Re()[u + y] = 0°u’ Ry, (71)

which implies

1

)
E [Ve®)IF,| < V) +E l / ([u(s) + Y1 Ro(e(s)[u(s) + ¥(8)] = 6°u’ (5)Ra(x(s)ucs)) ds T’h] - (1)
t
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Proof. Note that it follows from (69) and (70) that, for all x € R" and u € R™,

O’ uTRy(0)u < 0*uTRy(x)u +
2V/1-6

%Lz(x)R;(x) +V1- 92uT]

T
1 -1 T
Ry(x) | ————LyoOR; ) + V1 — 62u
0 | o |
= UTR,(0U + —— L (OR; (LT () + Lo(ou

41— 62)
< u"Ry()u + Ly(x)u + Ly (x)

= uTRy()u + Ly()u — V'(x) £ (%) + pT ())R(x)p(x) — %tr DT(x)V" (x)D(x)
= [u+ yI"R@)[u + yl = V()L f () + G(x)u] — %tr D" (V" (x)D(x),
which implies that, for all u(-) € U,
*uTR,(0)u < [u + y]TR(0)[u + y] — LV (%). (73)

Now, using Dynkin's formula (see Theorem 7.12 of @ksendal'”),

o)
E [Vx@)IF,] < Vxt) +E l / ([u(s) + (&I Ra(x(s)[UCS) + ¥(5)] = 0°u™ ()R2(x(5))u(s)) ds Fh] . (M
3}

is immediate. 0

Next, we present disk margins for the nonlinear-nonquadratic optimal regulator given by Theorem 4. First, we consider
the case in which R,(x), x € R", is a constant diagonal matrix.

Theorem 6. Consider the nonlinear stochastic dynamical system G given by (25) and (26), where ¢(x) is a stochastically
stabilizing feedback control law given by (47) and where V(x), x € R", satisfies (48). If Ry(x) = diag[r1, ..., ], where
rp>0,i=1,..,m, and there exists 0 € R such that 0 < 6 < 1 and (70) is satisfied; then, the nonlinear stochastic

dynamical system G has a structured disk margin (1%9’ ﬁ). If, in addition, Ry(x) = I and there exists € R such that

0 < 0 < 1and (70) is satisfied, then the nonlinear stochastic dynamical system G has a disk margin (ﬁ, ﬁ).

Proof. Note that, for all u(-) € U, it follows from Lemma 1 that the solution x(¢), t > 0, to (25) satisfies
LV(X) < [u+ y]"Ro[u + y] — 0*u"Ryu. (75)

Hence, with the storage function Vs(x) = %V(x), it follows from Proposition 1 that G is stochastically dissipative with

respect to the supply rate r(u, y) = uTR,y + 1_—262uTR2u +yTR,y. Now, the result is a direct consequence of Definitions 7

i =L =L
and 8 with a = T and g = - O

Example 1. Consider the nonlinear stochastic dynamical system given by

dx(8) = =x1(t) + (X5 (1) + grxa (HAW(E),  x1(0) Zx, 20, (76)

dxx(t) = —x2(0) + X1 (Du(t) + gox(Hdw(t),  x2(0) aA=S-X207 (77)

where g; < y/2and g, < \/5 with performance functional

Tei. %0, u()) = B [ / [(2=) 50+ (2- ) B0+ 3120 dt] : (78)
0
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To design an optimal control law ¢(x;,x,) that minimizes (78), we use Theorem 5 with x = [x;,x]T, f(x) =
[~ +2023, =], G0 = [0,a]", DR) = [gx1, 621", Li00) = 2= g1x] + (2~ g3)x3, L2(0) = 0,and Ry(x) = 5. In
particular, it follows from (63) that

0=V [_xlfxf 1x§] V'@ [0 e ] e
—tr[glxl 9,221V (x) [glxl ] +(2-g) 3+ (2-g)x (79)

which implies that V'(x) = [2x1, 2x,]. Furthermore, since V(0) = 0, V(x) = xf + xg. Hence, the optimal feedback
control law is given by ¢(x) = —§R2—1(x)GT(x)V'T(x) = —2x1%.
Finally, note that (62) implies

LV(x) = [le ZxZ] [ o +2)§;§C ] + X3 +92
=—(2—g§)x1— (2—g2)x2—2xfx§<0, (80)

for all (x1,x;) # (0,0), and hence, ¢(x1,x;) = —2x1X, is a global stabilizer for (76) and (77). Now, with L,(x) > 0 and
Ly(x) = 0, (70) is always satisfied with 8 € (0, 1). Therefore, the largest value that 6 can attain such that (70) holds is
Omax = 1, which leads to a disk margin of (%, 00).

