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1 Introduction

The consideration of Lyapunov functions for proving stability
of feedback dynamical systems is one of the cornerstones of sys-
tems and control theory. For dynamical systems with continuously
differentiable flows, the concept of smooth control Lyapunov
functions was developed by Artstein [1] to show the existence of a
feedback stabilizing controller. A constructive feedback control
law based on a universal construction of smooth control Lyapunov
functions was given by Sontag [2]. An extended notion of non-
smooth control Lyapunov functions as well as a universal feed-
back controller for discontinuous dynamical systems based on the
existence of nonsmooth Lyapunov functions defined in the sense
of generalized Clarke gradients and set-valued Lie derivatives
was developed in Refs. [3–6].

The aforementioned results on control Lyapunov functions
along with the constructive feedback control laws predicated on
these generalized energy functions are developed for deterministic
dynamical systems. In numerous applications, where dynamical
models are used to describe the behavior of natural and engineer-
ing systems, stochastic components and random disturbances are
often incorporated into the models. The stochastic aspects of the
models are used to quantify system uncertainty as well as the
dynamic relationships of sequences of random events between
system–environment interactions. In Refs. [7–9], the authors pro-
vide Lyapunov-like techniques for stochastic stabilization. Specif-
ically, asymptotic stability in probability of affine in the control
stochastic dynamical systems using stochastic control Lyapunov
functions leading to the existence of smooth, except possibly at
the equilibrium point of the system, stochastically stabilizing
feedback control laws are provided.

In this paper, we build on the results of Refs. [7–9] as well as
on the recent stochastic finite time stabilization framework of Ref.
[10] to develop a constructive universal feedback control law for
stochastic finite time stabilization of stochastic dynamical sys-
tems. In addition, we present necessary and sufficient conditions
for continuity of such controllers. Finally, we show that for every
nonlinear stochastic dynamical system for which a stochastic con-
trol Lyapunov function can be constructed, there exists an inverse
optimal feedback control law in the sense of Refs. [11] and [12]
with guaranteed sector and gain margins of ð1=2;1Þ.

2 Notation, Definitions, and Mathematical

Preliminaries

In this section, we establish notation, definitions, and review
some basic results on stability of nonlinear stochastic dynamical
systems [13–15]. Specifically, R denotes the set of real numbers,
Rn denotes the set of n� 1 real column vectors, and Rn�m

denotes the set of n�m real matrices. We write BeðxÞ for the
open ball centered at x with radius e, jj � jj for the Euclidean vec-
tor norm or an induced matrix norm (depending on context), jj �
jjF for the Frobenius matrix norm, AT for the transpose of the
matrix A, and In or I for the n� n identity matrix.

We define a complete probability space as ðX;F ;PÞ, where X
denotes the sample space, F denotes a r-algebra, and P defines a
probability measure on the r-algebra F ; that is, P is a non-
negative countably additive set function on F such that PðXÞ ¼ 1
[13]. Furthermore, we assume that wð�Þ is a standard d-dimensional
Wiener process defined by ðwð�Þ;X;F ;Pw0Þ, where Pw0 is the
classical Wiener measure [14], with a continuous-time filtration
fF tgt�0 generated by the Wiener process w(t) up to time t. We

denote by G a stochastic dynamical system generating a filtration

fF tgt�0 adapted to the stochastic process x : �Rþ � X! D on

ðX;F ;Px0Þ satisfying F s � F t; 0 � s < t, such that fx 2 X :
xðt;xÞ 2 Bg 2 F t; t � 0, for all Borel sets B � Rn contained in
the Borel r-algebra B

n. Here, we use the notation x(t) to represent
the stochastic process xðt;xÞ omitting its dependence on x.

Finally, we write tr(�) for the trace operator, ð�Þ�1
for the

inverse operator, V0ðxÞ¢@VðxÞ=@x for the Fr�echet derivative of V
at x, V00ðxÞ¢@2VðxÞ=@x2 for the Hessian of V at x, and Hn for the
Hilbert space of random vectors x 2 Rn with finite average

power, that is, Hn¢fx : X! Rn : E½xTx� <1g, where E

denotes expectation. For an open set D 	 Rn; HDn ¢ fx 2 Hn : x :
X! Dg denotes the set of all the random vectors in Hn induced

by D. Similarly, for every x0 2 Rn; Hx0
n ¢ fx 2 Hn : x¼a:s: x0g.

Furthermore, C2 denotes the space of real-valued functions V :
D ! R that are two times continuously differentiable with
respect to x 2 D 	 Rn.

Consider the nonlinear stochastic dynamical system G given by

dxðtÞ ¼ f ðxðtÞÞdtþ DðxðtÞÞdwðtÞ; xðt0Þ ¼
a:s:

x0; t � t0 (1)

where, for every t � 0; xðtÞ 2 HDn is an F t-measurable random
state vector, xðt0Þ 2 Hx0

n ; D 	 Rn is an open set with 0 2 D, w(t)
is a d-dimensional independent standard Wiener process (i.e.,
Brownian motion) defined on a complete filtered probability space
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ðX; fF tgt�t0
;PÞ; xðt0Þ is independent of ðwðtÞ � wðt0ÞÞ; t � t0;

and f : D ! Rn and D : D ! Rn�d are continuous functions and
satisfy f ðxeÞ ¼ 0 and DðxeÞ ¼ 0 for some xe 2 D.

Here, we assume that f : D ! Rn and D : D ! Rn�d satisfy
the uniform Lipschitz continuity condition

jjf ðxÞ � f ðyÞjj þ jjDðxÞ � DðyÞjjF � Ljjx� yjj; x; y 2 D (2)

and the growth restriction condition

jjf ðxÞjj2 þ jjDðxÞjj2F � L2ð1þ jjxjj2Þ; x 2 D (3)

for some Lipschitz constant L> 0, and hence, since xðt0Þ 2 HDn
and xðt0Þ is independent of ðwðtÞ � wðt0ÞÞ; t � t0; it follows that

there exists a unique solution x 2 L2ðX;F ;PÞ, where

L2ðX;F ;PÞ denotes the set of equivalence class of measurable
and square-integrable Rn valued random processes on ðX;F ;PÞ
over the semi-infinite parameter space ½0;1Þ, to Eq. (1) in the fol-

lowing sense. For every x 2 HDn nf0g there exists Tx > 0 such that
if x1 : ½t0; s1� � X! D and x2 : ½t0; s2� � X! D are two solutions

of (1); that is, if x1; x2 2 L2ðX;F ;PÞ with continuous sample
paths almost surely solve (1), then Tx � minfs1; s2g and
Pðx1ðtÞ ¼ x2ðtÞ; t0 � t � TxÞ ¼ 1.

