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Nonlinear System Stabilization via Hierarchical
Switching Control

Alexander Leonessa, Wassim M. Haddad, and VijaySekhar Chellaboina

Abstract—in this paper, a nonlinear control-system design stability guarantees are provided for plant output scheduling,
framework predicated on a hierarchical switching controller g designframework for gain-scheduling control guaranteeing

architecture parameterized over a set of moving system equilibria -y stem stability over an operating range of the nonlinear plant
is de.veloped..Speuf.lcaIIy, using eqwhbna—dependgnt Lyapunov dvnamics has not been addressed in the literature
functions, a hierarchical nonlinear control strategy is developed y :

that stabilizes a given nonlinear system by stabilizing a collection [N an attempt to develop a design framework for
of nonlinear controlled subsystems. The switching nonlinear gain-scheduling control, linear parameter-varying system
controller architecture is designed based on a generalized lower theory has been developed [5], [6]. Since gain-scheduling
semicontinuous Lyapunov function obtained by minimizing a coniro| involves a linear parameter-dependent plant, linear

potential function over a given switching set induced by the t - thods f . heduli tural
parameterized system equilibria. The proposed framework pro- paramelervarying metnods ior gain scneduiing seem naturai.

vides a rigorous alternative todesigninggain-scheduled feedback However, even though this is indeed the case for linear dy-
controllers and guarantees local and global closed-loop systemnamical systems involving exogenous parameters, this is not
stability for general nonlinear systems. the case for nonlinear dynamical systems. This is due to the
Index Terms—Domains of attraction, dynamic compensation, fact that a nonlinear system cannot be represented as a true
equilibria-dependent Lyapunov functions, hierarchical switching linear parameter-varying system since the varying system
control, nonlinear connective stabilization, parameterized equi- parameters are endogenous, i.e., functions of the system
libria. state. Hence, stability and performance guarantees of linear
parameter-varying systems dwt extend to the nonlinear
|. INTRODUCTION system. Of course, in the case where the magnitude and rate
. . of the endogenous parameters are constrained such that the
I F THE operating range of the control system is small, aNBear parameter-varying systehopefullybehaves closely to

if the system nonlinearities are smooth, then the CO””f?le actual nonlinear system, then stable controllers can be

system can be Iocally.approxmgted by a Ilneanzeq s3_'3'{edrgsigned using quasilinear parameter-varying representations
around a given operating condition and linear multivariab ]. However, in the case of unexpectedly large amplitude

control theory can then be used to maintain local stabil ncertain exogenous disturbances and/or system parametric

and _per_formance. However, in high-pgrforr_nance e_ngineeri[] certainty, a priori assumptions on magnitude and rate
applications, such as advanced tactical fighter aircraft B nstraints on endogenous parameters are unverifiable.

variable-cycle gas turbine aeroengines, the locally approxi-| e paper, a nonlinear control design framework pred-

mated linearized system does not cover the operating rang§Qted on a hierarchical switching controller architecture pa-

the system dynamics. In this case, gain-scheduled ContrOuﬁa'{r':‘neterized over a set of moving system equilibria is devel-

can be designed over several fixed operating points coverigiged_ Specifically, usingquilibria-dependent Lyapunov func-

the sys_tem’s operating range and controller gains_ intgrpolgt[%iqs or, instantaneous (with respect to a given parameterized
over this range [1], [2]. However, due to approximation lin ilibrium manifold) Lyapunov functions, a hierarchical non-

o . ! . u
earization errors and neglected operating point transitions, ﬁ?%ear control strategy is developed that stabilizes a given non-

I‘?SUHI?Q ga|n-schedtsliqi_fystEem d(t): N n?]t hta\g?r?ny guaraipiﬁ]eesar system using a supervisory switching controller that co-
of per ormhandcei ?; s at ! |”y. ven Olijg ds.a 'éy pijop:zr I€Stdinates lower level stabilizing subcontrollers [8]-[10]. Each
of gain-scheduled controllers are analyzed in [3] and [4] ar%9.|chontroller can be nonlinear, and thus, local set point designs

can be nonlinear. Furthermore, for each parameterized equilib-
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controller guarantees that the generalized Lyapunov function [l. MATHEMATICAL PRELIMINARIES
is nonincreasing along the closed-loop system trajectories wit
strictly de_crea3|_n_g values at the switching points, eStab“Sh' ults used later in the paper. [Retlenote the set of real num-
asymptotic stability. In the case where one of the parameterized . |otrn denote the set of, x 1 real column vectors. let
system equilibrium points is globally asymptotically stable, thﬁnxr’n denote the set of realx m matrices, and let)” den(,)te

proposed nonlinear stabilization framework guarantees glo??elnspose. Furthermore, we write || for the Euclidean vector

attraction to any given system invariant set. If, in addition, form V/(x) for the Fréchet derivative df () atz, andA > 0
structural topological constraint is enforced on the switchirg ' ! Y

hIn this section, we establish definitions, notation, and two key

esp.,A > 0) to denote the fact that the Hermitian matrix
set, then the proposed framework guarantees global asympt 'ﬁonnegative (resp., positive) definite. For a suliset R"
stability of any given system equilibrium on the parameterize o _ ' o '
system equilibrium manifold. Furthermore, since the propos&{f WritedS, S, S for the boundary, the interior, and the closure
switching nonlinear control strategy is predicted on a gendtt S, respectively. Finally, leC® denote the set of continuous
alized Lyapunov function framework with strictly decreasindnctions andC™ denote the set of functions withcontinuous
values at the switching points, the possibility of a sliding mod&erivatives. _ _ _
is precluded. Hence, the proposed nonlinear stabilization frame!" this paper, we consider nonlinear controlled dynamical
work avoids the undesirable effects of high-speed switchifyStems of the form
onto an invariant sliding manifold, which is one of the main lim- .
itations of variable strugture controllers. Finally, we note that the a(t) = F(a(t), u(t)), #(0)=wo, ¢ € 1Ls, @
present framework provides a rigorous alternative to designimerei(t) € D CRY ¢ e I, is the system state vector,

gain-scheduled controllers for general nonlinear systems by % C R is the maximal interval of existence of a solutiof)
0 =

plicitly capturing plant nonlinearities and quantifing the notiorE)f (1), Dis an open se) € D, u(t) € U C R™, ¢ € Ty, is
’ ’ = ’ AR

of slow-varying system parameters which place fundamen[ﬁg control inputl/ is the set of all admissible controls such that

Itlrr(T)1|||t§rt|Sons on achievable performance of gain-scheduling cow.) is a measurable function withe 24, andF: D x i — R"

Limited t ¢ vsis related vet dif ¢ h is continuous oD x U.
Imited to systemanalysis related yet differént approaches - nogniion 2.1: The pointz € D is anequilibrium pointof

to the proposed hierarchical switching control design framt(al-) if there existsz € 2/ such thatF'(z, @) = 0.

work are given in [11]-[14]. Specificallygnalysisof switched In this paper we assume that givén an equilibrium poiet
linear systems in the planeR¢) are given in [11] and [12]. D corresponding tai € ¢ and a mapping: D x A — U
More recently, asymptotic stabilitgnalysisof m.-linear sys- A C R0 € A, such thatp(z, 0) — m, there exist neig,h-
tems using Lyapunov-like functions is given in [13]. Stab”i%orﬂood’spo c ’D of 7 and A; c A 61‘ 0, and a contin-

of a multi-controller switched system &nalyzedusing Lya- — o
punov functions and sliding surfaces in [14]. A hybrid stabizoo> functionyp: A, — D, such thatw = (0), and, for