Next, we consider the case in which R,(x), x € R", is not a diagonal constant matrix. For the following result, define

Y £ Sup omax(Ra2(x)), 4 £ inf omin(R2(X)), (81)
xeRn —  xeRn

where R,(x) is such that ¥ < co and y > 0.

Theorem 7. Consider the nonlinear stochastic dynamical system G given by (25) and (26), where ¢(x) is a stochastically
stabilizing feedback control law given by (47) and where V(x), x € R", satisfies (48). If there exists 0 eR such that

0 < 0 < 1and (70) is satisfied, then the nonlinear stochastic system G has a disk margin (1+ ik ) wheren £ v /7.

Proof. Note that, for all u(-) € U, it follows from Lemma 1 that the solution x(¢), t > 0, to (25) satisfies

LV () < [u+ y["Ry(0)[u + y] = 6*u' Ry (x)u
<7lu+yl'u+yl - you'u. (82)

Hence, with the storage function Vy(x) = i V(x), it follows from Proposition 1 that G is stochastically dissipative with

respect to the supply rate r(u, y) = u'y Ty 4 yTy. Now, the result is a direct consequence of Definition 7 with
. =1
a= s and g = —t O

Next, we provide an alternative result that guarantees sector and gain margins for the case in which R,(x), x € R", is
diagonal.

Theorem 8. Consider the nonlinear stochastic dynamical system G given by (25) and (26), where ¢(x) is a stochasti-
cally stabilizing feedback control law given by (47) and where V(x), x € R", satisfies (48). Furthermore, let Ry(x) =
diag[r;(x), ..., rm(0)], wherer; : R" - R, ri(x) > 0,i =1, ..., m. If G is zero-state observable and there exists 6 € R such
that0 < 0 < 1and

(1 = ALy (x) — lLz(x)R;l(>c)L§(x) >0, xeRY (83)

then the nonlinear stochastic dynamical system G has a sector (and, hence, gain) margin (ﬁ ﬁ)
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Proof. Let A(-y) = o(-y), where 6 : R™ — R™ is a static nonlinearity such that ¢(0) = 0, c(v) =
[611), ..., omm)]T, and av? < oy(v)v; < pv2, forallv; # 0,i =1, ..., m, where a = 1%9 and § = ﬁ; or, equiva-
lently, (6:(v;) — avi)(o;(v;) — pv;) < 0, for allv; # 0,i = 1, ..., m. In this case, the closed-loop system (25) and (26) with
u = o(—y) is given by

dx(t) = [£ (1)) + GE(D)o(PE(B)IAE + DE(E)dw(D),  x(0) = xp, ¢ > 0. (84)

Next, consider the Lyapunov function candidate V(x), x € R", satisfying (48) and let LV (x) denote the Lyapunov
infinitesimal generator of the closed-loop system (84). Now, it follows from (48) and (83) that

LV(x) =V (x)fX) + V' (0)Gx)o(p(x)) + %tr DY)V (x)D(x)

SV @fX) + V' (0G0 (p(x)) + %tr D')V"()D(x) + L1 (x)

1

.+ -1 T
a0 92)L2(x)R2 ()L, (x)

T
1 _
+(1-6% [G(¢(x)) + mRzl(x)Lg(x)] Ry ()

1 -
: [6(¢(x)) + mRz 1(JC)LE(JC)]

= V') f00) + L1(x) + V' (X)G(X)o((x)) + %tr D' (x)V" (x)D(x)

+ (1= 6% (PR (05 ((x)) + La(x)o(¢(x))
= ' (OR()P(X) — 20" (OR(X)o ($(x))
+ (1= 6% (p())R: (M) ((x))

Zri(x) <%0i(_)’i) + Yi> <§5i(_)’i) + yi)
i1

L3 10 @i(=30) + @) (Gi(=3) + Bni)
af =

<0, xeR"Y

which, by Theorem 1, implies that the closed-loop system (84) is Lyapunov stable in probability.