The following definition introduces the notions of Lyapunov
and asymptotic stability in probability. Recall that an equilibrium
point xe ¼ 0 of Eq. (1) is a point such that f ð0Þ ¼ 0 and Dð0Þ ¼ 0.
In this case, xe ¼ 0 is an equilibrium point of Eq. (1) if and only if
the zero solution (i.e., the zero stochastic process) xð�Þ 


a:s:
0 is a

solution of Eq. (1).
DEFINITION 2.1. (i) The zero solution xðtÞ 


a:s:
0 to (1) is Lyapunov

stable in probability if, for every e > 0 and q 2 ð0; 1Þ, there exist
d ¼ dðq; eÞ > 0 such that, for all x0 2 Bdð0Þ [16]

Px0 sup
t�t0

jjxðtÞjj > e
� �

� q (4)

(ii) The zero solution xðtÞ 

a:s:

0 to (1) is locally asymptotically sta-
ble in probability if it is Lyapunov stable in probability and, for
every q 2 ð0; 1Þ, there exist d ¼ dðqÞ > 0 such that, for all
x0 2 Bdð0Þ

Px0 lim
t!1
jjxðtÞjj ¼ 0

� �
� 1� q (5)

(iii) The zero solution xðtÞ 

a:s:

0 to Eq. (1) is globally asymptoti-
cally stable in probability if it is Lyapunov stable in probability
and, for all x0 2 Rn

Px0 lim
t!1
jjxðtÞjj ¼ 0

� �
¼ 1 (6)

Remark 2.1. A more general stochastic stability notion can also be
introduced here involving stochastic stability and convergence to an
invariant (stationary) distribution. In this case, state convergence is
not to an equilibrium point but rather to a stationary distribution. This
framework can relax the vanishing perturbation assumption Dð0Þ ¼
0 and requires a more involved analysis and synthesis framework
showing stability of the underlying Markov semigroup [17].

Next, we provide sufficient conditions for local and global
asymptotic stability in probability for the nonlinear stochastic
dynamical system (1). First, however, recall that the infinitesimal

generator L of x(t), t � 0, with xð0Þ 

a:s:

x0, is defined by

LV x0ð Þ¢ lim
t!0þ

Ex0 V x tð Þð Þ½ � � V x0ð Þ
t

; x0 2 D (7)

where Ex0 denotes the expectation with respect to the transition

probability measure Px0ðxðtÞ 2 DÞ¢Pðt0; x0; t;DÞ [14]. If V 2 C2

and has a compact support, and x(t), t � 0, satisfies Eq. (1), then
the limit in Eq. (7) exists for all x 2 D and the infinitesimal

generator L of x(t), t � 0, can be characterized by the system drift
and diffusion functions f(x) and D(x) defining the stochastic
dynamical system (1) and is given by [14]

LV xð Þ¢ @V xð Þ
@x

f xð Þ þ 1

2
tr DT xð Þ @

2V xð Þ
@x2

D xð Þ; x 2 D (8)

THEOREM 2.1. Consider the nonlinear stochastic dynamical sys-
tem (1) and assume that there exists a two times continuously dif-
ferentiable function V : D ! R such that [15]

Vð0Þ ¼ 0 (9)

VðxÞ > 0; x 2 D; x 6¼ 0 (10)

@V xð Þ
@x

f xð Þ þ 1

2
tr DT xð Þ @

2V xð Þ
@x2

D xð Þ � 0; x 2 D (11)

Then, the zero solution xðtÞ 

a:s:

to Eq. (1) is Lyapunov stable in
probability. If, in addition

@V xð Þ
@x

f xð Þ þ 1

2
tr DT xð Þ @

2V xð Þ
@x2

D xð Þ < 0; x 2 D; x 6¼ 0

(12)

then the zero solution xðtÞ 

a:s:

0 to Eq. (1) is asymptotically stable
in probability. Moreover, if D ¼ Rn and Vð�Þ is radially

unbounded, then the zero solution xðtÞ 

a:s:

0 to Eq. (1) is globally
asymptotically stable in probability.

Next, we present the notion of stochastic finite time stability
involving finite time almost sure convergence along with stochas-
tic Lyapunov stability. To present this notion, we need some addi-
tional notation and definitions. The measurable map
s : ½0; sxÞ � D � X! D denotes the dynamic or flow of the sto-
chastic dynamical system (1) and, for all t; s 2 ½0; sxÞ, satisfies the
cocycle property sðs; sðt; xÞ;xÞ ¼ sðtþ s; x;xÞ and the identity
(on D) property sð0; x;xÞ ¼ x for all x 2 D and x 2 X. The meas-

urable map st¢sðt; �;xÞ : D ! D is continuously differentiable
for all t 2 ½0; sxÞ outside a P-nullset and the sample path trajec-

tory sx¢sð�; x;xÞ : ½0; sxÞ ! D is continuous in D for all
t 2 ½0; sxÞ. Thus, for every x 2 D, there exists a trajectory of
measures defined for all t 2 ½0; sxÞ satisfying the dynamical proc-

esses (1) with initial condition xð0Þ 

a:s:

x0. For simplicity of expo-
sition we write s(t, x) for sðt; x;xÞ omitting its dependence on x.

For the results in the paper involving finite time stability, we
assume that the uniform Lipschitz continuity condition (2) and the
growth condition (3) are satisfied for all x, y 2 Dnf0g. Further-
more, we assume that for every initial condition x0 2 Dnf0g, (1)
has a unique solution in forward time. Analogous assumptions are
made for the controlled problem.

DEFINITION 2.2. The zero solution xðtÞ¼a:s: 0 to (1) is (globally)
stochastically finite-time stable if there exists an operator

T : Hn ! H½0;1Þ1 , called the stochastic settling-time operator, such
that the following statements hold [10].

(i) Finite-time convergence in probability. For every xð0Þ 2
Hn; sxð0ÞðtÞ is defined on ½0;Tðxð0ÞÞÞ; sxð0ÞðtÞ 2 Hn for all
t 2 ½0; Tðxð0ÞÞÞ, and

Px0 lim
t!T x 0ð Þð Þ

ksx 0ð Þ tð Þk ¼ 0

� �
¼ 1

(ii) Lyapunov stability in probability. For every e > 0,

lim
x0!0

Px0 sup
t2 0;T x 0ð Þð Þ½ Þ

jjsx 0ð Þ tð Þjj > e
 !

¼ 0
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Equivalently, for every e > 0 and q 2 0; 1ð Þ, there exist
d ¼ d e;qð Þ > 0 such that, for all x0 2 Bd 0ð Þ; Px0

ðsup
t2 0;T x 0ð Þð Þ½ Þ jjs

x 0ð Þ tð Þjj > eÞ � q.

(iii) Finiteness of the stochastic settling-time operator. For every
x 2 Hn the stochastic settling-time operator T(x) exists and is
finite with probability one, that is, Ex T xð Þ½ � <1.