- . . every\ € A,, zx = 7()\) is an equilibrium point; that is,
lization strategy for nonlinear systems controlledibgar con- F((N), o(h(\), A)) = 0, A € A,. This is a necessary con-
trollers is discussed in [15] wherein domains of attraction a tion f(;r param’etric stab,ility witho respect b, as defined in
enlarged by the use of a switching strategy. However, this an 1] and [22]. Note that the connected et [éq corresponds
ysis is limited to linearly controlled systems in the plane. Ev a parameterization set with the functirp(?) parameterizing
though the approach can be extended to higher order syste, 'system equilibria. In the special case where= m and
the computational complexity needed to analyze the direction 0 2, \) = \, it follows that the parameterized system equilibria
the closed-loop system flows render the approach impractic o ’given by, the constant contraft) = A. A parameterization
The special issues on hybrid control systems, [16], [17] presgp

lent vsi . ichi ; ith bt provides a local characterization of an equilibrium mani-
an excefient analysis expansion on sSwitching systems wi ngl'd, including in neighborhoods of bifurcation points, is given
troller design methods limited to specific applications. We no

that th t of ilibria~d dent L funct ﬁ[23].AIternativer, the well-known implicit function theorem

a i et.cczncdep (()jbeqtl;“ ”‘E epen 1e8n a/apunO\I/ buTIC 'Ot tovidessufficientconditions for guaranteeing the existence of
was Tirst introguced by e authors In [18] w ereaglobally stay, ., 5 parameterization under the more restrictive condition of
bilizing control design framework for controlling rotating stall

d . ial f develobed. | I1;0|r1tinuous differentiability of the mapping(-).
and surge in axial tlow compressors was developed. in paragi\lext, we consider nonlinear feedback controlled dynamical

research to [18], a related yet different approach was introduc tems. A measurable mappingD — U/ satisfyingh(z) =

n [19.] whgrem controI.Lyapunov funct‘l‘o.ns"for ponlmear SYSis called atcontrol law. Furthermore, ifu(t) = ¢(x(t)), where
temslinearizedabout &finite number of “trim” points to guar- (-) is a control law and:(¢), ¢ € T, , satisfies (1), them(.)
antee stability of a range of operating conditions were giveﬁ ' o’ '

o . T o " called afeedback control lawHere, we consider nonlinear
Specifically, in the case where we specialize the switching S%sed-loop dynamical systems of the form

to a finite number of equilibrium points, we recover the resultgs
of [19]. Finally, we emphasize that our approach is construc-;.;y — Fa(t), ¢(x(£)), 2(0) = o, tel,. (2)
tive in nature rather than existential. In particular, we provide an

explicit construction for a hierarchical switching controller fol function z: 7., — Dis said to be a solution to (2) on the in-
nonlinear system stabilization and, in this case, our con:struct't\éei:\,agx0 C R with initial conditionz(0) = =y, if z(¢) satisfies
conditions are complementary to existential results on asympy for all ¢ € 7., . Note that we do not assume any regularity

totic controllability via discontinuous feedback [20]. condition on the functiorp(-). However, we do assume that for
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everyy € D there exists a unique solutiar(-) of (2) defined of D, such thatP} C Dy for all 2o € O3. Dy is asymp-

onZ, satisfyingz(0) = y. Furthermore, we assume that all theotically stableif it is Lyapunov stable and attractived, is

solutionsz(¢), t € Z,,, to (2) are continuous functions of theglobally asymptotically stabléf it is Lyapunov—stable and

system initial conditions:g € D which, with the assumption 7?;; C Dy for all zg € R™. Finally, Dy is unstableif it is not

of uniqueness of solutions, implies continuity of solutiaris), Lyapunov-stable.

t € Z,,,t0 (2) [24, p. 24]. Next, we give a set theoretic definition involving the domain,
Remark 2.1:1f F(-, ¢(-)) is Lipschitz—continuous orD, or region, of attraction of the compact positively invariant set

then there exists a unique solution to (2). In this case, ti2 of (2).

semi-group property(t + 7, zo) = s(¢, s(1, x0)), t, T € Lpys Definition 2.6: Suppose the compact positively invariant set

and the continuity ok(¢, -) onD, t € Z,,, hold, wheres(-, z9) Do C D of (2) is attractive. Then thdomain of attractioriD 4

denotes the solution of the nonlinear feedback controlled D, is defined a4 2 {z0 € D: 7’* C Do}

dynamical system (2). Alternatively, uniqueness of solutions Next, we present a key theorem due to Weierstrass involving

in time along with the continuity off(-, ¢(-)) ensure that |ower semicontinuous functions on compact sets. For the state-

the solutions to (2) satisfy the semi-group property and angent of the result the following definition is needed.

continuous functions of the initial conditiarn, € D even when Definition 2.7: LetD, C D. AfunctionV: D. — Rislower

F(-, ¢(-)) is not Lipschitz—continuous of (see [25, Th. 4.3, semicontinuousn D, if for every sequencéz,}5>, C D,

p. 59]). More generallyF'(-, ¢(-)) need not to be continuous.such thatim,, ..., z,, = =, V(z) < liminf, .o V().

In particular, if F'(-, ¢(-)) is discontinuous but bounded, and Theorem 2.1 [29]: SupposeD, < P is compact and

x(-) is the unique solution to (2) in the sense of Filippow: D, — R is lower semicontinuous. Then there exists

[26], then the semi-group property along with the continuougs ¢ D, such that/ (z*) < V(z), = € D..

dependence of solutions on initial conditions hold [26]. Finally, the following definition is used in the paper.
Next, we introduce several definitions and key results that areDefinition 2.8: A functionV: D — R is positive definiteon
necessary for the main results of this paper. D\ Do, WhereDy C D, if V(z) =0,z € Dy, andV(z) > 0

Definition 2.2: LetD. C DandletV: D, — R.Fora € R, 2 € D\ D,. A functionV: D — R is radially unboundedf
the setV () 2 {x € D;: V(z) = atis called then-level V(z) — oo as||z|| — co.
setFora, B € R, a < 3, the set/ ([, A]) = {x €EDaL
V(z) < B}is called the[e, /3]—sublevel set IIl. GENERALIZED STABILITY THEOREMS FORNONLINEAR
Definition 2.3: AsetmM+ C D C R™ (resp., M ™) is aposi- FEEDBACK SYSTEMS
tively (resp. negatively invariantset for the nonlinear feedback

controlled dynamical system (2):f, € M* (resp.,M™) im- In this section, we develop generalized Lyapunov and in-
plies that[0, +oc) C Z,, (resp.,(—oo, 0] C T, ) andz(t) € variant set theorems for nonlinear feedback controlled dynam-

M (resp., M) for all t > 0 (resp t < 0).AsetM C ical systems wherein all regularity assumptions on the Lyapunov
D C R" is aninvariant set for the nonlinear feedback confunction and the closed-loop system dynamics are removed. The

trolled dynamical system (2) if, € M implies thatZ,, = R following result generalizes the Barbashin—Krasovskii—-LaSalle

andz(t) € Mforallt € R. invariant set theorem [27] to the case where the Lyapunov func-
Definition 2.4: p € D C R" is apositive limit pointof the tion is lower semicontinuous. For the remainder of the results

trajectoryxz(t), t € L, if [0, +00) C Z,, and there exists a Of this paper, define the notatioR,, 2 Nesy Vs ), for

sequencét, 122, witht,, — oo asn — oo, " such that:(t,,) — arbitraryV: D C R* — R andy € R, and letM,, denote the

pasn — oo. The set of all positive limit points 6f(), € Z,,,, largest invariant set [Wlth respect to_ (2)] contamed%iq

is thepositive limit setP: of x(t), ¢ € ... Theorem 3.1:Consider the nonlinear feedback controlled
The following result on positive limit sets is fundamental anfynamical system (2). Le(t), ¢ € Z,, denotes the solution to

forms the basis for all the generalized stability and invariant §&)> @nd letD. C D be a compact positively invariant set with

theorems developed in Section Il respect to (2). Assume that there exists a lower semicontinuous
Lemma 2.1 [27]: Suppose the forward solutiar(t), ¢ > 0, functionV: D. — R such thal/(«(¢)) < V(x(T)A)* Os7st,

to (2) corresponding to an initial conditior(0) = z, exists forall zg € D.. If zo € D, thenz(t) — M = J, g M,

and is bounded. Then the positive I|m|t§{1gbt ofz(t),t € Z,,, ast — oo.

is a nonempty, compact, connected invariant set Furthermore, Proof: Let xz(¢), ¢t € I,,, be the solution to (2) with

