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A System-Theoretic Appropriate Realization of the 
Empty Matrix Concept 

C. N. Nett and W. M. Haddad 

Abstract-Inthis note we propose an algebraic realization of the empty 
matrix concept which is appropriate for system-theoretic applications. 
This realization differs considerably from the realization currently im- 
plemented by the Mathworks, Inc. within their MATLAB program. We 
demonstrate by repeated example the utility of our realization of the 
empty matrix concept, and through these same examples indicate the 
deficiencies of the current MATLAB realization of this concept. These 
examples fully delineate how the empty matrix concept can be utilized to 
transparently handle static and / or single vector input, single vector 
output systems within the more general context of dynamic, two vector 
input, two vector output systems. 

I. INTRODUCTION 

For many system-theoretic matrix formulas there exist special 
cases for which one or more of the matrices involved in the 
formula do not exist, and hence the formula is inappropriate. 
One illustration of this point can be given by considering the 
formula for the transfer matrix of a continuous-time, lumped, 
linear, time invariant, state-space system: 

G(s) = C(sZ - A ) - ’ B  + D.  (1) 

This formula involves the matrices A ,  B, C, and D. However, 
A ,  B, and C do not exist in the special case where the underlying 
state-space system is static, for in this case the system has no 
states. Correspondingly, in this special case the formula given 
above is clearly inappropriate. 

In special cases of the type described above, one can often 
simply note the special case, and then invoke an alternative 
formula. Indeed, in the above example, one can simply note the 
special case of a static system, and then invoke the alternative 
formula G(s) = D. 

An elegant alternative to the procedure described above can 
be advanced by introducing the concept of an empty matrix. 
Intuitively, an empty matrix has no entries, and hence can be 
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substituted in a matrix formula for any matrix which does not 
exist. An algebraic realization of the empty matrix concept is 
specified to indicate how the usual rules of matrix addition, 
matrix multiplication, etc., are extended to apply to empty matri- 
ces. If this algebraic realization is chosen appropriately, the 
matrix formula can be manipulated, using the algebraic proper- 
ties of empty matrices, to arrive at the desired result without 
ever having to explicitly note the special case or invoke an 
alternative formula. 

The elegance afforded by the empty matrix approach can 
potentially be exploited to great advantage in the context of 
large-scale software development. Indeed, the traditional ap- 
proach to special cases one must include in the software explicit 
checks for special cases along with appropriate provisions for 
each special case. This would be done for each matrix formula 
implemented in the software with potential for special cases of 
the type described above. Using the empty matrix approach, one 
would simply introduce the empty matrix as an object, or data 
type, and then code its algebraic realization. This would be done 
only once. Subsequent code would then be devoid of cumber- 
some explicit checks and provisions for special cases of the type 
described above. 

A. Previous Work 
The authors were first exposed to the empty matrix concept 

through their use of the MATLAB program developed by The 
Mathworks, Inc. [l]. The empty matrix was first introduced into 
MATLAB several years ago. A specific realization of the empty 
matrix concept is implemented in the current version of MAT- 
LAB (Version 3.5). Quoting from [l]: 

“We’re not sure we’ve done it correctly, or even 
consistently, but we have found the idea useful.” 

Our opinion is that the current MATLAB realization of the 
empty matrix concept is neither correct, consistent, or useful, at 
least not for system-theoretic applications. To give some indica- 
tion of why we have formed this opinion, consider once again 
the matrix formula (1). Let [ ] denote an empty matrix. Substi- 
tuting A = [ 1, B = [ 1, and C = [ ] into (1) and using the 
algebraic realization of the empty matrix concept currently im- 
plemented within MATLAB, one obtains G(s) = [ 1, as opposed 
to the desired result G(s) = D. A more fundamental illustration 
of the deficiencies inherent in the current MATLAB realization 
of the empty matrix concept can be given by considering the 
matrix formula below: 

(2) A = UN -k I/D. 

Since we may write 

El UN + Irg = [U VI 

in the case where V = [ ] and D = [ 1, one desires that A = UN. 
However, upon substituting V = [ ] and D = [ ] in (2) and using 
the algebraic realization of the empty matrix concept currently 
implemented within MATLAB, one obtains A = [ 1. We could 
continue here, and indeed many other deficiencies inherent in 
the current MATLAB realization of the empty matrix concept 
are expounded upon in the sequel. The above examples should, 
however, provide ample evidence to support the opinion put 
forth above. 
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As far as other previous work on the empty matrix concept is 
concerned, we once again quote from [l]: 

“As far as we know, the literature on the algebra 
of empty matrices is itself empty.” 