It is easy to see from Definition 2.2 that

T x 0ð Þð Þ ¼ infft 2 �Rþ : s t; x 0ð Þ
� �

¼ 0g; x 0ð Þ 2 HRn

n

PROPOSITION 2.1. Suppose the origin is a stochastically finite time
stable equilibrium of (1) and let T : Hn ! H 0;1½ �

1 be the stochastic
finite time operator. Then, the following statements hold:

(i) If s � 0 and x 0ð Þ 2 Hn, then T s s; x 0ð Þ
� �� �



a:s:

max
fT x 0ð Þð Þ � s; 0g.
(ii) T �ð Þ is sample continuous onHn if and only if T �ð Þ is sample
continuous at 0.

Proof. The proof is a direct consequence of Proposition 3.2
given in Ref. [10] and, hence, is omitted. �

Next, we present a sufficient condition for global stochastic
finite time stability.

THEOREM 2.2. Consider the nonlinear stochastic dynamical sys-
tem G given by Eq. (1) with D ¼ Rn. If there exist a radially
unbounded positive definite function V : Rn ! Rþ and a function
g : Rþ ! Rþ such that V 0ð Þ ¼ 0, V(x) is two times continuously
differentiable for all x 2 Rn; g �ð Þ is continuously differentiable,
and, for all x 2 Rn

V0 xð Þf xð Þ þ 1

2
tr DT xð ÞV00 xð ÞD xð Þ � �g V xð Þð Þ (13)

ðe

0

dv

g vð Þ
<1; e 2 0;1½ Þ (14)

g0 vð Þ > 0; v � 0 (15)

then G is globally stochastically finite time stable. Moreover, there
exists a settling-time operator T : Hn ! H 0;1½ Þ

1 such that

Ex0 T x0ð Þ
� 	 � ðV x0ð Þ

0

dv

g vð Þ
; x0 2 Rn (16)

Proof. Let e > 0 and q > 0, and define De;q¢fx 2 Be 0ð Þ :
V xð Þ < a eð Þqg, where a �ð Þ is a class K1 function. Since V �ð Þ is

continuous and V 0ð Þ ¼ 0, it follows that De;q is nonempty and

there exists d ¼ d e;qð Þ > 0 such that V xð Þ < a eð Þq; x 2 Bd 0ð Þ.
Hence, Bd 0ð Þ 	 De;q. Next, V x tð Þð Þ is a (positive) supermartingale

[15], and hence, for every x 0ð Þ 2 HBd 0ð Þ
n 	 HDq

n , it follows from

a jjxjjð Þ � V xð Þ; x 2 Rn, and the extended version of the Markov
inequality for monotonically increasing functions [18] that

Px0 sup
t�0

jjx tð Þjj > e
� �

� sup
t�0

Ex0 a jjx tð Þjj
� �� 	
a eð Þ

� sup
t�0

Ex0 V x tð Þð Þ½ �
a eð Þ

� Ex0 V x 0ð Þð Þ½ �
a eð Þ

� q

which proves Lyapunov stability in probability. �

To prove global asymptotic stability in probability, it follows

from Eq. (13) and Ref. [19] that limt!1 gðV x tð Þð Þ 

a:s:

0, which,

since g : Rþ ! Rþ, further implies that limt!1 V x tð Þð Þ ¼a:s: 0.
Now, it follows from a jjxjjð Þ � V xð Þ; x 2 Rn, that

lim
t!1

a jjx tð Þjj
� �

� lim
t!1

V x tð Þð Þ ¼a:s: 0

which implies Px0 limt!1 jjx tð Þjj ¼ 0
� �

¼ 1 for all x0 2 Rn.
Hence, G is globally asymptotically stable in probability and the
stochastic settling-time operator T x 0ð Þð Þ � 1 almost surely.

Next, we show that T x 0ð Þð Þ is finite with probability one and
satisfies (16), and hence, Ex0 T x 0ð Þð Þ½ � <1. Define

T0¢T x 0ð Þð Þ; a Vð Þ¢
ðV

0

dv

g vð Þ
; V 2 �Rþ

Now, using Itô’s (chain rule) formula, the stochastic differential
of V x tð Þð Þ along the system trajectories x(t), t � 0, is given by

dV x tð Þð Þ ¼ LV x tð Þð Þdtþ @V

@x
D x tð Þð Þdw tð Þ

Next, using Eq. (13), it follows that

ðT0

0

ds¼
ðT0

0

g V x sð Þð Þð Þ
g V x sð Þð Þð Þ

ds

�
ðT0

0

� LV x sð Þð Þ
g V x sð Þð Þð Þ

ds

�
ðT0

0

� dV x tð Þð Þ
g V x sð Þð Þð Þ

þ
ðT0

0

1

g V x sð Þð Þð Þ
@V

@x
D x sð Þð Þdw sð Þ

¼
ðT0

0

�da Vð ÞÞ
dV

dV x tð Þð Þþ
ðT0

0

1

g V x sð Þð Þð Þ
@V

@x
D x sð Þð Þdw sð Þ

(17)

Once again, using Itô’s (chain rule) formula, it follows that

da V x tð Þð Þð Þ

¼ @a V xð Þð Þ
@x

f x tð Þð Þ þ 1

2
tr DT x tð Þð Þ @

2a V xð Þð Þ
@x2

D x tð Þð Þ

 �

dtþ @a V xð Þð Þ
@x

dw tð Þ

¼ da Vð ÞÞ
dV

@V xð Þ
@x

f x tð Þð Þ þ 1

2
tr DT x tð Þð Þ @

@x

da Vð Þ
dV

@V xð Þ
@x

� �
D x tð Þð Þ


 �
dtþ da Vð ÞÞ

dV

@V xð Þ
@x

dw tð Þ

¼ da Vð ÞÞ
dV

@V xð Þ
@x

f x tð Þð Þ þ 1

2
tr DT x tð Þð Þ @

2 V xð Þð Þ
@x2

D x tð Þð Þ
� �

dtþ @V xð Þ
@x

dw tð Þ

 �

þ 1

2
tr DT x tð Þð Þ @V xð Þ

@x

� �T
d2a Vð Þ

dV2

@V xð Þ
@x

� �
D x tð Þð Þdt

¼ da Vð ÞÞ
dV

dV x tð Þð Þ þ 1

2
tr DT x tð Þð Þ @V xð Þ

@x

� �T
d2a Vð Þ

dV2

@V xð Þ
@x

� �
D x tð Þð Þdt (18)
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Hence, it follows from Eqs. (17) and (15) that