2(t) — P ast — oc. zo € D. so that[0, +o0) C Z,,. SinceV(-) is lower semi-
The following definition introduces three types of stab|I|ty00m|nU0US on the compact sBt, there exists3 € R such

as well as attraction of (2) with respect to a compact positivelpat V(z) > 8, = € D.. Hence, sincd/(z(t)), t = 0, is

invariant set. nonincreasing;y., 2 limy_e V{(z(t)), z0 € D, exists.
Definition 2.5: Let Dy, C D be a compact positively Now, for allp € P there exists an increasing unbounded

invariant set for the nonlinear feedback controlled dynamicaéquencet,, }5° ,, with to = 0, such thatim,,_.., x(¢,) = p.

system (2).Dg is Lyapunov stablef for every open neigh- Next, since V(z(¢,)), n > 0, is nonincreasing it fol-

borhood®; C D of Dy, there exists an open neighborhoodbws that for alln > 0, v,, < V(z(t,)) < V(z(ty)),

02 C O of Dy such thate(t) € O1,t > 0,forallzg € O2. n > N, or, equivalently, sinceD,. is positively invariant,

Dy is attractiveif there exists an open neighborho6d C D x(t,) € V= [va,, V(z(tn))]), » > N. Now, since
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lim,, oo z(t,) = pitfollows thatp € V=L([va,, V{(x(t.))]), Proof: SinceD. is a compact positively invariant set, it
n > 0. Furthermore, sincéim,_... V(z(t,)) = =4 it follows that for allzo € D,, the forward solutiorz:(t), t > 0,
follows that for everyc > +,,, there exist» > 0 such that to (2) is bounded. Hence, it follows froemma 2.hat, for all
Yz < _V(2(tn)) < ¢ which implies that for every: > ~,,, o € D., P is a nonempty, compact, connected invariant set.
p € V7([yz, c). Hence,p € R, which implies that Next, itfollows from Theorem 3.1, Remark 3.2, and the fact that
Pt C R,,, . Now, sinceD. is compact and positively in- V(-) is positive-definite (with respect 1B, \ D), that for every
variant it follows that the forward solutiofit), t > 0,t0 (2) is zo € D, there existsy,, > 0 such thatP;fO - M%O - R%O.
bounded for allzy € D, and hence it follows from Lemma 2.1 Now, givenz(0) € V= (v4,), vz, > 0, (3) implies that there
that>;} is a nonempty compact connected invariant set whi@xistst; > 0 such tha’(z(t1)) < v, andz(t1) € V= (74, )-
further implies thatP; is a subset of the largest invariantHence,V—*(v,,) C R.,, does not contain any invariant set.
set contained iﬂ?,%o; that is,P;fO c M, . Hence, for all Alternatively, if z(0) € 7@%0 then V(x(0)) < ~., and (3)
zo € De, P, € M. Finally, sincex(t) — P ast — oo it implies thatz(t) ¢ V~(y,,), t > 0. Hence, any invariant
follows thatz(t) — M ast — oc. L set contained irR.,,  is a subset 017?%0, which implies that
Remark 3.1:Note that sinceV~*([y,cl) = {z € a1 R, 4, >0.1f5 > 0issuch thaty # ~,,, for al
De:V(z) 29} N{z € De: V(z) < chand{z € D.: V(2) <, "D, then there does not exis§ € D, such tha; C R+
clisa closed set, it follows thak.,, . C {reD:V(z)<v}  and henceM., = &. Now, ad absurdumsupposeDq mopjo —
whereR., . £ V=A(ly, )\ V[, e]), ¢ > v, forafixed . SinceV(.) is lower semicontinuous it follows from Theorem

v € R. Hence, 2.1 that there exist$ € P} such thaty = V(2) < V(x),
) ) x € Pf. Now, withz(0) = & ¢ D, it follows from (3) that

Ry =Vl hUR, ) =VTHHIUR, there exists an increasing unbounded sequéngk= ,, with

>y to = 0, such thatV(z(t,+1)) < V(z(t,)), n = 0,1, ...,

A L . which implies that there exists > 0 such thatV' (z(t)) < «
whereR- = (... R+, is such that/’(z) < v, 2 € Ry.  which further implies that:(t) ¢ P contradicting the fact
Finally, if V(-)is C° thenk., . = &, v € R, ¢ > ~, and hence thatP; is an invariant set. Hence, there exigts D, such that
Ry =V ). q € P;. C R,, whichimplies thatR,, N D, # @. Thus,
Remark 3.2:Note that ifV: D. — R is a lower semicon- ~_ ¢ g for all z, € D, which further implies thaP;} C M.
tinuous function such that all the conditions of Theorem 3.1 afgow, sincex(t) — P C M ast — oo it follows thatz(¢) —
satisfied, then for every, € D. there existsy,,, < V(zo) sUch 1 55t — 0.
that P2f, € Mo, € M. . Next, we show that if’(-) is continuous orDy C IODC,
Remark 3.3: ItisimportanttonotethatasinstandardLyapunoy, .. ihe compact positively invariant sB% of (2) is Lya-
andinvariantsettheoremsinvolvieg functions, Theorem3.1al- punov stable. Le®); C D, be an open neighborhood of
lows oneto characterize theinvariantdétvithoutknowledge of Do. Since 90, is com_pactcandv(a:), © € D, is lower

theclosed-loops_ystemtrajectorme{$),t_e I,_,,O.Slm_llarremarks semicontinuous, it follows from Theorem 2.1 that there exists
holdforthe remainder ofthe theoremsinthis section. o = minycpo, V(z). Note thata > 0 sinceDy N 90, = &
Next, we sharpen the results of Theorem 3.1 by providing a V(x)“”iaod P .D + & Do. Next using the fé\cts that

refined construction of the invariant sa#(. In particular, we Véx) — 0,z € Do, andV'(-) is continuous orDy, it follows

show that the closed-loop system trajectories converge tg A o .
union of largest invariant sets contained on the boundary of it the Se0z = {2 € O1: V(z) < a}° is not empty. Now, it
ollows from V' (z(t)) < V(z(r)), forallt > + > 0 that for

intersections ovefinite intervals of the closure of generalize . .
g all 2(0) € Oy, V(z(t)) < V(2(0)) < a, ¢ > 0, which, since

L level surf . =
yapunov leve! suraces (z) > o, 2 € 9Oy, implies thate(t) & 0,,t > 0. Hence,

Theorem 3.2:Consider the nonlinear feedback controlle{)r every open neighborhoa®, C D, of Dy, there exists an
H D HY 1 = c 0y
dynamical system (2), leb. and D, be compact positively open neighborhoo®, C O of Dy such that, ifz(0) € Oy,

invariant sets with respect to (2) such t D. C D, and - o
nvar w b (2) such ta2g C D C enz(t) € O1,t > 0, which proves Lyapunov stability of

let z(t), t € Z,,, denotes the solution to (2) correspondin iy T .
to zy € D.. Assume that there exists a lower semicorn. e compact positively invariant s&, of (2). Finally, from

tinuous, positive-definite functio: D. — R such that the continuity ofV(-) on Dy and the fact thal/(z) = 0 for

all z € Dy, it follows thatG = {0} and At = M,. Hence,
Vizg(t)) <V ,0< 7 < ¢ Furth , that f SR .
(2(®) < V(@(7)), 0< 7 < urthermore, assume that 1or,, C D, for all zo € D. establishing local asymptotic

all xg € D., zg € Dy, there exists an increasing unbounded*o . : ° . . .
sequence, }>2 ., with £, — 0, such that stability of the compact positively invariant sB of (2) with

a subset of the domain of attraction given®y. O
V(a(tes)) < V(a(ty)), n=01,.... ©) R_e_mark_3.4:_|f in Theorem 3.2_/\/1 C DO! then the corr_lpact
positively invariant setDy of (2) is attractive. If, in addition,
Then, eithetM., C kw A R, A VL), or M,y = &, > 0. Y(-) _is continuous on_Do C D. then the_ compact positively
Furthermore. ife € 1. thena(t S M. ast invariant setDg of (2) is locally asymptotically stable. In both
u R itvo € D, thenaz(t) — M=, g My .~ casesD, is a subset of the domain of attraction.
oo,wheregé {7 2 0: R,NDy # J}. If, inaddition,Dy C D.. A lower semicontinuous, positive-definite functiowi(-),
andV (+) is continuous oDy, thenDy is locally asymptotically with V(-) being continuous ofP, is called ageneralized Lya-
stable andD, is a subset of the domain of attraction. punov function candidatier the nonlinear feedback controlled
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dynamical system (2). If, additionally;(x(¢)) < V(x()), for It is important to note that even though the stability con-

