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Nonlinear System Stabilization via Hierarchical
Switching Control

Alexander Leonessa, Wassim M. Haddad, and VijaySekhar Chellaboina

Abstract—In this paper, a nonlinear control-system design
framework predicated on a hierarchical switching controller
architecture parameterized over a set of moving system equilibria
is developed. Specifically, using equilibria-dependent Lyapunov
functions, a hierarchical nonlinear control strategy is developed
that stabilizes a given nonlinear system by stabilizing a collection
of nonlinear controlled subsystems. The switching nonlinear
controller architecture is designed based on a generalized lower
semicontinuous Lyapunov function obtained by minimizing a
potential function over a given switching set induced by the
parameterized system equilibria. The proposed framework pro-
vides a rigorous alternative todesigninggain-scheduled feedback
controllers and guarantees local and global closed-loop system
stability for general nonlinear systems.

Index Terms—Domains of attraction, dynamic compensation,
equilibria-dependent Lyapunov functions, hierarchical switching
control, nonlinear connective stabilization, parameterized equi-
libria.

I. INTRODUCTION

I F THE operating range of the control system is small, and
if the system nonlinearities are smooth, then the control

system can be locally approximated by a linearized system
around a given operating condition and linear multivariable
control theory can then be used to maintain local stability
and performance. However, in high-performance engineering
applications, such as advanced tactical fighter aircraft and
variable-cycle gas turbine aeroengines, the locally approxi-
mated linearized system does not cover the operating range of
the system dynamics. In this case, gain-scheduled controllers
can be designed over several fixed operating points covering
the system’s operating range and controller gains interpolated
over this range [1], [2]. However, due to approximation lin-
earization errors and neglected operating point transitions, the
resulting gain-scheduled system does not have any guarantees
of performance or stability. Even though stability properties
of gain-scheduled controllers are analyzed in [3] and [4] and
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stability guarantees are provided for plant output scheduling,
a designframework for gain-scheduling control guaranteeing
system stability over an operating range of the nonlinear plant
dynamics has not been addressed in the literature.

In an attempt to develop a design framework for
gain-scheduling control, linear parameter-varying system
theory has been developed [5], [6]. Since gain-scheduling
control involves a linear parameter-dependent plant, linear
parameter-varying methods for gain scheduling seem natural.
However, even though this is indeed the case for linear dy-
namical systems involving exogenous parameters, this is not
the case for nonlinear dynamical systems. This is due to the
fact that a nonlinear system cannot be represented as a true
linear parameter-varying system since the varying system
parameters are endogenous, i.e., functions of the system
state. Hence, stability and performance guarantees of linear
parameter-varying systems donot extend to the nonlinear
system. Of course, in the case where the magnitude and rate
of the endogenous parameters are constrained such that the
linear parameter-varying systemhopefullybehaves closely to
the actual nonlinear system, then stable controllers can be
designed using quasilinear parameter-varying representations
[7]. However, in the case of unexpectedly large amplitude
uncertain exogenous disturbances and/or system parametric
uncertainty, a priori assumptions on magnitude and rate
constraints on endogenous parameters are unverifiable.