ðT0

0

ds �
ðT0

0

�da V x sð Þð Þð Þ þ
ðT0

0

1

g V x sð Þð Þð Þ
@V

@x
D x sð Þð Þdw sð Þ þ

ðT0

0

1

2
trDT x sð Þð Þ @V xð Þ

@x

� �T
d2a Vð Þ

dV2

@V xð Þ
@x

� �
D x sð Þð Þds

¼ a V x 0ð Þð Þð Þ � a V x T0ð Þð Þð Þ þ
ðT0

0

1

g V x sð Þð Þð Þ
@V

@x
D x sð Þð Þdw sð Þ �

ðT0

0

g0 Vð Þ
g2 Vð Þ

1

2
tr

@V xð Þ
@x

DT x sð Þð Þ
� �T

@V xð Þ
@x

D x sð Þð Þ
� �

ds

�
ðV x 0ð Þð Þ

0

dv

g Vð Þ �
ðV x T0ð Þð Þ

0

dv

g Vð Þ þ
ðT0

0

1

g V x sð Þð Þð Þ
@V

@x
D x sð Þð Þdw sð Þ (19)

Taking the expectation on both sides of Eq. (19) and using the

fact that x 0ð Þ¼a:s: x0 and x T0ð Þ 

a:s:

0 yields

Ex0

ðT0

0

ds

" #
¼ Ex0 T x0ð Þ

� 	 � ðV x0ð Þ

0

dv

g Vð Þ (20)

which implies Eq. (16).
Remark 2.2. If g Vð Þ ¼ cVh, where c> 0 and h 2 0; 1ð Þ, then

g �ð Þ satisfies Eqs. (14) and (15). In this case, Eq. (16) becomes

Ex0 T x 0ð Þð Þ½ � �
V x0ð Þ1�h

c 1� hð Þ

For deterministic dynamical systems, this specialization recovers
the finite time stability results given in Ref. [20].

Finally, we consider the controlled nonlinear stochastic dynam-
ical system given by

dx tð Þ¼ f x tð Þð ÞþG x tð Þð Þu tð Þ½ �dtþD x tð Þð Þdw tð Þ; x 0ð Þ¼
a:s:

x0; t� 0

(21)

y tð Þ ¼ �/ x tð Þð Þ (22)

where / : Rn ! Rm, with a nonlinear-nonquadratic performance
criterion

J x0; u �ð Þð Þ ¼ Ex0

ð1
0

L1 x tð Þð Þ þ uT tð ÞR2 x tð Þð Þu tð Þ
� 	

dt


 �
(23)

where L1 : Rn ! R and R2 : Rn ! Rm�m are such that
L1 xð Þ � 0; x 2 Rn, and R2 xð Þ > 0; x 2 Rn. In this case, the opti-
mal nonlinear feedback controller u ¼ / xð Þ that minimizes the
nonlinear-nonquadratic performance criterion (23) is given by the
following result. For the statement of this result, define the set of
stochastic regulation controllers given by

S x0ð Þ¢
�

u �ð Þ : u �ð Þ is admissible and x �ð Þ given by 21ð Þ is such

that Px0 B
u �ð Þ
x0

� �
¼ 1; x0 2 Rn; where B

u �ð Þ
x0

¢ x ft � t0g;xð Þ : lim
t!1
jjx t;xð Þjj ¼ 0; x 2 X

n o

THEOREM 2.3. Consider the nonlinear stochastic dynamical sys-
tem (21) with performance functional (23) with L1 xð Þ � 0;
x 2 Rn. Assume that there exists a two times continuously differ-
entiable function V : Rn ! R such that

V 0ð Þ ¼ 0 (24)

V xð Þ > 0; x 2 Rn; x 6¼ 0 (25)

0 ¼ L1 xð Þ þ V0 xð Þf xð Þ þ 1

2
tr DT xð ÞV00 xð ÞD xð Þ

� 1

4
V0 xð ÞG xð ÞR�1

2 xð ÞGT xð ÞV0T xð Þ; x 2 Rn
(26)

and

V xð Þ ! 1 as jjxjj ! 1 (27)

Furthermore, assume that the systems (23) and (22) are zero-state
observable with y ¼ L1 xð Þ. Then, the zero solution x tð Þ¼a:s: 0 of the
closed-loop system

dx tð Þ ¼ f x tð Þð Þ þ G x tð Þð Þ/ x tð Þð Þ½ �dt

þ D x tð Þð Þdw tð Þ; x 0ð Þ ¼a:s: x0; t � 0
(28)

is globally asymptotically stable in probability with the feedback
control law

/ xð Þ ¼ � 1

2
R�1

2 xð ÞGT xð ÞV 0T xð Þ (29)

and the performance functional (22) is minimized in the sense that

J x0;/ x �ð Þð Þ
� �

¼ min
u �ð Þ2S x0ð Þ

J x0; u �ð Þð Þ; x0 2 Rn (30)

Finally,

J x0;/ x �ð Þð Þ
� �

¼ V x0ð Þ; x0 2 Rn (31)

Proof. The proof is similar to the proof of Theorem 8.3 for the
deterministic optimal control problem given in Ref. [21]. �

Finally, we provide sector and gain margins for the nonlinear
stochastic dynamical system G given by Eqs. (21) and (22). For
the statement of the next theorem, recall the definitions of gain
and sector margins for G given in Ref. [21].

THEOREM 2.4. Consider that the nonlinear stochastic dynamical
system G given by (21) and (22) where / xð Þ is a stabilizing feed-
back control law given by (29) and where V(x), x 2 Rn, satisfies
(26). Furthermore, assume R2 xð Þ ¼ diag r1 xð Þ;½ …; rm xð Þ�, where
ri : Rn ! R; ri xð Þ > 0; i ¼ 1;…;m, and L1 xð Þ � 0, x 2 Rn.
Then, the nonlinear dynamical system G has a sector (and, hence,
gain) margin 1=2;1ð Þ.

Proof. The result is a direct consequence of Theorem 6.4 of
Ref. [12]. �

3 Stochastic Control Lyapunov Functions

In this section, we consider a feedback control problem and
introduce the notion of stochastic control Lyapunov functions.
Furthermore, using the concept of stochastic control Lyapunov
functions, we provide necessary and sufficient conditions for sto-
chastic nonlinear system stabilization.
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Consider the nonlinear stochastic controlled dynamical system
G given by

dx tð Þ ¼ F x tð Þ; u tð Þð Þdtþ D x tð Þ; u tð Þð Þdw tð Þ; x t0ð Þ ¼
a:s:

x0; t � t0

(32)

where, for every t � t0; x tð Þ 2 HDn ; D is an open set with 0 2 D,
u tð Þ 2 HU

m; U 	 Rm; F : D� U ! Rn, and D : D� U ! Rn�d .
Here, we assume that u �ð Þ satisfies sufficient regularity conditions
such that Eq. (32) has a unique solution forward in time. Specifi-
cally, we assume that the control process u �ð Þ in Eq. (32) is
restricted to the class of admissible controls consisting of measur-
able functions u �ð Þ adapted to the filtration fF tgt�t0

such that
u tð Þ 2 Hm; t � t0, and, for all t � s; w tð Þ � w sð Þ is independent
of u sð Þ; w sð Þ; s � s, and x t0ð Þ, and hence, u �ð Þ is nonanticipative.
Furthermore, we assume that u �ð Þ takes values in a compact, met-
rizable set U and the uniform Lipschitz continuity and growth
conditions (2) and (3) hold for the controlled drift and diffusion
terms F(x, u) and D(x, u) uniformly in u. In this case, it follows
from Theorem 2.2.4 of Ref. [22] that there exists a pathwise
unique solution to Eq. (32) in X; fF t�t0g;Px0

� �
.