allt > 7 > 0, wherez(t), t € Z,,, denotes the solution to (2) ditions appearing in Theorems 3.1-3.3 are system trajectory
corresponding tag € D., V(-) is called ageneralized Lya- dependent, in Section V we present a hierarchical switching
punov functiorfor the nonlinear feedback controlled dynamicahonlinear controller guaranteeing nonlinear system stabiliza-
system (2). Note that in the case where the funclign is C*  tion without requiring knowledge of the closed-loop system

onD. in Theorem 3.2, it follows tha¥’ (x(¢)) < V(x(7)), for trajectories. Finally, we note that the concept of lower semi-
allt > 7 > 0, is equivalent td’/(g;) 2 V!(z)F(z, ¢(x)) <0, continuous Lyapunov functions has been considered in the

z € D.. In this case conditions in Theorem 3.2 specialize f§erature. Specifically, lower semicontinuous Lyapunov func-

the standard Lyapunov stability conditions [27]. tions have been considered in [28] and [30], with [30] focusing
Next, we present a generalized global invariant set theoré# Vviability theory and differential inclusions. However, the

for guaranteeing global attraction and global asymptotic staresent formulation providegwinvariant set stability theorem

bility of a compact positively invariant set of a nonlinear feeddeneralizations characterizing system limit sets in terms of

back controlled dynamical system. lower semicontinuous Lyapunov functions not considered in
Theorem 3.3:Consider the nonlinear feedback controlled8] or [30].

dynamical system (2) wit® = R™ andi/ = R™ and letz(¢),

t € I,,, denotes the solution to (2). Assume that there exists/. PARAMETERIZED SYSTEM EQUILIBRIA AND DOMAINS OF

a compact positively invariant s&, with respect to (2) and ATTRACTION

a lower semicontinuous, radially unbounded, posititive-def- The nonlinear control design framework developed in this
inite functionV: R* — R such thatV((#)) < V(2(7)), paper is predicated on a hierarchical switching nonlinear con-
0 <7 <t Thenforallzg € R", x(t) — M 2 U, >0 M-, @s troller architecture parameterized over a set of system equilibria.
t — oo. If, in addition, for allzo € R, 29 & Dy, there exists It is important to note that both the dynamical system and the
an increasing unbounded sequer{gg};,, with ¢ = 0, controller for each parameterized equilibrium can be nonlinear,
such thatV(z(t,41)) < V(z(t.)), » = 0,1,..., then, andthus, local set point designs are in general nonlinear. Hence,
either M, C R, 2 R, \V7i(y), or M, = &, v > 0. thenonlinear controlled system can be viewed as a collection of
Furthermorez(t) — M a U,cg M, ast — oo, where controlled subsyst'ems Wlth a hierarchical switching cpntroller

A - : : . architecture. In this section, we concentrate on nonlinear sta-
G={y > 0: R, NDy # J}. Finally, if V(-) is continuous

e then th ¢ tively 1 ant £(2) ] bilization of the local set points parameterizedIn Specifi-
on o then the compact posilively nvarian sBy of (2) Is cally, we consider the nonlinear controlled dynamical system
globally asymptotically stable.

. . 1) with the origin as an equilibrium point corresponding to the
Proof: Note thatsincé’ (x) — oo as||z|| — oo it follows @) g q p P g

) controlu, = 0, that is,F'(0, 0) = 0. Furthermore, we assume
that for every > 0 there exists: > 0 such thatV'(z) > 3 that given a mapping: D x A — i, (0, 0) = 0, there exists
for all ||z|| > r, or, equivalentlyy ([0, 3]) C {x: ||z|| < r} A '

whichimplies that’ —1([0, 3]) is bounded for al > 0. Hence, ch(;)ztlngois I)UZthmsﬁé’hThft?(:feﬁf: %);),_O ()Evz?toh
forallzo € R, .‘/71([07_/3%]) is bounded, wherg,, éV_(QUO)-_ zx = ¢(\) € D, forall A € A,. As discussed in Section I,
Furthermore, sinc&'(.) is a positive-definite lower semicontin- s js a necessary condition for parametric stability with respect
uous function, it follows that”~* ([0, A, ]) is closed and, since (g 5 | as defined in [21] and [22], while the implicit function the-
V(a(t)),t = 0,isnonincreasing/ ~*([0, f,,]) is positivelyin-  grem [27, p. 62] provides sufficient conditions for guaranteeing
variant. Hence, for everyo € R", V=([0, 3,,]) is a compact he existence of such a parameterization.

positively invariant set. Now, wittD. = V"*([0, 3,,]) it fol- Next, we consider a family of stabilizing feedback control
lows from Theorem 3.1 and Remark 3.2 that there exis{sc  |aws given by

[0, Bz,] such thatP} C M., C R, which implies that

z(t) — Mast — oc. If, in addition, forallzg € R*, 29 € Dy, ¢ 2 {pr:D—U:pr € C°, Pa(zn) = p(za, A), A € Ag),

there exists an increasing unbounded sequéncE? , with A cA ('4)

to = 0,suchthaV (z(t,41)) < V(2(t:)),n =0, 1, ..., holds S =

then it follows from Theorem 3.2 tha{(t) — M ast — oo.  gych that, forga(-) € @, A € Ag, the closed-loop nonlinear
Finally, if V'(-) is continuous orD, then Lyapunov stability taaqback system

follows as inthe proof of Theorem 3.2. Furthermore, in this case,

G = {0} which implies thatM = M. HencePf C Do es- i(¢) = F(a(t), pa(z(t))), 2(0) = zo, te,, (5

tablishing global asymptotic stability of the compact positively

invariant setD, of (2). O has an asymptotically stable equilibrium point € D, C D.
Remark 3.5:If in Theorems 3.2 and 3.3, the functionHence, in the terminology of [21] and [22], (5) is parametri-

V(-) is C' on D. and R", respectively,D, = {0}, and cally asymptotically stable with respectAg; C A,. Here, we

V' (z)F(z, ¢(z)) < 0,z € D., z # 0, then every increasing assume that for each € Ag, the linear or nonlinear feedback

unbounded sequencg, }5°,, with ¢¢ = 0, is such that controllers¢(-) are given. In particular, these controllers cor-

V(z(tns1)) < V(z(t:)),n =0, 1, .. .. Inthis case, Theoremsrespond to local set point designs and can be obtained using any

3.2 and 3.3 specialize to the standard Lyapunov stabiligppropriate standard linear or nonlinear stabilization scheme

theorems for local and global asymptotic stability, respectivelgith a domain of attraction for each € As. For example,

as applied to a closed-loop feedback controlled system. appropriate nonlinear stabilization techniques such as feedback
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linearization, nonlineak ., control, constructive nonlinear con-
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To state the main results of this section several definitions

trol, and optimal nonlinear control, as well as linear-quadratand a key assumption are needed. Recall that thé s&t A,
stabilization schemes based on locally approximated linearifae As, is such that for every € As there exists a feedback

tions, can be used to design the controligxs-) for eachh €

control law¢x(-) € @ such that the equilibrium point, €

Ag. Furthermore, for an asymptotically stable equilibrium poirtp, C D of (5) is asymptotically stable with an estimate of

zx € D, C D, A € Ag, the domain of attractio®,, of =, is
given by

Dy 2 {wo € D:if #(0) = zo then lim (t) =xx}.  (6)

Next, given a stabilizing feedback controllgg(-) for each)

Ag, we provide a guaranteed subset of the domain of attracti

D, of z using classical Lyapunov stability theory.