In this paper, a nonlinear control design framework pred-
icated on a hierarchical switching controller architecture pa-
rameterized over a set of moving system equilibria is devel-
oped. Specifically, usingequilibria-dependent Lyapunov func-
tions or, instantaneous (with respect to a given parameterized
equilibrium manifold) Lyapunov functions, a hierarchical non-
linear control strategy is developed that stabilizes a given non-
linear system using a supervisory switching controller that co-
ordinates lower level stabilizing subcontrollers [8]–[10]. Each
subcontroller can be nonlinear, and thus, local set point designs
can be nonlinear. Furthermore, for each parameterized equilib-
rium manifold, the collection of subcontrollers provides guar-
anteed domains of attraction with nonempty intersections that
cover the region of operation of the nonlinear system in the state
space. A hierarchical switching nonlinear controller architec-
ture is developed based on ageneralizedlower semicontinuous
Lyapunov function obtained by minimizing a potential func-
tion, associated with each domain of attraction, over a given
switching set induced by the parameterized system equilibria.
The switching set specifies the subcontroller to be activated at
the point of switching, which occurs within the intersections of
the domains of attraction. The hierarchical switching nonlinear
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controller guarantees that the generalized Lyapunov function
is nonincreasing along the closed-loop system trajectories with
strictly decreasing values at the switching points, establishing
asymptotic stability. In the case where one of the parameterized
system equilibrium points is globally asymptotically stable, the
proposed nonlinear stabilization framework guarantees global
attraction to any given system invariant set. If, in addition, a
structural topological constraint is enforced on the switching
set, then the proposed framework guarantees global asymptotic
stability of any given system equilibrium on the parameterized
system equilibrium manifold. Furthermore, since the proposed
switching nonlinear control strategy is predicted on a gener-
alized Lyapunov function framework with strictly decreasing
values at the switching points, the possibility of a sliding mode
is precluded. Hence, the proposed nonlinear stabilization frame-
work avoids the undesirable effects of high-speed switching
onto an invariant sliding manifold, which is one of the main lim-
itations of variable structure controllers. Finally, we note that the
present framework provides a rigorous alternative to designing
gain-scheduled controllers for general nonlinear systems by ex-
plicitly capturing plant nonlinearities and quantifing the notion
of slow-varying system parameters which place fundamental
limitations on achievable performance of gain-scheduling con-
trollers.

Limited to systemanalysis, related yet different approaches
to the proposed hierarchical switching control design frame-
work are given in [11]–[14]. Specifically,analysisof switched
linear systems in the plane ( ) are given in [11] and [12].
More recently, asymptotic stabilityanalysisof -linear sys-
tems using Lyapunov–like functions is given in [13]. Stability
of a multi-controller switched system isanalyzedusing Lya-
punov functions and sliding surfaces in [14]. A hybrid stabi-
lization strategy for nonlinear systems controlled bylinear con-
trollers is discussed in [15] wherein domains of attraction are
enlarged by the use of a switching strategy. However, this anal-
ysis is limited to linearly controlled systems in the plane. Even
though the approach can be extended to higher order systems,
the computational complexity needed to analyze the direction of
the closed-loop system flows render the approach impractical.
The special issues on hybrid control systems, [16], [17] present
an excellent analysis expansion on switching systems with con-
troller design methods limited to specific applications. We note
that the concept of equilibria-dependent Lyapunov functions
was first introduced by the authors in [18] where a globally sta-
bilizing control design framework for controlling rotating stall
and surge in axial flow compressors was developed. In parallel
research to [18], a related yet different approach was introduced
in [19] wherein control Lyapunov functions for nonlinear sys-
temslinearizedabout afinite number of “trim” points to guar-
antee stability of a range of operating conditions were given.
Specifically, in the case where we specialize the switching set
to a finite number of equilibrium points, we recover the results
of [19]. Finally, we emphasize that our approach is construc-
tive in nature rather than existential. In particular, we provide an
explicit construction for a hierarchical switching controller for
nonlinear system stabilization and, in this case, our constructive
conditions are complementary to existential results on asymp-
totic controllability via discontinuous feedback [20].

II. M ATHEMATICAL PRELIMINARIES

In this section, we establish definitions, notation, and two key
results used later in the paper. Letdenote the set of real num-
bers, let denote the set of real column vectors, let

denote the set of real matrices, and let denote
transpose. Furthermore, we write for the Euclidean vector
norm, for the Fréchet derivative of at , and
(resp., ) to denote the fact that the Hermitian matrix
is nonnegative (resp., positive) definite. For a subset ,

we write , , for the boundary, the interior, and the closure
of , respectively. Finally, let denote the set of continuous
functions and denote the set of functions with-continuous
derivatives.

In this paper, we consider nonlinear controlled dynamical
systems of the form

(1)

where , , is the system state vector,
is the maximal interval of existence of a solution

of (1), is an open set, , , , is
the control input, is the set of all admissible controls such that

is a measurable function with , and
is continuous on .

Definition 2.1: The point is anequilibrium pointof
(1) if there exists such that .