A measurable function / : D ! U satisfying / 0ð Þ ¼ 0 is called
a control law. If u tð Þ ¼ / x tð Þð Þ; t � t0, where / �ð Þ is a control
law and x(t), t � t0, satisfies Eq. (32), then we call u �ð Þ a feedback
control law. Note that the feedback control law is an admissible
control since / �ð Þ has values in U. Given a control law / �ð Þ and a
feedback control law u tð Þ ¼ / x tð Þð Þ; t � t0, the closed-loop sys-
tem (32) has the form

dx tð Þ ¼ Fðx tð Þ;/ x tð Þð Þ

þ Dðx tð Þ;/ x tð Þð Þdw tð Þ; x t0ð Þ ¼
a:s:

x0; t � t0 (33)

The following two definitions are required for stating the results
of this section.

DEFINITION 3.1. Let / : D ! U be a measurable mapping on
Dnf0g with / 0ð Þ ¼ 0. Then, (32) is stochastically feedback

asymptotically stabilizable if the zero solution x tð Þ ¼a:s: 0 of the
closed-loop system (33) is stochastically asymptotically stable.

DEFINITION 3.2. Consider the controlled nonlinear stochastic
dynamical system given by (32). A two times continuously differ-
entiable positive-definite function V : D ! R satisfying [8]

inf
u2U

V0 xð ÞF x;uð Þþ
1

2
trDT x;uð ÞV00 xð ÞD x;uð Þ


 �
< 0; x2D; x 6¼ 0

(34)

is called a stochastic control Lyapunov function.
Note that if Eq. (34) holds, then there exists a feedback control

law / : D ! U such that V0 xð ÞF x;/ xð Þð Þ þ 1
2

tr DT x;/ xð Þð Þ
V00 xð ÞD x;/ xð Þð Þ < 0, x 2 D; x 6¼ 0, and hence, Theorem 2.1
implies that if there exists a stochastic control Lyapunov function
for the nonlinear stochastic dynamical system (32), then there
exists a feedback control law / xð Þ such that the zero solution

x tð Þ 

a:s:

0 of the closed-loop nonlinear stochastic dynamical system
(32) is stochastically asymptotically stable. Conversely, if there
exists a feedback control law u ¼ / xð Þ such that the zero solution

x tð Þ 

a:s:

0 of the nonlinear stochastic dynamical system (32) is

stochastically asymptotically stable and D(x), x 2 Rn, satisfies a
nondegeneracy condition, then it follows from Theorem 3.2 of
Ref. [23] that there exists a two times continuously differentiable

positive-definite function V : D ! R such that V0 xð ÞF x;/ xð Þð Þ þ
1
2

tr DT x;/ xð Þð ÞV00 xð ÞD x;/ xð Þð Þ < 0; x 2 D; x 6¼ 0, or, equiva-

lently, there exists a stochastic control Lyapunov function for the
nonlinear stochastic dynamical system (32). Hence, a given non-
linear stochastic dynamical system of the form (32) is stochasti-
cally feedback asymptotically stabilizable if and only if there
exists a stochastic control Lyapunov function satisfying Eq. (34).
Finally, in the case where D ¼ Rn and U ¼ Rm, the zero solution

x tð Þ 

a:s:

0 to Eq. (32) is globally stochastically asymptotically sta-
bilizable if and only if V xð Þ ! 1 as j jxjj ! 1.

Next, we consider the special case of nonlinear stochastic affine
systems in the control and construct state feedback controllers that
globally stochastically asymptotically stabilize the zero solution
of the nonlinear stochastic dynamical system under the assump-
tion that the system has a radially unbounded stochastic control
Lyapunov function. Specifically, we consider nonlinear stochastic
affine systems of the form

dx tð Þ¼ f x tð Þð ÞþG x tð Þð Þu tð Þ½ �dtþD x tð Þð Þdw tð Þ; x 0ð Þ¼a:s:x0; t�0

(35)

where f : Rn ! Rn satisfies f 0ð Þ ¼ 0, G : Rn ! Rn�m, and
D : Rn ! Rd , and f �ð Þ; G �ð Þ, and D �ð Þ are continuous functions.

THEOREM 3.1. Consider the controlled nonlinear stochastic
dynamical system given by Eq. (35). Then, a two times continu-
ously differentiable positive-definite, radially unbounded function
V : Rn ! R is a stochastic control Lyapunov function of Eq. (35)
if and only if

V0 xð Þf xð Þ þ 1

2
tr DT xð ÞV00 xð ÞD xð Þ < 0; x 2 R (36)

whereR¢fx 2 Rn; x 6¼ 0 : V0 xð ÞG xð Þ ¼ 0g.
Proof. The proof is a direct consequence of the definition of a

stochastic control Lyapunov function by noting that for systems
of the form (35)

inf
u2Rm

V0 xð Þ f xð Þ þ G xð Þu½ � þ 1

2
tr DT xð ÞV00 xð ÞD xð Þ


 �
¼ �1;

x 62 R; x 6¼ 0

Hence, Eq. (34) is equivalent to Eq. (36), which proves the
result. �

It follows from Theorem 3.1 that the zero solution x tð Þ 

a:s:

0 of a
nonlinear stochastic affine system of the form (35) is globally sto-
chastically feedback asymptotically stabilizable if and only if
there exists a two times continuously differentiable positive-
definite, radially unbounded function V : Rn ! R satisfying Eq.
(36). Hence, Theorem 3.1 provides necessary and sufficient condi-
tions for nonlinear stochastic system stabilization.