Next, it follows from Corollary 4.1 of Mao?® that LV (x) = 0 as t — o0, and note that LV (x) = 0 if and only ify = 0.
Now, since G is zero-state observable, it follows that x(t) Y 0 as t - o0. Thus, since V;(-) is radially unbounded, the
closed-loop system (84) is globally asymptotically stable in probability for all o(-) such that aviz < oi()y; < ﬁviz, v; #0,
i =1, ...,m,which implies that the nonlinear stochastic system G given by (25) and (26) has sector (and, hence, gain)
margins (a, f). O

Note that, in the case where R,(x), x € R", is diagonal, Theorem 8 guarantees larger gain and sector margins to the gain
and sector margin guarantees provided by Theorem 7. However, Theorem 8 does not provide disk margin guarantees.

7 | INVERSE OPTIMALITY OF NONLINEAR STOCHASTIC FEEDBACK
REGULATORS

In this section, we give sufficient conditions that guarantee that a given nonlinear feedback controller has prespecified
disk, sector, and gain margins.

Proposition 2. Letd € (0,1) and let R, € R™ ™ be a positive-definite matrix. Consider the nonlinear stochastic dynam-
ical system G given by (25) and (26), where ¢(x) is a stochastically stabilizing feedback control law. Then, there exist
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functionsV : R" - R, L; : R" » R, and L, : R* - R™™" such that ¢(x) = —%R;l[V’(x)G(x)+L2(x)]T, V() is
two-times continuously differentiable, V(0) = 0, V(x) > 0, x € R", x # 0, and, for allx € R",

0=V'(x)f(x)+Li(x)— % [V'(0)G(x) + Lo0)] Ry [V (0)G(x) + Lz(x)]T + %tr DT (x)V" (x)D(x), (85)

0.< (1= PIL(x) - ZL2(OR; LI) (86)
ifand only if, for allu(-) € U, there exists V : R" — R such that V(0) = 0, V(x) > 0, x € R", x # 0, and the solution x(t),
t > 0, to (25) satisfies
LV () < [u+ y]"RyX)[u + y] — *u"Ry(x)u. (87)

Proof. If there exist functions V. : R* - R, L; : R" - R,and L, : R" — RX" such that ¢(x) =
—%RZ‘ V! (x)G(x) + L,(x)]T and (85) and (86) are satisfied, then it follows from Lemma 1 that (87) is satisfied. Con-
versely, if for u(-) € U the solution x(¢), t > 0, to (25) satisfies (87), then with Q = R, S = Ry, and R = (1 — 6*)R,, it
follows from (24) of Theorem 2 that

0> V(0 f() + %tr DTV (D) — TR, p(x) + ﬁ TR, + V' (0Gw)]

Ry 26T COR, + V0G|, x € R™,

The result now follows with Li(x) = =V'(x)f(x) + ¢pT(X)R2(x) — %tr DT(x)V"(x)D(x) and L,(x) = —[2¢T(X)R, +
V (0)G)]. O

Note that, if (85) and (86) are satisfied, then it follows from Theorem 4 that the feedback control law ¢(x) =
—%REI[V’ (x)G(x) + Ly(x)]" minimizes the cost functional (41). Hence, Proposition 2 provides necessary and suffi-
cient conditions for optimality of a given stochastically stabilizing feedback control law with prespecified disk margin
guarantees.

The following result presents specific disk margin guarantees for inverse optimal controllers.

Theorem 9. Let & € (0,1) be given. Consider the nonlinear stochastic dynamical system G given by (25) and (26),
where ¢(x) is a stochastically stabilizing feedback control law. Assume that there exist functions V. : R" — R and
R, : R™ —» R™™ such that V(-) is two-times continuously differentiable, R;(x) > 0, x € R", and

V(0) =0, (88)
V(x) > 0, x e R, x#0, (89)
V(X)) [f(0) + Gx)p(x)] + %tr D )V (x)D(x) < 0, x e R", x#0, (90)
V0.0 + St DTV (DG = $T RS 0bx) + —— (4700 + TV(0GE0) - R ()
Rz(x)<<;bT(x) n %V’(x)G(x)R;%x))T <0, xeR (91)
and
V(x) —» o as ||x]| = . (92)

11
1416”116
given by (81). Furthermore, with the feedback control law ¢(x), the performance functional

Then, the nonlinear stochastic dynamical system G has a disk margin ( ), Where n = ,/y/7 and y and ¥ are

J(Xo, u(-)) = E* [ / [V (S (e(8)) + G)u(D)) + (H(x(1) — u(€) " Ra(e())(p(x(1)) — u(t))] dt] (93)
0

is minimized in the sense that
J (0, p(x())) = misnxo)f (0, u(-)), X € R™. (94)

u()eS(
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Proof. The result is a direct consequence of Theorems 4 and 7 with Li(x) = —-V'(x)f(x) + ¢T()R:(x)p(x) —
%tr DT(x)V"”(x)D(x) and L,(x) = —(2¢T (X)R,(x) + V' (x)G(x)). Specifically, in this case, all the conditions of Theorem 4
are trivially satisfied. Furthermore, note that (91) is equivalent to (70). The result is now immediate. O

The next result provides sufficient conditions that guarantee that a given nonlinear feedback controller has prespecified
gain and sector margins.