In this paper we assume that given an equilibrium point
corresponding to and a mapping ,

, , such that , there exist neigh-
borhoods of and of 0, and a contin-
uous function such that , and, for
every , is an equilibrium point; that is,

, . This is a necessary con-
dition for parametric stability with respect to as defined in
[21] and [22]. Note that the connected set corresponds
to a parameterization set with the function parameterizing
the system equilibria. In the special case where and

, it follows that the parameterized system equilibria
are given by the constant control . A parameterization
that provides a local characterization of an equilibrium mani-
fold, including in neighborhoods of bifurcation points, is given
in [23]. Alternatively, the well-known implicit function theorem
providessufficientconditions for guaranteeing the existence of
such a parameterization under the more restrictive condition of
continuous differentiability of the mapping .

Next, we consider nonlinear feedback controlled dynamical
systems. A measurable mapping satisfying
is called atcontrol law. Furthermore, if , where

is a control law and , , satisfies (1), then
is called afeedback control law. Here, we consider nonlinear
closed-loop dynamical systems of the form

(2)

A function is said to be a solution to (2) on the in-
terval with initial condition , if satisfies
(2) for all . Note that we do not assume any regularity
condition on the function . However, we do assume that for
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every there exists a unique solution of (2) defined
on satisfying . Furthermore, we assume that all the
solutions , , to (2) are continuous functions of the
system initial conditions which, with the assumption
of uniqueness of solutions, implies continuity of solutions ,

, to (2) [24, p. 24].
Remark 2.1: If is Lipschitz–continuous on ,

then there exists a unique solution to (2). In this case, the
semi-group property , ,
and the continuity of on , , hold, where
denotes the solution of the nonlinear feedback controlled
dynamical system (2). Alternatively, uniqueness of solutions
in time along with the continuity of ensure that
the solutions to (2) satisfy the semi-group property and are
continuous functions of the initial condition even when

is not Lipschitz–continuous on (see [25, Th. 4.3,
p. 59]). More generally, need not to be continuous.
In particular, if is discontinuous but bounded, and

is the unique solution to (2) in the sense of Filippov
[26], then the semi-group property along with the continuous
dependence of solutions on initial conditions hold [26].

Next, we introduce several definitions and key results that are
necessary for the main results of this paper.

Definition 2.2: Let and let . For ,
the set is called the -level

set. For , , the set
is called the -sublevel set.

Definition 2.3: A set (resp., ) is aposi-
tively(resp.,negatively) invariantset for the nonlinear feedback
controlled dynamical system (2) if (resp., ) im-
plies that (resp., ) and

(resp., ) for all (resp., ). A set
is an invariant set for the nonlinear feedback con-

trolled dynamical system (2) if implies that
and for all .

Definition 2.4: is apositive limit pointof the
trajectory , , if and there exists a
sequence , with as , such that

as . The set of all positive limit points of , ,
is thepositive limit set of , .

The following result on positive limit sets is fundamental and
forms the basis for all the generalized stability and invariant set
theorems developed in Section III.

Lemma 2.1 [27]: Suppose the forward solution , ,
to (2) corresponding to an initial condition exists
and is bounded. Then the positive limit set of , ,
is a nonempty, compact, connected invariant set. Furthermore,

as .
The following definition introduces three types of stability,

as well as attraction of (2) with respect to a compact positively
invariant set.

Definition 2.5: Let be a compact positively
invariant set for the nonlinear feedback controlled dynamical
system (2). is Lyapunov stableif for every open neigh-
borhood of , there exists an open neighborhood

of such that , , for all .
is attractiveif there exists an open neighborhood

of such that for all . is asymp-
totically stable if it is Lyapunov stable and attractive. is
globally asymptotically stableif it is Lyapunov–stable and

for all . Finally, is unstableif it is not
Lyapunov–stable.

Next, we give a set theoretic definition involving the domain,
or region, of attraction of the compact positively invariant set

of (2).
Definition 2.6: Suppose the compact positively invariant set

of (2) is attractive. Then thedomain of attraction
of is defined as .

Next, we present a key theorem due to Weierstrass involving
lower semicontinuous functions on compact sets. For the state-
ment of the result the following definition is needed.

Definition 2.7: Let . A function is lower
semicontinuouson if for every sequence
such that , .