After a thorough search of the literature, we have found the 
above assessment to be incorrect. Indeed, a concept very similar 
to the empty matrix concept has been considered in the litera- 
ture. This concept is known as the “null string,” and is employed 
in the APL programming language (see, for example, [3]). Clearly 
then, the literature on the empty matrix prior to this note is not 
comprised solely of [ 11, contrary to previous thought. 

B. Contributions Summary 

In this note we propose an algebraic realization of the empty 
matrix concept which differs considerably from the current 
MATLAB realization of the empty matrix concept. This new 
realization of the empty matrix concept is believed to be most 
appropriate for system-theoretic applications. Indeed, with this 
realization of the empty matrix concept one obtains G(s )  = D 
upon substituting A = [ 1, B = [ 1, and C = [ ] into (11, and 
also obtains A = UN upon substituting V = [ ] and D = [ ] into 
(2), as desired. We demonstrate by repeated examples such as 
these the utility of our realization of the empty matrix concept, 
and through these same examples indicate the deficiencies of 
the current MATLAB realization of this concept. Additionally, 
the examples are used to show how the empty matrix concept 
can be utilized to transparently handle static and/or single 
vector input, single vector output (SVISVO) systems within the 
more general context of dynamic, two vector input, two vector 
output 0 “ V O )  systems. 

C. Addendum 

After this work was completed [2], [SI the results were commu- 
nicated to Dr. Jie Chen. Some time thereafter, Dr. Chen discov- 
ered that a realization of the empty matrix concept similar to the 
one advanced here had already been given in a book by Stoer 
and Witzgall [lo]. Several months after Dr. Chen’s discovery, 
Professor Carl deBoor called the authors attention to a recent 
paper of his [5], wherein yet another realization of the empty 
matrix concept similar to the one advanced here had been given. 
Though these three similar realizations of the empty matrix 
concept were all independently derived, it is clear that the work 
of Stoer and Witzgall 1101 predates both the current work [ZI, [SI 
and the work of deBoor [5]. It should be noted, however, that 
the development given in [lo] is quite brief, occupying less than 
two paragraphs. More importantly, perhaps, no attempt is made 
in either [lo] or [5] to delineate the system-theoretic utility of 
the empty matrix concept, and this is a key thrust of the current 
note. 

D. Outline 
An outline of this note is as follows: In Section I1 we review 

the current MATLAB realization of the empty matrix concept 
and then present a new realization of this concept. In Section I11 
we show how the empty matrix concept can be utilized to 
transparently handle static and/or SVISVO systems within the 
more general context of dynamic TVITVO systems. Finally, 
concluding remarks are given in Section IV. 

11. ALGEBRAIC REALIZATION OF THE EMPTY MATRIX CONCEPT 

In this section, we propose an algebraic realization of the 
empty matrix concept which is believed to be most appropriate 

for system-theoretic applications. We begin by reviewing the 
current MATLAB realization of the empty matrix concept. This 
realization may be summarized as follows: 

Al) Matrices X of dimension p X m, with p and m both 
strictly positive integers (nonzero), or p = m = 0, are consid- 
ered. The matrix with dimensions 0 X 0 is said to be an empty 
matrix, and denoted [ I. 
A2) The matrix [ ] can be multiplied by scalars and added to 

or multiplied by matrices of arbitrary dimensions. Furthermore, 
doing so propagates the matrix [ 1. Specifically, for any scalar c 
and matrix X 

C’[ I = [  l . C = [  I ,  
X + [ l = [ l + X = [ l ,  

X - [  I = [ ] * X =  [ 1 .  
A3) With the above definitions, the usual associative and 

distributive laws hold for scalar multiplication, matrix addition, 
and matrix multiplication. 

A4) With the above definitions, [ 1 = Ooxo  = Zoxo = ([ ]I)-’. 