Theorem 4.1 [28]:Let A € As. Consider the closed-loop

nonlinear system (5) witkp»(-) € ® and letxy € D, C D
be an equilibrium point of (5). Furthermore, 18}, C D be a
compact neighborhood afy. Thenxzy € D, C D is locally
asymptotically stable if and only if there exist<’4 function
Vi: & — R such thatV)\(.T)\) = 0, V)\(J}) > 0,z € X)\\
{za}, andVi(z) 2 VI(2)F(z, ¢a(x)) < 0,7 € Xy \ {za}. In
addition, a subset of the domain of attractionegfis given by
Dy £ V,71([0, ca]), wherecy £ max{8 > 0: V;_([0, 8]) C
X

Remark 4.1:1t follows from Theorem 4.1 that for alty €
Da, limso Va(z(t)) = 0 or, equivalently, for eaclt > 0
there exists a finite tim& > 0 such that/(z(¢)) < 6,¢t > T.
Hence, given the initial conditiom, € D, it follows that for
every$ > 0 there exists a finite tim& > 0 such thatc(¢) €
Vi, &), t > T.

We stress that the aim of Theorem 4.1 is not to make dir

the domain of attraction given B,. Sincezxy, A € Ag, is an
asymptotically stable equilibrium point of (5), it follows that the
assumptions of Theorem 4.1 are satisfied, and hence, without
loss of generality, we can tal®,, A € As, given by Theorem
4.1. Furthermore, we assume that the set-valued¥nagps ~~
27 where2? denotes the collection of all subsetsfis such
hatDx = Y(A), A € Ag, is continuous. Here, continuity of a
set-valued map is defined in the sense of [30, p. 56] and has the
property that the limit of a sequence of a continuous set-valued
map is the value of the map at the limit of the sequence. In
particular, sinceD,, A € Ag, is given by Theorem 4.1, the
continuity of the set-valued mayp(-) is guaranteed provided
that Vi(z), « € Dy, andc, are continuous functions of the
parameteh € As. Next, letS C As,0 € S, denote awitching
setsuch that the following key assumption is satisfied.
Assumption 5.1:The switching sef§ C Ag is such that the
following two properties hold.

1) There exists a continuous positive-definite function
p: & — R such that for allh € §, A # 0, there exists

A1 € S such tha@()\l) < p()\), Tx € Da,.
2) If A, My € 8§, A # Aq, is such thap(A) = p(A1), then
Dy N D)n = .
Note that Assumption 5.1 assumes the existence of a posi-
tive-definite potential functionp(A) for all A in the switching

&&ts. 1t follows that, for each\ € S, there exists an equilib-

compa}risons with exi_stin.g_methods fpr estimatingl domains F?Dm point, with an associated domain of attractidy, and
attraction, but rather in aiding to provide a streamlined preseglientia| valug(\). Hence, every domain of attraction has an
tation of the main results of Section V requiring estimates Qfssqciated value of the potential function such that, according

domains of attraction for local set point designs.

V. NONLINEAR SYSTEM STABILIZATION VIA A HIERARCHICAL
SWITCHING CONTROLLER ARCHITECTURE

to 2), domains of attraction corresponding to different local set
point designs intersect each other only if their corresponding
potentials are different. In particular, givéh,, A € S\ {0}, it

is always possible to find at least one intersecting domain of at-

In this section, we develop a nonlinear stabilization framéactionDy,, A, € &, such that the potential function decreases
work predicated on a hierarchical switching controller r:uch_fsanlDA1 containse, as an internal point. This guarantees that
tecture parameterized over a set of moving system equilibriba forward trajectoryz(¢), ¢ > 0, of the controlled system ap-

Specifically, usingequilibria-dependent Lyapunov functigios

proachesr,, then there exists a finite tim& > 0 such that

instantaneous (with respect to a given parameterized equilipe trajectory enter®,, . Finally, it is important to note that the

rium manifold) Lyapunov functions, a hierarchical nonlineagwitching setS is arbitrary. In particular, we do not assume that
control strategy is developed that stabilizes a given nonline&iis countable or countably infinite. For example, the switching
system by stabilizing a collection of nonlinear controlled sut$etS can have a hybrid topological structure involving isolated

systems while providing an explicit expression for a guarante@@ints and closed sets homeomorphic to intervals on the real
domain of attraction. A switching nonlinear controller architedine.

ture is developed based omaneralizedower semicontinuous ~ Next, we show that Assumption 5.1 implies that every level
Lyapunov function obtained by minimizing a potential funcset of the potential functiop(-) is either empty or consists
tion, associated with each domain of attraction, over a givéf only isolated points. Furthermore, in a neighborhood of the
switching set induced by the parameterized system equilibri¥igin every level set op(-) consists of at mosbneisolated

In the case where one of the parameterized equilibrium poi@int. For the statement of this result, B{(r), A € U, 7 >

is globally asymptotically stable with a given subcontroller angy denote the open ball centeredaat with radius, that is,

a structural topological constraint is enforced on the switchirig () 2 {z € D: ||z — xa|] <7}

set, the proposed nonlinear stabilization framework guarantee®roposition 5.1: Let S C As be such that Assumption 5.1
global asymptotic stability of any given system equilibrium oholds. Then for every > 0, p~1(«) is either empty or consists
the parameterized equilibrium manifold. of only isolated points. Furthermore, there exi8ts>- 0 such
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that for everya < g3,
point.
Proof: Suppose, ad absurdum that

there exists
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p~ () consists of at most one isolatedp()2) andz € Dy, N Dy, # & which contradicts ii) in As-

sumption 5.1. O
The next result shows th&t(-) given by (7) is a generalized

XA € p~l(a), @ > 0, such that) is not an isolated point Lyapunov function candidate, i.4.(-) is lower semicontinuous

in p~1(a). Now, letA” ¢ p~!(«) be a neighborhood of and
note that, by continuity of(-) and the fact thak € p~*(«a) is
not an isolated point, for every > 0, there exist\;, Ay € A/
such that||zy, — zx,|| < & andp(A) = p(h2) = o
However, sincer,, € IODAI, it follows that there exists > 0
such thatB,,(r) € D,,. Now, choosinge < r yields
Tr, € Ba(r) C Dy, andzy, € D,, which implies that

onD..
Theorem 5.1:Let S C Ag be such that Assumption 5.1
holds. Then the functio® (z) = p(As(z)), z € D, is lower

semicontinuous o®. and continuous o, ().

Proof: Let the sequencéz,}52, < D. be such that
lim,, oo 2, = & and definel 2 liminf,, .. As(z,). Here
we assume without loss of generality tHats(z,.)}52, con-

Dy, N'Dx, # & contradicting ii) of Assumption 5.1. Hence, ifverges to; if this is not the case, it is always possible to con-
p~'(a), @ > 0, is nonempty, it must consist of only isolatedstruct a subsequence having this property. Sirfegis contin-

points.
Next, supposead absurdumthat forall6 > 0there exist two
isolated pointsh;, A» € N 2 {\ € S: ||| < 8} such that

uous [and hencg(lim,, )\S(a:n)) = lim,,— 0o p(As(zn))],
it suffices to show that’ () < p(\). Supposead absurdum
thatV(2) > p(}). In this case, there exists a positive integer

p(A1) = p(A2). Now, repeating the above arguments leads torg such tha’(z) > V(z,,), n > ng. Now, since by definition

contradiction. Hence, there exists> 0 such that if\; € A,
then/\/é Np~p(A1)) = {M1}. Now, sincep(-) is continuous
and positive definite, it follows that there exigts> 0 such that

As(Z) minimizesp(X) for A € Vs(2), it follows thatV () <
p(A), A € Vs(&). Hence, sincd’(2) > V(x,) = p(As(zn)),
n > ng, it follows that As(z,) € VS( )ands & Dig(a,),

p~H(a) C N, @ < B, and hence ' (a), « < 3, consists of at 1, > n,. Now, define the closed st 2 [ J 2 o Drs(an) SUCh

most one isolated point. O
Note that Proposition 5.1 implies that, if '(«), a > 0,

is bounded, then there exists a finite distance between isol

points contained ip~!(«) which consists of at most finite

number of isolated points. Finally, since in a neighborhood of

that{z,};2,,, C D. SinceD is closed, it follows tha € D

which implies that there exist; > ng such that: € Dirs(an,)
ch is a contradiction. .