Theorem 2.1 [29]: Suppose is compact and
is lower semicontinuous. Then there exists

such that , .
Finally, the following definition is used in the paper.
Definition 2.8: A function is positive definiteon

, where , if , , and ,
. A function is radially unboundedif
as .

III. GENERALIZED STABILITY THEOREMS FORNONLINEAR

FEEDBACK SYSTEMS

In this section, we develop generalized Lyapunov and in-
variant set theorems for nonlinear feedback controlled dynam-
ical systems wherein all regularity assumptions on the Lyapunov
function and the closed-loop system dynamics are removed. The
following result generalizes the Barbashin–Krasovskii–LaSalle
invariant set theorem [27] to the case where the Lyapunov func-
tion is lower semicontinuous. For the remainder of the results
of this paper, define the notation , for
arbitrary and , and let denote the
largest invariant set [with respect to (2)] contained in.

Theorem 3.1:Consider the nonlinear feedback controlled
dynamical system (2). Let , , denotes the solution to
(2), and let be a compact positively invariant set with
respect to (2). Assume that there exists a lower semicontinuous
function such that , ,

for all . If , then
as .

Proof: Let , , be the solution to (2) with
so that . Since is lower semi-

continuous on the compact set , there exists such
that , . Hence, since , , is

nonincreasing, , , exists.
Now, for all there exists an increasing unbounded
sequence , with , such that .
Next, since , , is nonincreasing it fol-
lows that for all , ,

, or, equivalently, since is positively invariant,
, . Now, since
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it follows that ,
. Furthermore, since it

follows that for every , there exists such that
which implies that for every ,

. Hence, which implies that
. Now, since is compact and positively in-

variant it follows that the forward solution , , to (2) is
bounded for all and hence it follows from Lemma 2.1
that is a nonempty compact connected invariant set which
further implies that is a subset of the largest invariant
set contained in ; that is, . Hence, for all

, . Finally, since as it
follows that as .

Remark 3.1:Note that since
and

is a closed set, it follows that ,

where , , for a fixed
. Hence,

where , is such that , .
Finally, if is then , , , and hence

.
Remark 3.2:Note that if is a lower semicon-

tinuous function such that all the conditions of Theorem 3.1 are
satisfied, then for every there exists such
that .

Remark 3.3: ItisimportanttonotethatasinstandardLyapunov
andinvariantsettheoremsinvolving functions,Theorem3.1al-
lowsonetocharacterizetheinvariantsetwithoutknowledgeof
theclosed-loopsystemtrajectories , .Similarremarks
holdfor theremainderof thetheoremsinthissection.

Next, we sharpen the results of Theorem 3.1 by providing a
refined construction of the invariant set . In particular, we
show that the closed-loop system trajectories converge to a
union of largest invariant sets contained on the boundary of the
intersections overfinite intervals of the closure of generalized
Lyapunov level surfaces.

Theorem 3.2:Consider the nonlinear feedback controlled
dynamical system (2), let and be compact positively
invariant sets with respect to (2) such that , and
let , , denotes the solution to (2) corresponding
to . Assume that there exists a lower semicon-
tinuous, positive-definite function such that

, . Furthermore, assume that for
all , , there exists an increasing unbounded
sequence , with , such that

(3)

Then, either , or , .

Furthermore, if , then as

, where . If, in addition,
and is continuous on , then is locally asymptotically
stable and is a subset of the domain of attraction.

Proof: Since is a compact positively invariant set, it
follows that for all , the forward solution , ,
to (2) is bounded. Hence, it follows fromLemma 2.1that, for all

, is a nonempty, compact, connected invariant set.
Next, it follows from Theorem 3.1, Remark 3.2, and the fact that

is positive-definite (with respect to ), that for every
there exists such that .

Now, given , , (3) implies that there
exists such that and .
Hence, does not contain any invariant set.
Alternatively, if then and (3)
implies that , . Hence, any invariant
set contained in is a subset of , which implies that

, . If is such that , for all
, then there does not exist such that

and hence . Now,ad absurdum, suppose
. Since is lower semicontinuous it follows from Theorem

2.1 that there exists such that ,
. Now, with it follows from (3) that

there exists an increasing unbounded sequence , with
, such that , ,

which implies that there exists such that
which further implies that contradicting the fact
that is an invariant set. Hence, there exists such that

which implies that . Thus,
for all which further implies that .