Theorem 10. Let 6 € (0, 1) be given. Consider the nonlinear stochastic dynamical system G given by (25) and (26), where
¢(x) is a stochastically stabilizing feedback control law. Assume there exist functions R, (x) = diag[ri(x), ..., rm(x)], where
rp iR > Rrx)>0i=1,...,mandV : R*" > R such that V(-) is two-times continuously differentiable and
satisfies (88)-(92). Then, the nonlinear stochastic dynamical system G has a disk margin (=, L. Furthermore, with

1+0° 1-6
the feedback control law ¢(x), the performance functional (93) is minimized in the sense that

J(x0, d(x(-))) = min  J(xo, u(-)), X € R". (95)
u(-ES(xy)

Proof. The result is a direct consequence of Theorems 4 and 8 with the proof being identical to the proof of
Theorem 9. O

8 | LINEAR-QUADRATIC OPTIMAL STOCHASTIC REGULATORS

In this section, we specialize Theorems 6 and 7 to the case of linear stochastic systems with multiplicative disturbance
noise. Specifically, consider the stabilizable stochastic system given by

dx(6) = [Ax(®) + Bu(D)]dt + xg"dw(®), x(0)=x,, t>0, (96)

y(t) = —Kx(t), (97)
where A € R™", B € R™" K € R™" and g € R?, and assume that (4, K) is detectable and the system (96) and (97) is
asymptotically stable in probability with the feedback u = —y; or, equivalently, A+ BK is Hurwitz, where A = A+ % g2 L,.
Furthermore, assume that K is an optimal regulator that minimizes the quadratic performance functional given by

J(%o, u(-)) = F* [ / [x"(ORx() + 2x" ()R12u(t) + u" (DR u(t)] dt| , (98)
0

where R; € R™" R;, € R™™ and R, € R™™ are such that R, > 0, Ry — RlzRglsz > 0, and (A, R;) is observable. In
this case, it follows from Theorem 4 with f(x) = Ax, G(x) = B, L1(x) = X'Ryx, Ly(X) = 2x"Ry,, Ry(x) = Ry, ¢(x) = Kx, and
V(x) = xT Px that the optimal control law K is given by K = —R;l(BTP + Ry;), where P > 0 is the solution to the algebraic

regulator Riccati equation given by
0= (A—-BR;'RY,)"P+P(A—-BR;'RL,) + Ry — RiuR;'RY, — PBR;'BTP. (99)

The following results provide guarantees of disk, sector, and gain margins for the system (96) and (97).

Corollary 1. Consider the stochastic dynamical system with multiplicative noise given by (96) and (97) and with per-
formance functional (98), and let 62,,,(R12) < Gimin(R1)0min(R>). Then, with K = —R;l(BTP +R;,), where P > 0 satisfies

(99), the system (96) and (97) has disk margin (and, hence, sector and gain margins) (ﬁ, j), where

_ omin(R2) 0 <1 __ onRi) )1/2. (100)

" Omax(R2)’ Gimin(R1)Omin(R2)

Proof. The result is a direct consequence of Theorem 7 with f(x) = Ax, G(x) = B, ¢p(x) = Kx, V(x) = x'Px, L;(x) =
x'Ryx, and Ly(x) = 2x'Ry,. Specifically, note that (99) is equivalent to (48). Now, with # given by (100), it follows that
(1-6%R,; — RipR; 1Rf2 > 0, and hence, (83) is satisfied so that all the conditions of Theorem 7 are satisfied. O
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Corollary 2. Consider the stochastic dynamical system with multiplicative noise given by (96) and (97) and with perfor-
mance functional (98), and let 63,,,(R12) < 6min(R1)omin(Rz), where R, is diagonal. Then, with K = —R;'(B"P + Ryy),
where P > 0 satisfies (99), the system (96) and (97) has structured disk margin (and, hence, gain and sector) margin

(ﬁ, ﬁ), where
2 (R 1/2
0= <1_Gmax—(12)> . (101)
Omin(R1)0min(R2)