To show thatV’(x) is continuous oﬂ),\q(;,) it need only be

the origin every level set gf(-) consists of at most one iso- shown that/ () is upper semicontinuous dhxq(x), or equiv-
lated point, a particular topology f&#, in a neighborhood of gjently, 1 () > p()\) Sincelim,, .., ,, = £ andz € qu(x),

the origin, is homeomorphic to the intenval a], a > 0, with
0 € S corresponding t® € R.

Now, for everyz € D, 2 UAes D., define theviable
switching setVs(z) 2 {\A € & z € D,}, which contains

there exists a positive integes such thatr,, € Dygs), n >

ny. Hence As(2) € Vs(z,) andV(z) > V(z,), n > na,

which implies that/ () > p(}). O
Next, we show that with the hierarchical nonlinear feedback

all A € &S such thatr € D,. Note that if we consider a control strategy: = ¢x () (), © € D., V(-) given by (7) is a

sequence| A, }22
m, oo Ay, =

set-valued mapl(-) thatz € Ds. Thus,A € Vs(z) which

1 C Vs(z), that is,z € D,,, such that

generalized Lyapunov function for the nonlinear feedback con-

N, it follows from the continuity of the trolled dynamical system (2). The controller notati (.)(x)

denotes a switching nonlinear feedback controller where the

implies thatVs(z) is a nonempty closed set since it containgwitching function\s(z), = € D., is such that definition (7)

all of its accumulation points.
Next, we introduce thewitching functiom\s(x), = € D.,
such that the following definitions hold

As(z) 2 argmin{p(\) : A € Vs(z)},
(7)

V(z) 2 p(rs(2)),
z € D..

In particular,As(z), x

of the generalized Lyapunov functidi(z), « € D,, holds
for a given potential function(-) and switching sefS satis-
fying Assumption 5.1. Furthermore, note that singe (,)(z)
is defined forz € D., it follows that the solutionz(-) to (2)
with zo € D. andu = ¢xs((x) is defined for all values
of t € Z,, such thats(t) € D.. However, as will be shown,
sinceD. is a positively invariant sef(), +o0) C 7, while if
xo € D.issuchthat(t),t < 0, is always contained i, then

€ D., corresponds to the value at whichZ,,, = R. Finally, note that since the solutiar{t), t € Z.,, to

p(A) is minimized wherein belongs to the viable switching set.(2) with o € D. andu = ¢4 (x) is continuous, it follows
The following proposition shows that “min” in (7) is attainedrom Theorem 5.1 thaV («(¢)), t € Z,,, is right continuous.

and hencé’(z) is well defined.
Proposition 5.2;: LetS € As and letp: S — R be a contin-

uous positive-definite function such that Assumption 5.1 holdgous. Now, the continuity of'(-,

Then, for allx € D., there exists a uniques(z) € Vs(x) such

thatp(As(z)) = min{p(A): A € Vs(z)}.
Proof: Existence follows from the fact that-) is lower

Hence, using the continuity @ -) and the definition oV (z),

x € D, it follows thatAs(z(t)), t € Z,,, is also right contin-

Jandga(-), A € Ag, imply

that F'(x(t), dase)(z(t))), t € I,,, is right continuous.
Theorem 5.2:Consider the nonlinear controlled dynamical

system (1) with#'(0, 0) = 0 and assume there exists a contin-

bounded an®’s(x), z € D., is a nonempty closed set. Now, touous function): A, — D,, 0 € A,, parameterizing an equilib-

prove uniqueness, suppasgabsurdumis(x) is not unique. In
this case, there exigt, Ao € S, A1 # A2, such thap(A,) =

rium manifold of (1), such thaty = ¥(\), A € A,. Further-
more, assume that there exis§‘afeedback control law (),
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A € As C A, with 0 € Ag, that locally stabilizesc, with  switching times which occur when the closed-loop system tra-
a domain of attraction estimaf, and letS C As, 0 € &, jectory enters a new domain of attraction with an associated
be such that Assumption 5.1 holds X§(x), © € D., is such lower potential value.
that V(z), x € D., given by (7) holds and:(t), t € Z,,, is Corollary 5.1: Consider the nonlinear controlled dynamical
the solution to (1) withz(0) = z¢ € D. and feedback control system (1) with#'(0, 0) = 0 and assume the hypothesis of The-
law v = @rs@)(x), € D,, thenD. is positively invariant orem 5.2 holds. TheW (z(t)), ¢ > 0, is strictly decreasing only
andV(xz(t)), t € Z,,, is nonincreasing. Furthermore, for allat the switching times which occur when the trajectefy),
ti, ta € Iy, V(x(t)) = V(x(t1)). t € [t1, t2], ifand only ¢ € Z,,, enters a new domain of attraction with an associated
if As(z(?)) = As(z(t1)), t € [t1, t2]. Finally, for allt € Z,,, lower potential value.
such that\s(z(t)) # 0, there exists a finite tim& > 0 such Proof: First, we consider the case wheré,) € f)At ,
thatV (z(t + 1)) < V(z(¢)). 2
Proof: First, note thatr € 9D. impliesz € D)4 (a)-
Since ¢y, (2 Stabilizes zy;(,) with domain of attraction
Dyg(x), it follows that, for all z € 9D, the flow of
F(z, ¢rs(a)) is directed toward the interior 0P, () and
consequently toward the interior @f., which proves positive
invariance ofD.. Next, letxz(t), t € Z,,, satisfy (1) with
u(t) = ¢, (z(¢)), where X, 2 As(z(¢)), and let, for an
arbitrary timet; € Z,,, the feedback control law = ¢, (x)
asymptotically stabilize the equilibrium point,, ~of (1) with

with Ay, 2 As(z(t2)) andts > 0. It follows from the continuity

of the closed-loop system trajectories) that there exists; <

t2 such thate(t,) € D»,,, which implies that\,, € Vs(x(t1))
andV(z(t1)) < V(z(t2)). SinceV(z(t)), t > 0, is a nonin-
creasing function of time, it follows thaf (z(t)) = V(z(t2)),

t € [t1, t2]. Alternatively, assume that(t>) € 9D, , and sup-
pose,ad absurdumthat there exists; < ¢» such that:(¢,) €
Dy,,- Theni; = A, t € [t1, t2], and, sinceV, (z), x €
D,,,, attains its maximum at(t2) € 9D, , it follows that

) . . ; Wi, (2(8)) < Vi, (x(t2)), t € [t1, t2], which contradicts the
domain of attractiorD,, . S!ncea:(tl) €Dy, 1t foII_ows from ¢ & ih;t)t)&, (a:(ti)(, t( Z))O, is a[l decr]easing function of time.
Theorem 4.1 that thege exist<d Lyapunov functionVy, (-) Hence,a:(t)zgz Dy, and V(x(#)) < V(a(t2)), for all ¢t <
such thatVy, (x(t)) = V5, (@()F(@(t), das@ey(@(t),  ta. O

t € Z,,, and VA,I(a:(tl)) = VA’tl(a:(tl))FA,l(a:(tl)) < 0. Finally, we present the.main rgsult of thi.s sectiop. Specifi-
Next, SinceF (2(t), ¢aq(w(ry)(@(t))), t € L, is right contin- cally, we show that the hierarchical switching nonlinear con-
uous, it follows that there exists> 0 such tha¥y, (z(t)) < 0, Uoller given byu = ¢, ) (x), = € D, guarantees that the

t € [t1, t1 + 6], which implies thaty, (z(t)) < Vi, (z(t;)), Closed-loop system trajectories converge to a union of largest
t € [ti, t1 + &]. Hence,z(t) € D; t e [t ltl + 6], invariant sets contained on the boundary of intersections over
p) . 1) fll p) Ll

and \;, € Vs(z(t)), t € [t1, t1 + 6], which implies that finite intervals of.the clpsure of _the_generqlized Lyapunov !evel
V(z(t) < V(z(t) = p(\,), t € [t1, t1 + 6]. Now, since surfaqes. In addition, if thg switching s§t|§ homeomorphm
t, € I, is arbitrary, it follows thatV(z(t)), t € Z,,,isa [©an interval on t.he rea! line apd/qr consists of only isolated
nonincreasing function along the trajectori€®), ¢ € Z,,, of POINts, then the hle_rarchlc_:gl 5W|tch|ng qonllnear controller es-
(1) with u(t) = ¢, (z(t)). tablishes asymptotic _stab|I|ty of thg origin. _
Next, assume that(¢) € D, andV(z(t)) = V(x(t1)), t € Theorem 5.3:Consider the nonlinear controlled dynamical
, " 't