Now, since as it follows that
as .

Next, we show that if is continuous on ,
then the compact positively invariant set of (2) is Lya-
punov stable. Let be an open neighborhood of

. Since is compact and , , is lower
semicontinuous, it follows from Theorem 2.1 that there exists

. Note that since
and , , . Next, using the facts that

, , and is continuous on , it follows
that the set is not empty. Now, it
follows from , for all that for
all , , , which, since

, , implies that , . Hence,
for every open neighborhood of , there exists an
open neighborhood of such that, if ,
then , , which proves Lyapunov stability of
the compact positively invariant set of (2). Finally, from
the continuity of on and the fact that for
all , it follows that and . Hence,

for all establishing local asymptotic
stability of the compact positively invariant set of (2) with
a subset of the domain of attraction given by.

Remark 3.4: If in Theorem 3.2 , then the compact
positively invariant set of (2) is attractive. If, in addition,

is continuous on then the compact positively
invariant set of (2) is locally asymptotically stable. In both
cases, is a subset of the domain of attraction.

A lower semicontinuous, positive-definite function ,
with being continuous on , is called ageneralized Lya-
punov function candidatefor the nonlinear feedback controlled
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dynamical system (2). If, additionally, , for
all , where , , denotes the solution to (2)
corresponding to , is called ageneralized Lya-
punov functionfor the nonlinear feedback controlled dynamical
system (2). Note that in the case where the function is
on in Theorem 3.2, it follows that , for

all , is equivalent to ,
. In this case conditions in Theorem 3.2 specialize to

the standard Lyapunov stability conditions [27].
Next, we present a generalized global invariant set theorem

for guaranteeing global attraction and global asymptotic sta-
bility of a compact positively invariant set of a nonlinear feed-
back controlled dynamical system.

Theorem 3.3:Consider the nonlinear feedback controlled
dynamical system (2) with and and let ,

, denotes the solution to (2). Assume that there exists
a compact positively invariant set with respect to (2) and
a lower semicontinuous, radially unbounded, posititive-def-
inite function such that ,

. Then for all , , as
. If, in addition, for all , , there exists

an increasing unbounded sequence , with ,
such that , , then,

either , or , .

Furthermore, as , where

. Finally, if is continuous
on then the compact positively invariant set of (2) is
globally asymptotically stable.

Proof: Note that since as it follows
that for every there exists such that
for all , or, equivalently,
which implies that is bounded for all . Hence,
for all , is bounded, where .
Furthermore, since is a positive-definite lower semicontin-
uous function, it follows that is closed and, since

, , is nonincreasing, is positively in-
variant. Hence, for every , is a compact
positively invariant set. Now, with it fol-
lows from Theorem 3.1 and Remark 3.2 that there exists

such that which implies that
as . If, in addition, for all , ,

there exists an increasing unbounded sequence , with
, such that , , holds

then it follows from Theorem 3.2 that as .
Finally, if is continuous on then Lyapunov stability

follows as in the proof of Theorem 3.2. Furthermore, in this case,
which implies that . Hence, es-

tablishing global asymptotic stability of the compact positively
invariant set of (2).

Remark 3.5: If in Theorems 3.2 and 3.3, the function
is on and , respectively, , and

, , , then every increasing
unbounded sequence , with , is such that

, . In this case, Theorems
3.2 and 3.3 specialize to the standard Lyapunov stability
theorems for local and global asymptotic stability, respectively,
as applied to a closed-loop feedback controlled system.

It is important to note that even though the stability con-
ditions appearing in Theorems 3.1–3.3 are system trajectory
dependent, in Section V we present a hierarchical switching
nonlinear controller guaranteeing nonlinear system stabiliza-
tion without requiring knowledge of the closed-loop system
trajectories. Finally, we note that the concept of lower semi-
continuous Lyapunov functions has been considered in the
literature. Specifically, lower semicontinuous Lyapunov func-
tions have been considered in [28] and [30], with [30] focusing
on viability theory and differential inclusions. However, the
present formulation providesnewinvariant set stability theorem
generalizations characterizing system limit sets in terms of
lower semicontinuous Lyapunov functions not considered in
[28] or [30].