The new realization of the empty matrix proposed here may 
be summarized as follows: 

B1) Matrices Xpxm of dimension p X m, with p and m 
nonnegative integers (possibly zero), are considered. A matrix 
with one or both dimensions zero is said to be an empty matrix, 
and denoted [ I. The dimensions of an empty matrix may be 
explicitly denoted through the use of the notation [ Iprm,  [ 
I O x m r [  lPx0, [  loxO. In the case of [ Ipxm it is implicit that one 
or both of p or m is zero. We regard [ 10xm, [ lpxO, and loxo 
as defining fat, tall, and square empty matrices, respectively. 

B2) Matrices [ ] can be multiplied by scalars and added to or 
multiplied by matrices of compatible dimensions only. Here 
compatible dimensions are defined in the usual sense. The 
dimensions of the resulting sum or product are determined by 
the usual rules. As such, additions and multiplications involving 
empty matrices propagate empty matrices in all but one case. 
Specifically, for any scalar c and m X p matrix Xmxp:  

c * [ ] p x m  [ I p x m  ‘ C  [ I p x m ,  (3) 

[ I p x m  + I p x m  = I P X ~ ,  (4) 

I 1 0 x m  .Xmxp IOXP,  (5) 

[ I p x o . [  10xm = O p x m .  (7) 

X,.;[ IPXO = [ I m x o ,  ( 6 )  

B3) With the above definitions, the usual associative and 
distributive laws hold for scalar multiplication, matrix addition, 
and matrix multiplication. In fact, (7) has been dictated by our 
desire for matrix multiplication to distribute over addition. This 
implication is readily seen by writing 0 x m  = [ lpxO * [ 10xm - 

B4) With the above definitions, [ Ipxm = O p x m ,  [ lox = I o x o ,  

As can be seen from the above, the realization of the empty 
matrix concept proposed here differs considerably from the one 
currently implemented in MATLAB. Note especially that the 
current MATLAB realization considers only the square empty 
matrix, yet allows addition and multiplication of this matrix with 
other matrices of arbitrary dimensions. The realization proposed 
here considers both square and nonsquare empty matrices, and 
addition and multiplication are allowed only between matrices of 
compatible dimensions. 

1 p x 0  * [  10Xm = [ 1px0([ 1 0 x m  - 1 0 x m 5  = [ 1 p x 0  * 1 0 x m .  

([ I,,o)-’ = [ 1 0 x 0 .  
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Using the above summaries, we can revisit the examples 
considered in Section I and verify the results which were stated 
there without proof. For (11, we make the substitution A = [ 1 ,  
B = [ 1, and C = [ 1 .  In the case of the current MATLAB 
realization, each of these empty matrices is necessarily square, 
and one obtains: 

= I * ( [  I ) - ' * [  I + D  
= 3 . 1  I * [  1 + D  
= [  ] + D  

= [ 1. 
In the case of our realization, each of the empty matrices is 
necessarily appropriately dimensioned, and one obtains: 

G ( s )  = C(sZ - A ) - ' B  + D 

= [ l p x o .  ( s ~ ~ ~ ~  - [ 1 0 x 0 ) ~ ' .  [ 1 0 x m  + D , ~ ,  

= 1 ~ x 0  * ( S .  [ 1 0 x 0  - [ 1 0 x 0 ) ~ ' .  [ 1 0 x m  + oPxm 
= [ l p x o .  ([ 1 0 x 0  - 1 0 X o ) - ~  * 1 0 x m  + oPxm 
= 1 ~ x 0  ([ 1 0 x 0 ) ~ ' .  1 0 x m  + oPxm 
= 

= [ 1 ~ x 0 .  [ 1 0 x m  + D p x m  

- O p x m  + D p x m  

- D p x m .  

I ~ x o .  [ ] O X O *  [ 1 0 x m  + D p x m  

- 

- 

For (2), we make the substitution V =  [ ] and D = [ 1. In the 
case of the current MATLAB realization, each of these empty 
matrices is again necessarily square, and one obtains: 

M = U N + Y D  
= U N +  [ I . [  ] 
= U N + [  ] 
= [  1. 

In the case of our realization, each of the empty matrices is 
again necessarily appropriately dimensioned, and one obtains: 

M Up,, . N , x m  + [ 1 ~ x 0 .  [ I O X ~  
u p , , .  N n x m  + O p x m  

= u p x n . N n x m .  