. system (1) withF'(0, 0) = 0 and assume there exists a contin-
is not constant, that is, there existse (¢, t1 + 6] such that rium manifold of (1), such thaty = 1()\), A € A,. Further-

Ay # M. Inthis caser(ty) € Dy, N Dy, andp(A) = more assume that there existS@feedback control lawa(-),
p(As,), whlch contradicts ii) of Assumption 5.1. Hence, it fol-)\ € As C A, with 0 € Ag, that locally stabilizes:, with
lows that ifV(x(t)) = V(z(t2)), t € [t1, t146], thenAd, = Ay 5 Gomain of attraction estima®, and letS C Ag, 0 € S,
t € [ti, 1 + &]. Conversely, if forty, t2 € Zuys A = Auis pe such that Assumption 5.1 holds. In addition, assigter),

t € [ti, ], thenV(x(t)) = Vi(@(t)). ¢ € [t1, t2l IS imMme- o p ig such that/(x), « € D., given by (7) holds, and,

diate. for zg € D., z(t), t € I,,, is the solution to (2) with the
Finally, for an arbitrary; € Z,,,, supposead absurdumthat feedback control law: = Prs(z)(@), z € D If 29 € D,
V(z(t)) = V(z(t1)) # 0,t > t1, or, equivalently, = A, € thenz(t) — M A U,co M+ ast — oo, whereG a {y >
S\ {0}, > t;. Then the feedback control lag, (-) = ¢x, (+) oo A N
o ! 0: RyNDg # }. If, inaddition,Sp = {\ € S: DANDy # T}

stabilizes the equilibrium point,, . Inthis case, it follows from i i s
Assumption 5.1 that there exisls # A,, such thap(\;) < is homeomorphic t@, al, a > 0,_W|th 0e SQ corresponding
° to 0 € R, or &y consists of only isolated points, then the zero

V(a(t))andz,, € ?M ,whichimplies thatthere exists > 0 g ytionz(#) = 0 to (2) is locally asymptotically stable with an
such thatzy, € Vi ([0, a]) € Da,. Hence, it follows from - egtimate of domain of attraction given By. Finally, if D = R”
Remark 4.1 that(#) approaches the level siégll(a) inafinite and there exist& € S such that the feedback control lawy(-)
time7 > 0 sothatV (x(t, + 1)) < p(A1) < V(z(t1)), which globally stabilizests, then the above results are global.
contradicts the original supposition. O Proof: The result follows from Theorems 3.2,5.1, 5.2, and
Next, we show that the hierarchical switching nonlinear cotke fact that itS, is homeomorphic tf0, o], & > 0, with0 € S
troller u = ¢ () (), * € D, guarantees that the generalizedorresponding t® € R, or Sy consists of only isolated points
Lyapunov function (7) is nonincreasing along the closed-lodhen M = M, = {0} establishing local asymptotic stability
system trajectories with strictly decreasing valeady at the of the zero solutior:(¢) = 0 to (2) with an estimate of domain
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of attraction given byD.. Next, without loss of generality, let C*. To present this result, consider the nonlinear controlled dy-
A e Sbe theuniquevalue ofA € S such thatD5 = R™. Define namical system given by (1) with a nonlinear feedback dynamic
S2 (X e S p() < p(N)}andD, £ U, s Dr which is a controller of the form

compact positively invariant set. Hencegif € D., it follows

from the first part of the theorem that the origin is asymptotically io(t) = F.(x(t), 2:(t)) 2.(0) = 2eq, t € Iy, (8)
stable, with an estimate of the domain of attraction given by

D.. Now, global asymptotic stability of the origin is immediate u(t) = pe(x(t), z.(t)) 9)
by noting that ifzy ¢ D., then the forward trajectory of (2)
approache®. in afinite time. If, in factx ¢ D, thenAs(z) =  wherez.(t) € C C R™, t € Z,,, is the controller state vector,

A which implies that for allz ¢ D. the feedback control law ¢ is an open sett,: D x C — R™, andé,: D x C — . Note

U = Prg(2)(®), © € D, stabilizese5 and, by Assumption 5.1, that we do not assume any regularity condition on the mappings
A . . F.(-, -) andg.(-, -). However, we do assume that the nonlinear

3 € De. In this pase, '.t f.OHO.WS from Remark 4.1 that onr aIIfeedback controlled dynamical system given by (1), (8), and (9)

xo € D. there exists a finite tim& > 0 such that:(T") € D..

. : - ig such that the solutions of the closed-loop systenZgnare
Hence, global attraction as well as global asymptotic stability Of . .
1o : . Unique and continuously dependent on the closed-loop system
the origin is established for the respective cases.

Remark 5.1: The switching sef is quite general in the senseInltlal conditions. .
. . . . S To construct dynamic controllers of the form (8), (9) we as-
that it can have a hybrid topological structure involving isolated o . .
: . : sume that the switching sétis such that there exists a closed
points and closed sets homeomorphic to intervals on the re . .
; : o X interval [0, a], a > 0, and a diffeomorphisma: [0, a] — As,
line. In the special case where the switching Setonsists of

. . ) . L such that(s) € S, s € [0, ¢, ando(0) = 0. Furthermore, we
only isolated points, the hierarchical switching control Strate%}/ssume that’(-) ande, areC? functions ofA € S. Next, re-
given byu = ¢rs)(z), © € D, is piecewise continuous. . A : '

Alternatively, in the special case where the switching@es call that Theorem 5.3 guarantees that the feedback control law

homeomorphic to an interval d, the hierarchical switching U(E) = P (@)(2), 7 < De, whgrgAs(x), * .G.DC’ IS given t.)y
. : (7), locally asymptotically stabilizes the origin of the nonlinear
control strategy given by = éx, () (), z € D,, isnotneces-

. : . : : fegdback controlled dynamical system (2), &hds a subset of
sarily continuous. The continuous control case will be d|scusstc?1 d in of atiraction. Furth o thatifc D.\D
in Section VI. e domain of attraction. Furthermore, note thatife D\ Dg

Remark 5.2:In the case where the switching sets home- it follows by continuity of the closed-loop trajectories) that
. . P there exists a finite tim&,,, > 0 such that:(7;,) € 8Dy and
omorphic to an interval oft and a stabilizing controllep,(-)

for the origin cannot be obtained, i.eg = 0, 0 € D, still )‘S(x(Two)) = 0. Now, define), :)‘S(x(t),) and qote that.smce
holds. Hence, Theorem 5.3 guarantees attraction of the origifrifs connected and the set-valued miap) is continuous, it fol-

. _ ° o lows thatR., = V=*(v), v > 0, which implies thatV (z(t)),
0 € dD.. Alternatively, if0 € D., then the origin is asymptot- , > 0, can be constant on the intenal, ] C [0, 75, ] only

ically stable. _ _ _if (t) € ODa,, t € [t1, t2], which contradicts the fact that
If|nqlly, it |s'|mportant to note that since the hlerarthca\}/& (z(t)) < 0. Hence, it follows tha¥/ (z(¢)), ¢ € [0, Ty,], is

switching nonlinear controller: = ¢ ()(x), # € De, IS 5 gyrictly decreasing function and Theorem 5.2 further implies

constructed such that the switching functidg(z), = € D,, thata(t) € 9Dy, = V' (ex,), t € [0, Th,]. Thus

assures that’(x), = € D., defined by (7) is a generalized ! A AT T ’