IV. PARAMETERIZED SYSTEM EQUILIBRIA AND DOMAINS OF

ATTRACTION

The nonlinear control design framework developed in this
paper is predicated on a hierarchical switching nonlinear con-
troller architecture parameterized over a set of system equilibria.
It is important to note that both the dynamical system and the
controller for each parameterized equilibrium can be nonlinear,
and thus, local set point designs are in general nonlinear. Hence,
the nonlinear controlled system can be viewed as a collection of
controlled subsystems with a hierarchical switching controller
architecture. In this section, we concentrate on nonlinear sta-
bilization of the local set points parameterized in. Specifi-
cally, we consider the nonlinear controlled dynamical system
(1) with the origin as an equilibrium point corresponding to the
control , that is, . Furthermore, we assume
that given a mapping , , there exists
a continuous function , where , ,
and , , such that with

for all . As discussed in Section II,
this is a necessary condition for parametric stability with respect
to as defined in [21] and [22], while the implicit function the-
orem [27, p. 62] provides sufficient conditions for guaranteeing
the existence of such a parameterization.

Next, we consider a family of stabilizing feedback control
laws given by

(4)

such that, for , , the closed-loop nonlinear
feedback system

(5)

has an asymptotically stable equilibrium point .
Hence, in the terminology of [21] and [22], (5) is parametri-
cally asymptotically stable with respect to . Here, we
assume that for each , the linear or nonlinear feedback
controllers are given. In particular, these controllers cor-
respond to local set point designs and can be obtained using any
appropriate standard linear or nonlinear stabilization scheme
with a domain of attraction for each . For example,
appropriate nonlinear stabilization techniques such as feedback
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linearization, nonlinear control, constructive nonlinear con-
trol, and optimal nonlinear control, as well as linear-quadratic
stabilization schemes based on locally approximated lineariza-
tions, can be used to design the controllers for each

. Furthermore, for an asymptotically stable equilibrium point
, , the domain of attraction of is

given by

if then (6)

Next, given a stabilizing feedback controller for each
, we provide a guaranteed subset of the domain of attraction
of using classical Lyapunov stability theory.

Theorem 4.1 [28]: Let . Consider the closed-loop
nonlinear system (5) with and let
be an equilibrium point of (5). Furthermore, let be a
compact neighborhood of . Then is locally
asymptotically stable if and only if there exists a function

such that , ,

, and , . In
addition, a subset of the domain of attraction ofis given by

, where
.

Remark 4.1: It follows from Theorem 4.1 that for all
, or, equivalently, for each

there exists a finite time such that , .
Hence, given the initial condition , it follows that for
every there exists a finite time such that

, .
We stress that the aim of Theorem 4.1 is not to make direct

comparisons with existing methods for estimating domains of
attraction, but rather in aiding to provide a streamlined presen-
tation of the main results of Section V requiring estimates of
domains of attraction for local set point designs.

V. NONLINEAR SYSTEM STABILIZATION VIA A HIERARCHICAL

SWITCHING CONTROLLER ARCHITECTURE

In this section, we develop a nonlinear stabilization frame-
work predicated on a hierarchical switching controller archi-
tecture parameterized over a set of moving system equilibria.
Specifically, usingequilibria-dependent Lyapunov functions, or
instantaneous (with respect to a given parameterized equilib-
rium manifold) Lyapunov functions, a hierarchical nonlinear
control strategy is developed that stabilizes a given nonlinear
system by stabilizing a collection of nonlinear controlled sub-
systems while providing an explicit expression for a guaranteed
domain of attraction. A switching nonlinear controller architec-
ture is developed based on ageneralizedlower semicontinuous
Lyapunov function obtained by minimizing a potential func-
tion, associated with each domain of attraction, over a given
switching set induced by the parameterized system equilibria.
In the case where one of the parameterized equilibrium points
is globally asymptotically stable with a given subcontroller and
a structural topological constraint is enforced on the switching
set, the proposed nonlinear stabilization framework guarantees
global asymptotic stability of any given system equilibrium on
the parameterized equilibrium manifold.