This analysis validates the results stated without proof in the 
introduction. More to the point, it makes clear both the basic 
flaws underlying the current MATLAB realization of the empty 
matrix concept, and the consistency of the new realization of the 
empty matrix concept proposed here. 

It should be clear to the reader from Bl)-B4) that all the 
usual algebraic properties for matrices hold for the algebraic 
realization of the empty matrix concept given here. It follows 
that one need not distinguish between empty and nonempty 
matrices in purely algebraic matrix formulas if this realization is 
adopted, as consistent results will be obtained in any case; to wit, 
substituting appropriately dimensioned empty matrices in a 
purely algebraic matrix formula for matrices which do not exist 
will automatically yield the corresponding special case of the 
formula. This property was clearly demonstrated in the examples 
discussed above. 

At this point we call attention to the fact that we have 
purposely avoided any and all discussion of anything but the 
purely algebraic properties of empty matrices. For example, we 
have purposely not discussed the determinant, eigenvalues, sin- 
gular values, or norm of an empty matrix. The reason for this is 
because we feel strongly that the empty matrix concept has 
utility only from a purely algebraic standpoint. Note, however, 
that determinants, eigenvalues, singular values, and norms of 
empty matrices are considered in the current version of MAT- 
LAB. 

From this point onward in this note we will deal only with the 
new realization of the empty matrix concept as summarized in 
Bl)-B4). Furthermore, any indicated matrix expression will be 
tacitly assumed to involve matrices of compatible dimensions, 
and any indicated matrix inverse will be tacitly assumed to. exist. 

111. USE WITH TVITVo SYSTEMS 

In this section, we show how the empty matrix concept can be 
utilized to transparently handle the special cases of static and/or 
SVISVO systems within the more general context of dynamic 
TVITVO systems. In addition, we show that as a consequence of 
the use of empty matrices, interconnection of two TVITVO 
systems may be regarded as a completely general form of system 
interconnection which encompasses the usual parallel, cascade, 
and feedback interconnections, and also the linear fractional 
transformation, as special cases. We begin by considering the 
TVITVO system depicted in Fig. 1. Here T is a partitioned 
proper real-rational transfer matrix: 

T : =  [:: 21 (8) 

to which we associate a partitioned standard state-space realiza- 
tion: 

[ A  C D  "1 := [VI (9) 

c, 4 1  D 2 2  

denoting the correspondence as follows: 

To show how the TVITVO system representation can be 
made completely general by allowing the use of empty matrices 
in (8) and (9), consider first the case of a static systems Tstatic. 

Using the empty matrix, a state-space realization of Ktatic can be 
written as follows: 

Tstatic + 

i 10) 

Note here that while the empty matrices in (10) can be replaced 
by zero matrices without invalidating (lo), to do so adds uncon- 
trollable and unobservable unstable modes to the realization, 
which is clearly undesirable. 

Consider now the case of a SVISVO system Ts~svo.  The 
properties of the empty matrix can be used to write: 

i l l )  

This construction corresponds to setting the second input and 
second output null in Fig. 1. Of course, three other distinct 
constructions are possible, corresponding to the three remaining 
choices for null input-output pairs in Fig. 1. 
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Fig. 2. Interconnection of two TVITVO systems. 

Fig. 1. TVITVO system representation. 

The above constructions show how static and/or SVISVO 
systems can be transparently represented as TVITVO systems 
using the empty matrix concept. Another important conse- 
quence of using the empty matrix concept in the context of 
TVITVO systems is that the interconnection of two TVITVO 
systems may be regarded as a completely general form of system 
interconnection. To show this we begin by considering two 
TVITVO systems 

Assuming that the dimensions of t,, and the transpose of S;, 
are identical, we may interconnect t and F a s  indicated in Fig. 2 
to yield yet another TVITVO system, which we denote by T .  
Recalling the top half of Fig. 1, it should be apparent to the 
reader that standard parallel interconnection, cascade intercon- 
nection, and feedback interconnection are all special cases of 
the TVITVO interconnection depicted in Fig. 2. Indeed, with 

the interconnection depicted in Fig. 2 describes the standard 
parallel interconnection of the two systems M and N .  Similarly, 
standard cascade interconnection of M and N is described by 
Fig. 2 when 

(13) 

and standard feedback interconnection of M and N is described 
by Fig. 2 when 

o z  (14) 

Another important form of system interconnection is the the 
general interconnection of a TVITVO system with a SVISVO 
system as depicted in Fig. 3. Through the use of empty matrices, 
this interconnection can also be transparently regarded as a 
special case of the TVITVO interconnection. Indeed, substitut - 
ing 

(15) 

in the interconnection depicted in Fig. 2 results in the intercon- 
nection depicted in Fig. 3. 