Next, using Theorem 3.1, we construct an explicit feedback
control law that is a function of the stochastic control Lyapunov
function V �ð Þ. Specifically, consider the feedback control law
given by

/ xð Þ ¼ � c0 þ
a xð Þ þ n xð Þð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a xð Þ þ n xð Þð Þ2 þ bT xð Þb xð Þ

� �2
q

bT xð Þb xð Þ

0
@

1
A

b xð Þ; b xð Þ 6¼ 0;

0; b xð Þ ¼ 0

8>>><
>>>:

(37)

Journal of Dynamic Systems, Measurement, and Control FEBRUARY 2020, Vol. 142 / 021003-5



where a xð Þ¢V0 xð Þf xð Þ; b xð Þ¢GT xð ÞV0T xð Þ, n xð Þ¢ 1
2

tr DT xð ÞV00 xð ÞD xð Þ, and c0 � 0. In this case, the stochastic control Lyapunov func-

tion V �ð Þ of Eq. (35) is a Lyapunov function for the closed-loop system (35) with u ¼ / xð Þ, where / xð Þ is given by Eq. (37). In particular,

the infinitesimal generator LV �ð Þ of the nonlinear stochastic dynamical system (35) with u ¼ / xð Þ given by Eq. (37) is given by

LV xð Þ¢V0 xð Þ f xð Þ þ G xð Þ/ xð Þ½ � þ 1

2
tr DT xð ÞV00 xð ÞD xð Þ

¼ a xð Þ þ bT xð Þ/ xð Þ þ n xð Þ

¼ �c0b
T xð Þb xð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a xð Þ þ n xð Þð Þ2 þ bT xð Þb xð Þ

� �2
q

; b xð Þ 6¼ 0;

a xð Þ þ n xð Þ; b xð Þ ¼ 0;

8<
:

< 0; x 2 Rn; x 6¼ 0

(38)

which implies that V �ð Þ is a Lyapunov function for the closed-
loop system (35) guaranteeing global stochastic asymptotic stabil-
ity with u ¼ / xð Þ given by Eq. (37).

Remark 3.1. Note that the concept of a stochastic control Lya-
punov function involving differentiability of higher order than one
for V �ð Þ along with the constructive feedback control law (37)

based on the stochastic control Lyapunov function generalizes
Sontag’s universal feedback control formula for deterministic sys-
tems to stochastic dynamical systems. In particular, setting the
diffusion term D xð Þ 
 0 in Eq. (37), one recovers the standard
universal feedback control formula as given in Ref. [2].

Since f �ð Þ; G �ð Þ, and D �ð Þ are smooth, it follows that a xð Þ; b xð Þ,
and n xð Þ; x 2 Rn, are smooth functions, and hence, / xð Þ given by
Eq. (37) is smooth for all x 2 Rn if either b xð Þ 6¼ 0 or a xð Þþ
n xð Þ < 0. Hence, the feedback control law given by Eq. (37) is smooth
everywhere except for the origin. The following result provides neces-
sary and sufficient conditions under which the feedback control law
given by Eq. (37) is guaranteed to be continuous and Lipschitz contin-
uous at the origin in addition to being smooth everywhere else.

THEOREM 3.2. Consider the nonlinear stochastic dynamical system
G given by (35) with a radially unbounded stochastic control Lyapu-
nov function V : Rn ! R. Then, the following statements hold:

(i) The control law / xð Þ given by (37) is continuous at
x¼ 0 if and only if for every e > 0, there exists d > 0
such that for all 0 < jjxjj < d, there exists u 2 Rm such
that jjujj < e and a xð Þ þ bT xð Þuþ n xð Þ < 0.

(ii) There exists a stabilizing control law /̂ xð Þ such that a xð Þþ
bT xð Þ/̂ xð Þ þ n xð Þ < 0; x 2 Rn; x 6¼ 0, and /̂ xð Þ is Lip-
schitz continuous at x¼ 0 if and only if the control law
/ xð Þ given by Eq. (37) is Lipschitz continuous at x¼ 0.

Proof. Necessity of (iÞ is trivial with u ¼ / xð Þ. Conversely,
assume that, for every e > 0, there exists d > 0 such that for all
0 < jjxjj < d, there exists u 2 Rm such that jjujj < e and

a xð Þ þ bT xð Þuþ n xð Þ < 0. In this case, since jjujj < e it follows
from the Cauchy-Schwarz inequality that a xð Þ þ n xð Þ < ekb xð Þk.
Furthermore, since V �ð Þ is two-times continuously differentiable

and G �ð Þ is continuous it follows that there exists d̂ > 0 such that

for all 0 < jjxjj < d̂, kb xð Þk < e. Hence, for all 0 < jjxjj < dmin,

where dmin¢minfd; d̂g, it follows that a xð Þ þ n xð Þ < ekb xð Þk and
kb xð Þk < e. Furthermore, if b xð Þ ¼ 0, then k/ xð Þk ¼ 0, and if
b xð Þ 6¼ 0, then it follows from Eq. (37) that

k/ xð Þk � c0kb xð Þk

þ
ja xð Þ þ n xð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a xð Þ þ n xð Þð Þ2 þ bT xð Þb xð Þ

� �2
q

j
kb xð Þk

� 2 a xð Þ þ n xð Þð Þ þ c0 þ 1ð Þkb xð Þk2

kb xð Þk
� c0 þ 3ð Þe; 0 < jjxjj < dmin; a xð Þ þ n xð Þ > 0

and

k/ xð Þk � c0kb xð Þk

þ
a xð Þ þ n xð Þð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a xð Þ þ n xð Þð Þ2 þ bT xð Þb xð Þ

� �2
q
kb xð Þk

� c0kb xð Þk þ bT xð Þb xð Þ
kb xð Þk

¼ c0 þ 1ð Þkb xð Þk < c0 þ 1ð Þe; 0 < jjxjj < dmin;

a xð Þ þ n xð Þ � 0

Hence, it follows that for every ê¢ c0 þ 3ð Þe > 0, there exists
dmin > 0 such that for all jjxjj < dmin; k/ xð Þk < ê, which implies
that / �ð Þ is continuous at the origin.

Next, to show necessity of iið Þ, assume that there exists a stabi-

lizing control /̂ xð Þ such that a xð Þ þ bT xð Þ/̂ xð Þ þ n xð Þ < 0;

x 2 Rn; x 6¼ 0, and /̂ xð Þ is Lipschitz continuous at x¼ 0 with a

Lipschitz constant L̂; that is, there exists d > 0 such that for all

x 2 Bd 0ð Þ; k/̂ xð Þk � L̂jjxjj. Now, since V �ð Þ is continuous and

V0 0ð Þ ¼ 0, it follows that there exists K> 0 such that

kb xð Þk � Kjjxjj, x 2 Bd 0ð Þ. Hence

k/ xð Þk � c0kb xð Þk

þ
j a xð Þ þ n xð Þð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a xð Þ þ n xð Þð Þ2 þ bT xð Þb xð Þ

� �2
q

j
kb xð Þk

� 2 a xð Þ þ n xð Þð Þ þ c0 þ 1ð Þkb xð Þk2

kb xð Þk
� 2L̂ þ c0 þ 1ð ÞK
� �

jjxjj; x 2 Bd 0ð Þ; a xð Þ þ n xð Þ > 0

and

k/ xð Þk � c0kb xð Þk

þ
a xð Þ þ n xð Þð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a xð Þ þ n xð Þð Þ2 þ bT xð Þb xð Þ

� �2
q
kb xð Þk

� c0kb xð Þk þ bT xð Þb xð Þ
kb xð Þk

¼ c0 þ 1ð Þkb xð Þk

< c0 þ 1ð ÞKjjxjj; x 2 Bd 0ð Þ; a xð Þ þ n xð Þ � 0

which implies that for all x 2 Bd 0ð Þ; k/ xð Þk � Ljjxjj, where
L¢2L̂ þ c0 þ 1ð ÞK, and hence, / �ð Þ is Lipschitz continuous.