Proof. The result is a direct consequence of Theorem 6 with f(x) = Ax, G(x) = B, ¢(x) = Kx, V(x) = x'Px, L1(x) =
x'Ryx, and Ly(x) = 2x'Ry,. Specifically, note that (99) is equivalent to (48). Now, with # given by (101), it follows that
(1-6%R,; — RipR; lsz > 0, and hence, (83) is satisfied so that all the conditions of Theorem 6 are satisfied. O

The gain margins obtained in Corollary 2 are precisely the gain margins given in Chung et al'® for determinis-
tic linear-quadratic optimal regulators with cross-weighting terms in the performance criterion. Furthermore, since
Corollary 2 guarantees structured disk margins of (—, —), it follows that the system has a phase margin ¢ given by

140’ 1-0
cos(¢p) =1— %2, (102)
or, equivalently,
sin <%) = g (103)

In the case where Ry, = 0, it follows from (101) that & = 1, and hence, Corollary 2 guarantees a phase margin of £60° in
each input-output channel. In addition, requiring that R; > 0, it follows from Corollary 2 that the system given by (96)
and (97) has a gain and sector margin of (%, ).

9 | STABILITY MARGINS, MEANINGFUL INVERSE OPTIMALITY,
AND STOCHASTIC DISSIPATIVITY

In this section, we specialize the results of Section 4 to the case where L(x, u) is nonnegative for all (x,u) € R" x R™. In
the terminology of Sepulchre et al” and Freeman and Kokotovi¢,? this corresponds to a meaningful cost functional. Here,
we assume Ly(x) = 0 and L,(x) > 0, x € R". In this case, we establish connections between stochastic dissipativity and
optimality for nonlinear stochastic controllers. The first result specializes Theorem 4 to the case in which L,(x) = 0.

Theorem 11. Consider the nonlinear stochastic dynamical system (25) with performance functional (41) with Ly(x) = 0
and Li(x) > 0, x € R". Assume there exists a two-times continuously differentiable function V : R" — R such that

V(0) =0, (104)
V(x) >0, x e R", X #0, (105)
0=Li(x)+ V') f(x)+ %tr DT )V" (x)D(x) — iV’(x)G(x)Rz_l(x)GT(x)V’T(x), xeR", (106)
and
V(x) » o as ||x|| = . (107)

Furthermore, assume that the system (26) and (41) is zero-state observable with y = L (x). Then, the zero solution x(t) = 0
of the closed-loop system

dx(t) = [£(x(t)) + GE(D)p(x(B)]dE + DOe(t)dw(®),  X(0) =Xp, £ 2 0. (108)
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is globally asymptotically stable in probability with the feedback control law
1 _
dx) = —ERzl(X)GT(x)V'T(x),
and the performance functional (41) is minimized in the sense that

JO0, px() = | min T, u()), X € R

Finally,
J(xo, p(x())) = V(x0), x € R™.

Proof. The proof is similar to the proof of Theorem 4.

(109)

(110)

(111)

O

Next, we show that, for a given nonlinear stochastic dynamical system G given by (25) and (26), there exists an equiv-
alence between optimality and stochastic dissipativity. For the following result, we assume that, for a given nonlinear
stochastic system (25), if there exists a feedback control law ¢(x) that minimizes the performance functional (41) with
Ry(x) = I, L,(x) = 0, and L;(x) > 0,x € R", then there exists a two-times continuously differentiable positive-definite

function V(x), x € R", such that (106) is satisfied.

Theorem 12. Consider the nonlinear stochastic dynamical system G given by (25) and (26). The feedback control law
u = ¢(x) is optimal with respect to a performance functional (40) with Ry(x) = I, L,(x) = 0, and L1(x) > 0,x € R", ifand
only if the nonlinear stochastic system G is stochastically dissipative with respect to the supply rate r(u,y) = yTy + 2uTy
and has a two-times continuously differentiable positive-definite radially unbounded storage function V(x), x € R".

Proof. 1f the control law ¢(x) is optimal with respect to a performance functional (40) with Ry(x) = I, L,(x) = 0, and
Li(x) > 0,x € R", then, by assumption, there exists a two-times continuously differentiable positive-definite function
V(x) such that (106) is satisfied. Hence, it follows from Proposition 2 that the solution x(t), ¢ > 0, to (25) satisfies

LV(x) < [u+ y]"Ry)[u + y] — 0*u"Ry(x)u,

(112)

which implies, by Proposition 1, that G is stochastically dissipative with respect to the supply rate r(u,y) = yTy + 2uTy.