The interconnections represented in Fig. 2 and in Fig. 3 
correspond, respectively, to certain mathematical operations 
know as the star-product and the linear fractional transforma- 
tion [9]. These operations are defined as follows 

Dejnition 3.1: Consider the two TVITVO systems t and 9; 
The star product of 7 with t ,  denoted t * S; is defined as the 
TVITVO system T with: 

Definition 3.2: Consider the TVITVO system t and the 
SVISVO system q1. The linear fractional transformation of S;, 
under t ,  denoted t0ql, is defined as the SVISVO system Tl l  
given by: 

Implicit in the above definitions for systems (i.e., proper real 
rational transfer matrices) are corresponding definitions for ap- 
propriately partitioned constant (i.e., real/complex) matrices. As 
such, we may view the star product and linear fractional trans- 
formation on systems as, respectively, pointwise star products 
and linear fractional transformations on system frequency evalu- 
ations. 

The reader can readily verify that upon substituting (15) into 
the expression t *S; one obtains tOq,. This makes very explicit 
the fact that the interconnection depicted in Fig. 3 can be 
viewed as a special case of the interconnection depicted in Fig. 2 
through the use of empty matrices. 

A state-space formula for TVITVO interconnection (the star 
product) can be derived via a series of straightforward but 
tedious algebraic manipulations (61. 
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1 star-frq, which could of course be called on a frequency-by- 
frequency basis to compute the transfer matrix version of 
(16)-(19). Next, we would implement (20)-(23) as the m-file 
star-ss. Here star-ss would simply call star-frq four times, 
with appropriate arguments. The resulting implementation of 
(20)-(23) would be comprised of only two MATLAB m-files, and 
each m-file would contain only a few lines of code. 

Recalling that we have shown that TVITVO interconnection 
can be viewed as a completely general form of system intercon- 
nection if empty matrices are allowed, we close by noting that 
the elegant implementation of TVITVO interconnection out- 
lined above could in turn be called by other m-files, with 
arguments as indicated in (12)-(14), to generate more standard 
system interconnections. Continuing in this vein one could in 
principle implement a completely general, yet extremely com- 

a modest effort. Consequently, we would expect to soon see the 

Fig. 3. hterconnection of a TvITvo system with a SvIsVo System. pact computational facility for system interconnection, with only 

- -  
izations of t and 7 by x ,  and x,, respettively. Under these 
conditions IV. CONCLUDING REMARKS 

This note has shown that the empty matrix concept has 
potential to provide an elegant, general means for transparently 
handling special cases in matrix formulas corresponding to the 
absence of one or more of the matrices involved in the formula. 
It has also been pointed out that this potential can be realized 
only if an appropriate algebraic realization of this concept is 
adopted. One such realization is believed to have been given in 
this paper. It is our hope that this realization of the empty 
matrix will soon be implemented within software packages such 
as MATLAB. 

(20) 
b 9 1 1  g1 

A =  [:z d:z]*[.91 M I 7  

9 1 1  9 1 2  
(21) 

= [ d”:, 4*[ a1 9J 

(22) 

D = d * 9 ,  (23) ACKNOWLEDGMENT 
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xT = [::I* 
A state-space formula for the linear fractional transformation 

follows immediately from the above result for the star product 
via the substitution: 

assuming that 

We omit the resulting formula to underscore the point that it 
can be transparently obtained from the corresponding formula 
for the star product via a simple substitution of empty matrices. 

The state-space formula for TVITVO interconnection given in 
Fact 3.1 is particularly convenient for numerical implementa- 
tion. Indeed, to implement (20)-(23) in MATLAB we would first 
implement the constant matrix version of (16)-(19) as the m-file 

[31 

[41 

[51 
[61 

[91 

[lo1 
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