Finally, sufficiency of iið Þ follows immediately with
/̂ xð Þ ¼ / xð Þ. �

Next, we present sufficient conditions for stochastic finite time
stabilization using a control Lyapunov function involving a scalar
differential inequality.
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THEOREM 3.3. Consider the nonlinear stochastic dynamical system (35). Assume that there exists a two-times continuously differentia-
ble function V : D ! �Rþ such that V �ð Þ is positive definite and

V0 xð Þf xð Þ þ 1

2
tr DT xð ÞV00 xð ÞD xð Þ � �c V xð Þð Þa; x 2 R (39)

where c> 0, a 2 0; 1ð Þ, and R¢fx 2 Rn; x 6¼ 0 : V0 xð ÞG xð Þ ¼ 0g. Then, the nonlinear stochastic dynamical system (35) with the feed-
back controller u ¼ / xð Þ; x 2 Rn, given by

/ xð Þ ¼ � c0 þ
a xð Þ þ n xð Þ þ c V xð Þð Þa
� �

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a xð Þ þ n xð Þ þ c V xð Þð Þa
� �2 þ bT xð Þb xð Þ

� �2
q

bT xð Þb xð Þ

0
@

1
A

b xð Þ; b xð Þ 6¼ 0;

0; b xð Þ ¼ 0

8>>><
>>>:

(40)

where c0 > 0; a xð Þ¢V0 xð Þf xð Þ; x 2 Rn, b xð Þ¢GT xð ÞV 0T xð Þ, x 2 Rn, and n xð Þ¢ 1=2ð ÞDT xð ÞV00 xð ÞD xð Þ; x 2 Rn, is stochastically finite

time stable and there exists a stochastic settling time operator T : Hm ! H 0;1½ Þ
1 such that

Ex0 T x0ð Þ
� 	 � 1

c 1� að Þ V x0ð Þ
� �1�a; x0 2 Rn (41)

Furthermore, V �ð Þ is a stochastic control Lyapunov function.
Proof. The infinitesimal generator LV �ð Þ of the closed-loop stochastic dynamical system (35), with u ¼ / xð Þ; x 2 Rn, given by

Eq. (40), is given by

LV xð Þ ¼ V0 xð Þf xð Þ þ V0 xð ÞG xð Þ/ xð Þ þ 1

2
DT xð ÞV00 xð ÞD xð Þ

¼ a xð Þ þ bT xð Þ/ xð Þ þ n xð Þ

¼ �c0b
T xð Þb xð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a xð Þ þ n xð Þ þ c V xð Þð Þa
� �2 þ bT xð Þb xð Þ

� �2
q

�c V xð Þð Þa; b xð Þ 6¼ 0;

a xð Þ þ n xð Þ; b xð Þ ¼ 0;

8<
:

<� c V xð Þð Þa; x 2 Rn

(42)

Now, it follows from Theorem 2.2 with g Vð Þ ¼ cVh that the zero solution x tð Þ 

a:s:

0 to Eq. (35) is stochastically finite time stable with
the stochastic settling time Ex0 T x0ð Þ

� 	 � 1=c 1� að Þ
� �

V x0ð Þ
� �1�a

, x0 2 Rn. In this case, it follows from Definition 3.2 that V(x),
x 2 Rn, is a stochastic control Lyapunov function. �

Since f �ð Þ; G �ð Þ, and D �ð Þ are continuous and V �ð Þ is two times continuously differentiable, it follows that a xð Þ; b xð Þ, and n xð Þ,
x 2 Rn, are continuous functions, and hence, / xð Þ given by (40) is continuous for all x 2 Rn if either b xð Þ 6¼ 0 or a xð Þ þ n xð Þ þ
c V xð Þð Þa < 0 for all x 2 Rn. Hence, the feedback control law given by Eq. (40) is continuous everywhere except for the origin. How-
ever, as shown in Theorem 3.2, the feedback control law / xð Þ given in Eq. (40) is continuous on Rn if and only if, for every e > 0, there
exists d > 0 such that for all 0 < jjxjj < d, there exists u 2 Rm such that jjujj < e and a xð Þ þ bT xð Þuþ n xð Þ þ c V xð Þð Þa < 0.

4 Meaningful Inverse Optimality and Control Lyapunov Functions

In this section, we show that given a stochastic control Lyapunov function for a controlled nonlinear stochastic dynamical system, the
feedback control law given by Eq. (37) guarantees sector and gain margins of 1=2;1ð Þ.

THEOREM 4.1. Consider the nonlinear stochastic dynamical system G given by Eq. (21) and let the two times continuously differentia-
ble positive-definite, radially unbounded function V : Rn ! R be a stochastic control Lyapunov function of Eq. (21), that is,

V0 xð Þf xð Þ þ 1

2
tr DT xð ÞV00 xð ÞD xð Þ < 0; x 2 R; (43)

whereR¢fx 2 Rn : x 6¼ 0; V0 xð ÞG xð Þ ¼ 0g. Then, with the feedback stabilizing control law given by

/ xð Þ ¼
� c0 þ

a xð Þ þ n xð Þð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a xð Þ þ n xð Þð Þ2 þ bT xð Þb xð Þ

� �2
q

bT xð Þb xð Þ

0
@

1
A

b xð Þ; b xð Þ 6¼ 0;

0; b xð Þ ¼ 0;

8>>>><
>>>>:

(44)

where a xð Þ¢V0 xð Þf xð Þ; b xð Þ¢GT xð ÞV 0T xð Þ; n xð Þ ¼ 1
2

tr DT xð ÞV00 xð ÞD xð Þ, and c0 > 0, the nonlinear stochastic dynamical system G
given by Eqs. (21) and (22) has a sector (and, hence, gain) margin 1=2;1ð Þ. Furthermore, with the feedback control law u ¼ / xð Þ the
performance functional

J x0; u �ð Þð Þ ¼ Ex0

ð1
0

a x tð Þð Þ þ n x tð Þð Þ � c x tð Þð Þ
2

bT x tð Þð Þb x tð Þð Þ þ 1

2c x tð Þð Þ u
T tð Þu tð Þ


 �
dt


 �
; (45)
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where

c xð Þ¢ c0 þ
a xð Þ þ n xð Þð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a xð Þ þ n xð Þð Þ2 þ bT xð Þb xð Þ

� �2
q

bT xð Þb xð Þ

0
@

1
A
; b xð Þ 6¼ 0;

c0; b xð Þ ¼ 0

8>><
>>: (46)

is minimized in the sense that

J x0;/ x �ð Þð Þ
� �

¼ min
u2S x0ð Þ

J x0; u �ð Þð Þ; x0 2 Rn (47)