To state the main results of this section several definitions
and a key assumption are needed. Recall that the set ,

, is such that for every there exists a feedback
control law such that the equilibrium point

of (5) is asymptotically stable with an estimate of
the domain of attraction given by . Since , , is an
asymptotically stable equilibrium point of (5), it follows that the
assumptions of Theorem 4.1 are satisfied, and hence, without
loss of generality, we can take , , given by Theorem
4.1. Furthermore, we assume that the set-valued map

, where denotes the collection of all subsets of, is such
that , , is continuous. Here, continuity of a
set-valued map is defined in the sense of [30, p. 56] and has the
property that the limit of a sequence of a continuous set-valued
map is the value of the map at the limit of the sequence. In
particular, since , , is given by Theorem 4.1, the
continuity of the set-valued map is guaranteed provided
that , , and are continuous functions of the
parameter . Next, let , , denote aswitching
setsuch that the following key assumption is satisfied.

Assumption 5.1:The switching set is such that the
following two properties hold.

1) There exists a continuous positive-definite function
such that for all , , there exists

such that , .
2) If , , is such that , then

.

Note that Assumption 5.1 assumes the existence of a posi-
tive-definitepotential function for all in the switching
set . It follows that, for each , there exists an equilib-
rium point with an associated domain of attraction , and
potential value . Hence, every domain of attraction has an
associated value of the potential function such that, according
to 2), domains of attraction corresponding to different local set
point designs intersect each other only if their corresponding
potentials are different. In particular, given , , it
is always possible to find at least one intersecting domain of at-
traction , , such that the potential function decreases
and contains as an internal point. This guarantees that
if a forward trajectory , , of the controlled system ap-
proaches , then there exists a finite time such that
the trajectory enters . Finally, it is important to note that the
switching set is arbitrary. In particular, we do not assume that

is countable or countably infinite. For example, the switching
set can have a hybrid topological structure involving isolated
points and closed sets homeomorphic to intervals on the real
line.

Next, we show that Assumption 5.1 implies that every level
set of the potential function is either empty or consists
of only isolated points. Furthermore, in a neighborhood of the
origin every level set of consists of at mostone isolated
point. For the statement of this result, let , ,
, denote the open ball centered at with radius , that is,

.
Proposition 5.1: Let be such that Assumption 5.1

holds. Then for every , is either empty or consists
of only isolated points. Furthermore, there exists such
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that for every , consists of at most one isolated
point.

Proof: Suppose, ad absurdum, that there exists
, , such that is not an isolated point

in . Now, let be a neighborhood of and
note that, by continuity of and the fact that is
not an isolated point, for every , there exist
such that , and .

However, since , it follows that there exists
such that . Now, choosing yields

and which implies that
contradicting ii) of Assumption 5.1. Hence, if

, is nonempty, it must consist of only isolated
points.

Next, suppose,ad absurdum, that for all there exist two
isolated points such that

. Now, repeating the above arguments leads to a
contradiction. Hence, there exists such that if ,
then . Now, since is continuous
and positive definite, it follows that there exists such that

, , and hence , , consists of at
most one isolated point.

Note that Proposition 5.1 implies that, if , ,
is bounded, then there exists a finite distance between isolated
points contained in which consists of at most afinite
number of isolated points. Finally, since in a neighborhood of
the origin every level set of consists of at most one iso-
lated point, a particular topology for, in a neighborhood of
the origin, is homeomorphic to the interval , , with

corresponding to .
Now, for every , define theviable

switching set , which contains
all such that . Note that if we consider a
sequence , that is, , such that

, it follows from the continuity of the
set-valued map that . Thus, which
implies that is a nonempty closed set since it contains
all of its accumulation points.

Next, we introduce theswitching function , ,
such that the following definitions hold

(7)

In particular, , , corresponds to the value at which
is minimized wherein belongs to the viable switching set.

The following proposition shows that “min” in (7) is attained
and hence is well defined.

Proposition 5.2: Let and let be a contin-
uous positive-definite function such that Assumption 5.1 holds.
Then, for all , there exists a unique such
that .

Proof: Existence follows from the fact that is lower
bounded and , , is a nonempty closed set. Now, to
prove uniqueness, supposead absurdum is not unique. In
this case, there exist , , such that

and which contradicts ii) in As-
sumption 5.1.