Lyapunov function with strictly decreasing values at the

switching points, the possibility of a sliding mode is precluded Va (z(t)) = ex,, t €0, Ty (10)

with the proposed control scheme. In particular, Theorem

5.2 guarantees that the closed-loop state trajectories crossyfligtes the state trajectories-) to the switching function

boundary of adjacent regions of attraction in the state spage(;(.)). For the statement of the main result of this section

in & inward direction. Thus, the closed-loop state trajectorigse following definitions and proposition are needed. Define
enter the lower potential-valued domain of attraction before

subsequent switching can occur. Hence, the proposed nonlinear

stabilization framework avoids the undesirable effects of vy (z) 2 er = Val) wy 2 do(s)
high-speed switching onto an invariant sliding manifold. 2 ds s=a—1())
(2, \) €D xS (11)

VI. EXTENSIONS TONONLINEAR DYNAMIC COMPENSATION — and@x(x) 2 (wx/va(x)wx) V] (x) which, as shown in Propo-
sition 6.1 below, is well defined for alt € D. \ Do and A =
In this section, we provide an online procedure for computings(x). In the case where € Dy, defineQ,(z) = 0.

the switching functiom\s(z), € D,, such that (7) holds, by  Proposition 6.1: Assumeos: [0, a] — S is a diffeomor-

constructing an initial value problem fois () having a fixed- phism,\s: D, — S is aC* function, andV, () andc, areC*

order dynamic compensator structure. Specifically, we considanctions of A € S. Thenwy(z) andwy, (z, A) € D, x S,

a switching setS diffeomorphic to an interval on the real linedefined in (11), are such that, .)(z)wxs) # 0 for all

R and assume that the switching functidg(z), © € D, is z € D.\ Do.
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Proof: The result follows by differentiating both sides ofof slow-varying system parameters which has been one of the
(10) and noting that for alk, € D., VAO (o) < 0, Ay = major shortcomings of gain scheduling practices. It is not sur-
As(zo). Specifically, differentiating both sides of (10) yields prising to note that this rate is an explicit function of the gradient

of the equilibria-dependent Lyapunov functions and the gradient

on (#(E) A = V3, (@) (1), te 0, Tyl (12) ofthe domains of attraction estimates with respect to the param-

eterized equilibrium manifold. Furthermore, the rate of change

Next, let s(t), t € [0, Ty,], be such that\, = o(s(t)), Of the switching function also depends on the gradient of the
t € [0, Ty,], and note that (12) evaluated at= 0 yields diffeomorphism evaluated along the switchingSesuch a de-

U (T0)wr, 3(0) = V{ (20)&(0) = Vao(zo) < 0. Now, pendence can be used to enforce desirable structural properties
noting thatvy, (zo)w,, and 5(0) are scalars, it follows that of the switching set. For further details see [31].
U (To)wr, # 0,20 € D. \ Do. O Finally, to elucidate the hierarchical switching nonlinear con-

Next, we present the main result of this section which précoller presented in this section and Section V, we present an al-
vides an online procedure for computing the switching functigerithm that outlines the key steps in constructing the feedback
As(z(t), t € Z,,. Specifically, differentiating both sides of controller.

(10) with respect to time yields a Davidenko—type differential Algorithm 6.1: To construct the hierarchical switching feed-
equation that defines an initial value problem for the switchinlgack controle ) (z(t)), t > 0, perform the following
function and hence the functioxs(z(¢)), t € Z,,, is charac- Steps.

terized via a homotopy map. 1) Construct the equilibrium manifold of (1) using =
Theorem 6.1:Assumeos: [0, a] — S is a diffeomorphism, o(z, A), wherep(-, -) is an arbitrary function ok € A,.
As: D, — SisaC* function, andV;(-) andc, areC'* functions UseF(z, ¢(z, A)) = 0 to explicitly define the mapping
of A € S. Then, the solutions(¢) and \(¢), t € Z,,, of the () such thatry = (), A € A,, is an equilibrium
closed-loop nonlinear feedback controlled dynamical system point of (1) corresponding to the parameter valua\e
note that the above parameterization can be constructed
(t) = F(x(t), pa)(@(t))) #(0) = 2o, t € Zy, (13) using the approaches given in [22], [23].
. 2) Construct the sehs C A, such that, for each equilib-
A(t) = @y (2(O) F (2 (1), dae((1))) rium pointzy, A € Ag, there exists a stabilizing con-
Ao = As(zo) (14) troller ¢»(-) and an associated domain of attractib
corresponding to the level se{ and Lyapunov function
are such that\(t) = Ms(z(t)), t € Z,,, or, equivalently, V(). Here, the controllerg,(-), A € Ag, can be ob-
Vi (2(t)) = exey t € Loy tained using any appropriate standard linear or nonlinear
Proof: The result follows by differentiating both sides of stabilization scheme.
(10) with respect to time and noting that = w,, 5(t). O 3) Construct the switching sé&tC A5 and a potential func-

Note that the switching function dynamics characterized by  tion p: S — RT such that Assumption 5.1 is satisfied. In
(14) defines a fixed-order dynamic compensator of the form  particular,

given b)g(S), (9). Specifically, defining the compensator state 3a) if A € S is an isolated point ofS with corre-
asz.(t) = A(t) so thatn.. = ¢, the dynamic compensator struc- sponding equilibrium point:y, then there exists
ture is given by A1 € S such thap(A) < p(A), zx € Day;
. 3b) if A € S is an accumulation point of then
&e(t) = Qu, (1) (D) F(2(B), ba.1y(x(1))), Step 3a) is automatically satisfiedyif-) does not
2.(0) = Ag(zo), te€,, (15) achieve a local minimum ak;
_ 3c) if A, AL € S, A # Aq, is such thap(A) = p(A1),

4) Given the state-space poieltt) at¢ > 0, search for solu-

Now, it follows from Theorems 5.3 and 6.1 that for D, -
al € D tions toVi(z(t)) = cx, A € S.

the nonlinear feedback controlled dynamical system given by

(1), (15), and (16), drives.(t) to0 € S in afinite timeZ, > 0. 4a) If no solution exists\s(«(?)) is unchanged.

Note that this result does not violate the assumption of unique- 4b) If onesolution A, exists andp(A1) < p(A) then
ness of solutions of (15) sineg7,,,) € dD, at the finite time switch As(x(t)) to Ay _

T,, > 0 does not correspond to a system equilibrium point. 4c) If more than one solution exists, repeat Step 4b)
Next, since\(t) = 0, ¢ > T3, z(t) reache®) € D asymptot- with A\; replaced by the soll_Jtlon that minimizes
ically which guarantees asymptotic stability of the origin with p(-). Note that multiple solutions can be avoided
an estimate of the domain of attraction given®y. Similar ar- by modifying thecy’s.

guments hold for global asymptotic stability in the case where 5) Construct the hierarchical switching feedback controller
D=7D.=R" Prs((t)) (@(t)) whereds(z(t)), z € D., constructed in

The compensator dynamics (14) characterize the fastest ad- Step 4) is such that (7) holds.
missible rate of change of the switching function for which Note that the existence of a switching getind a potential
the feedback control (16) maintains stability of the closed-lodpnctionp(-) such that Step 3) is satisfied, can be guaranteed by
system. As discussed in Section I, this quantifies the notiomodifying Step 4a) as follows:
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4a) Given the state space poinft) att = t; 2 EAT, 4]
whereAT > 0andk =0, 1, ..., search for the solu-

tions OfV)\(J}(tk)) <o A E As.

In this case, the switching sé&t C As need not be explicitly [16]
defined and is computed online. Furthermore, the case wheyez]
AT — 0 recovers the continuous framework described in thid18]
section. Finally, we note that hierarchical controllers based on
the framework in this paper are reported in [18] for controlling
rotating stall and surge in axial flow compressors.

[15]

[19]

[20]
VIl. CONCLUSION
[21]
A nonlinear control-system design framework predicated on
a hierarchical switching controller architecture parameterize
over a set of system equilibria was developed. Specifically, a hi-
erarchical switching nonlinear control strategy is constructed to
stabilize a given nonlinear system by stabilizing a collection 023!
nonlinear controlled subsystems. The switching nonlinear con-
troller architecture is designed based on a generalized Lyapundg4]
function obtained by minimizing a potential function over a 25]
given switching set induced by the parameterized system qu1—
libria. An online procedure for computing the switching scheme26]
was proposed by constructing an initial value problem having ?27]
fixed-order dynamic compensator structure.
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