Proof. The result is a direct consequence of Theorems 2.3 and 2.4 with R2 xð Þ ¼ 1=2c xð Þ
� �

Im and L1 xð Þ ¼ � a xð Þ þ n xð Þð Þþ
c xð Þ=2
� �

bT xð Þb xð Þ. Specifically, it follows from Eq. (46) that R2 xð Þ > 0; x 2 Rn, and

L1 xð Þ ¼ � a xð Þ þ n xð Þð Þ þ c xð Þ
2

bT xð Þb xð Þ

¼
1

2
c0b

T xð Þb xð Þ � a xð Þ þ n xð Þð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a xð Þ þ n xð Þð Þ2 þ bT xð Þb xð Þ

� �2
q� �

; b xð Þ 6¼ 0;

� a xð Þ þ n xð Þð Þ; b xð Þ ¼ 0

8><
>: (48)

Now, it follows from Eq. (48) that L1 xð Þ � 0; b xð Þ 6¼ 0, and, since
V �ð Þ is a stochastic control Lyapunov function of Eq. (21), it fol-
lows from Theorem 3.1 that L1 xð Þ ¼ � a xð Þ þ n xð Þð Þ � 0 for all
x 2 R ¼ fx 2 Rn : x 6¼ 0; b xð Þ ¼ 0g. Hence, Eq. (48) yields
L1 xð Þ � 0, x 2 Rn, so that all conditions of Theorem 2.4 are satis-
fied. �

Theorem 4.1 shows that given a nonlinear stochastic dynamical
system for which a stochastic control Lyapunov function can be
constructed, the feedback control law given by Eq. (44) is inverse
optimal with respect to a meaningful cost functional and has a sec-
tor (and, hence, gain) margin 1=2;1ð Þ.

Remark 4.1. Using the stochastic finite time optimal feedback
control framework developed in Ref. [10], the stochastic finite
time controller (40) can also be shown to be inverse optimal with
respect to a meaningful (in the terminology of Ref. [11])
nonlinear-nonquadratic performance functional with guaranteed
sector and gain margins. However, due to the space limitations,
we do not present this result here.

5 Illustrative Numerical Example

Our example considers control of thermoacoustic instabilities
in combustion processes. Engineering applications involving
steam and gas turbines and jet and ramjet engines for power
generation and propulsion technology involve combustion proc-
esses. Due to the inherent coupling between several intricate
physical phenomena in these processes involving acoustics,
thermodynamics, fluid mechanics, and chemical kinetics, the
dynamic behavior of combustion systems is characterized by
highly complex nonlinear models [24–27]. The unstable
dynamic coupling between heat release in combustion processes
generated by reacting mixtures releasing chemical energy and
unsteady motions in the combustor develop acoustic pressure
and velocity oscillations, which can severely impact operating
conditions and system performance. These pressure oscillations,
known as thermoacoustic instabilities, often lead to high vibra-
tion levels causing mechanical failures, high levels of acoustic
noise, high burn rates, and even component melting. Hence, the

need for active control to mitigate combustion-induced pressure
instabilities is critical.

In this section, we design a finite time stabilizing controller for
a two-mode, nonlinear time-averaged combustion model with
nonlinearities present due to the second-order gas dynamics. This
model is developed in Ref. [24] and is given by

dx1 tð Þ ¼ ½a1x1 tð Þ þ h1x2 tð Þ � bðx1 tð Þx3 tð Þ þ x2 tð Þx4 tð ÞÞ þ u1 tð Þ�dt

þ r1x1 tð Þdw tð Þ; x1 0ð Þ ¼a:s: x10; t � 0 (49)

dx2 tð Þ¼ �h1x1 tð Þþa1x2 tð Þþb x2 tð Þx3 tð Þ�x1 tð Þx4 tð Þð Þþu2 tð Þ½ �dt

þr2x2 tð Þdw tð Þ; x2 0ð Þ ¼a:s:x20 (50)

dx3 tð Þ ¼ a2x3 tð Þ þ h2x4 tð Þ þ b x2
1 tð Þ � x2

2 tð Þ
� �

þ u3 tð Þ
� 	

dt

þ r3x3 tð Þdw tð Þ; x3 0ð Þ ¼a:s: x30 (51)

dx4 tð Þ ¼ �h2x3 tð Þ þ a2x4 tð Þ þ 2bx1 tð Þx2 tð Þ þ u4 tð Þ½ �dt

þ r4x4 tð Þdw tð Þ; x4 0ð Þ ¼a:s: x40

(52)

where a1; a2 2 R represent growth/decay constants, h1; h2 2 R

represent frequency shift constants, b ¼ cþ 1ð Þ=8c
� �

x1, where c
denotes the ratio of specific heats, x1 is the frequency of the fun-
damental mode, r1, r2, r3, and r4 2 R represent augmentation
factors of the variance of the state dependent stochastic disturb-
ance, and ui, i ¼ 1;…; 4, are control input signals. For the data
parameters a1 ¼ 5, a2 ¼ �55; h1 ¼ 4; h2 ¼ 32; c ¼ 1:4, x1 ¼ 1,

r1 ¼ r2 ¼ r3 ¼ r4 ¼ 1, and x0 ¼ 2; 3; 1; 1½ �T, the open-loop (i.e.,
ui tð Þ 
 0; i ¼ 1;…; 4) dynamics (49)–(52) result in sustained
oscillations.

To stabilize this system in finite time, we design a feedback

control law given by Eq. (40), where V xð Þ ¼ 1=2ð ÞxTx; x 2 R4,

c¼ 1, c0 ¼ 1, a ¼ 3=4ð Þ. In this case, V0 xð Þ ¼ xT, G xð Þ ¼ I4, and

hence, R ¼ fx 2 R4; x 6¼ 0 : xT ¼ 0g ¼1. Thus, condition (39)
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is trivially satisfied and it follows from Theorem 3.3 that the
closed-loop system (49)–(52) with the feedback control law (40)
is finite time stable with Ex0 T x0ð Þ

� 	 � 6:6195. Figure 1 shows a

sample trajectory along with the standard deviation of the state

trajectories for x0 ¼ 2; 3; 1; 1½ �T of the controlled system versus
time along with the mean control signal versus time for 30 sample
paths.

6 Conclusion

In this paper, we developed a constructive universal finite time
stabilizing feedback control law for stochastic dynamical systems
driven by Wiener processes based on the existence of a stochastic
control Lyapunov function. Furthermore, the proposed control
framework was used to construct stabilizing controllers for non-
linear stochastic dynamical systems with robustness guarantees
against multiplicative input uncertainty. In future research, we
will establish connections between the recently developed notion
of stochastic dissipativity [28] and optimality [11] of the proposed
stochastic finite time feedback control law.
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