Conversely, if G is stochastically dissipative with respect to the supply rate r(u,y) = yTy + 2uTy and has a two-times
continuously differentiable positive-definite storage function, then, with h(x) = —¢(x), J(x) = 0, Q = I, R = 0, and
S = 21, it follows from Theorem 2 that there exists a function Z : R" — RP such that ¢(x) = —%GT(x)V’T(x) and, for

allx € R”,

o=wmﬂm+5uﬂmWme—%V@mm@awﬂm+ﬂwwm.

Now, the result follows from Theorem 11 with L, (x) = £T(x)Z(x). O
Example 2. Consider the nonlinear stochastic dynamical system given by
dx(t) = —x(b) + u(t) + gx(Odw(t), x(0)=xo, >0, (113)
where g < \/5, with performance functional
T(xo, u(-)) = % [ / i (3 — g () + u(0)] de| . (114)
0
To design an optimal control law ¢(x) that minimizes (114), we use Theorem 5 with f(x) = —x, G(x) = 1, D(x) =gx,

Li1(x) = (3 — g>)x?, Ly(x) = 0, and R,(x) = 1. Now, note that (63) holds with V(x) = x2. Therefore, the optimal control
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law is given by
B(x) = —%R;l(x) [V'00GX) + L) = —x. (115)

Now, from Proposition 2, since (85) and (86) hold with 8 = 1, we have
LV(X) < (u+y)? —u? =y +2uy, (116)

where y = —¢(x) = x, which implies, by Proposition 1, that G is stochastically dissipative with respect to the supply
rate r(u,y) = y* + 2uy.

The next result gives disk and structured disk margins for the nonlinear stochastic dynamical system G given by (25)
and (26).

Corollary 3. Consider the nonlinear stochastic dynamical system G given by (25) and (41), where ¢(x) is a stochastically
stabilizing feedback control law given by (47) with L,(x) = 0 and where V(x), x € R", satisfies (48). Furthermore, assume
Ry(x) = diag[ry, ...,rm], wherer; > 0,i =1, ...,m, and Ly(x) > 0, x € R". Then, the nonlinear stochastic dynamical
system G has a structured disk margin (%, o). If, in addition, Ry(x) = I, then the nonlinear stochastic system G has a
disk margin (%, 00)

Proof. The result is a direct consequence of Theorem 6. Specifically, if L;(x) > 0,x € R", and L,(x) = 0, then (70) is
trivially satisfied for all 6 € (0, 1). Now, the result follows immediately by letting 6 — 1. O

Finally, we provide sector and gain margins for the nonlinear stochastic dynamical system G given by (25) and (26).

Corollary 4. Consider the nonlinear stochastic dynamical system G given by (25) and (26), where ¢(X) is a stochastically
stabilizing feedback control law given by (47) with L,(x) = 0 and where V(x), x € R", satisfies (48). Furthermore, assume
Ry(x) = diag[ri(x), ..., rm(x)], wherer; : R" - R, ri(x) > 0,i =1, ...,m,and L1(x) > 0, x € R". Then, the nonlinear
stochastic dynamical system G has a sector (and, hence, gain) margin (%, 00).

Proof. The result is a direct consequence of Theorem 8. Specifically, if L;(x) > 0,x € R", and L,(x) = 0, then (70) is
trivially satisfied for all 8 € (0, 1). Now, the result follows immediately by letting § — 1. O

10 | CONCLUSION

In this paper, we have used the notions of stochastic stability and stochastic dissipativity theory to develop sufficient
conditions for gain, sector, and disk margin guarantees for nonlinear stochastic dynamical systems controlled by non-
linear optimal and inverse optimal regulators that minimize a nonlinear-nonquadratic performance criterion. Using
these results, connections between stochastic dissipativity and optimality of nonlinear stochastic systems were estab-
lished. These results provide a generalization of the deterministic meaningful inverse optimal nonlinear regulator stability
margins and the classical linear-quadratic optimal regulator gain and phase margins to stochastic nonlinear feedback
regulators.

Extensions of this framework for exploring connections between optimal finite-time stabilization?”-?® and finite-time
stabilization?® for stochastic dynamical systems are currently under development. The proposed framework can also allow
us to further explore connections with stochastic inverse optimal control, stochastic dissipativity, and stability margins
for finite-time stabilizing regulators that minimize a derived cost functional involving subquadratic terms.
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