The next result shows that given by (7) is a generalized
Lyapunov function candidate, i.e., is lower semicontinuous
on .

Theorem 5.1:Let be such that Assumption 5.1
holds. Then the function , , is lower

semicontinuous on and continuous on .
Proof: Let the sequence be such that

and define . Here
we assume without loss of generality that con-
verges to ; if this is not the case, it is always possible to con-
struct a subsequence having this property. Sinceis contin-
uous [and hence ],
it suffices to show that . Suppose,ad absurdum,
that . In this case, there exists a positive integer

such that , . Now, since by definition
minimizes for , it follows that

, . Hence, since ,
, it follows that and ,

. Now, define the closed set such
that . Since is closed, it follows that
which implies that there exist such that
which is a contradiction.

To show that is continuous on it need only be

shown that is upper semicontinuous on , or, equiv-

alently, . Since and ,
there exists a positive integer such that ,

. Hence, and , ,
which implies that .

Next, we show that with the hierarchical nonlinear feedback
control strategy , , given by (7) is a
generalized Lyapunov function for the nonlinear feedback con-
trolled dynamical system (2). The controller notation
denotes a switching nonlinear feedback controller where the
switching function , , is such that definition (7)
of the generalized Lyapunov function , , holds
for a given potential function and switching set satis-
fying Assumption 5.1. Furthermore, note that since
is defined for , it follows that the solution to (2)
with and is defined for all values
of such that . However, as will be shown,
since is a positively invariant set, , while if

is such that , , is always contained in , then
. Finally, note that since the solution , , to

(2) with and is continuous, it follows
from Theorem 5.1 that , , is right continuous.
Hence, using the continuity of and the definition of ,

, it follows that , , is also right contin-
uous. Now, the continuity of and , , imply
that , , is right continuous.

Theorem 5.2:Consider the nonlinear controlled dynamical
system (1) with and assume there exists a contin-
uous function , , parameterizing an equilib-
rium manifold of (1), such that , . Further-
more, assume that there exists afeedback control law ,



24 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 1, JANUARY 2001

with , that locally stabilizes with
a domain of attraction estimate and let , ,
be such that Assumption 5.1 holds. If , , is such
that , , given by (7) holds and , , is
the solution to (1) with and feedback control
law , , then is positively invariant
and , , is nonincreasing. Furthermore, for all

, , , if and only
if , . Finally, for all
such that , there exists a finite time such
that .

Proof: First, note that implies .
Since stabilizes with domain of attraction

, it follows that, for all , the flow of
is directed toward the interior of and

consequently toward the interior of , which proves positive
invariance of . Next, let , , satisfy (1) with

, where , and let, for an
arbitrary time , the feedback control law
asymptotically stabilize the equilibrium point of (1) with
domain of attraction . Since , it follows from
Theorem 4.1 that there exists a Lyapunov function

such that ,

, and .
Next, since , , is right contin-
uous, it follows that there exists such that ,

, which implies that ,
. Hence, , ,

and , , which implies that
, . Now, since

is arbitrary, it follows that , , is a
nonincreasing function along the trajectories , , of
(1) with .

Next, assume that and ,
. Now, suppose,ad absurdum, that , ,

is not constant, that is, there exists such that
. In this case and

, which contradicts ii) of Assumption 5.1. Hence, it fol-
lows that if , , then ,

. Conversely, if for , ,
, then , , is imme-

diate.

Finally, for an arbitrary , suppose,ad absurdum, that
, , or, equivalently,

, . Then the feedback control law
stabilizes the equilibrium point . In this case, it follows from
Assumption 5.1 that there exists such that

and , which implies that there exists
such that . Hence, it follows from

Remark 4.1 that approaches the level set in a finite
time so that , which
contradicts the original supposition.

Next, we show that the hierarchical switching nonlinear con-
troller , , guarantees that the generalized
Lyapunov function (7) is nonincreasing along the closed-loop
system trajectories with strictly decreasing valuesonly at the

switching times which occur when the closed-loop system tra-
jectory enters a new domain of attraction with an associated
lower potential value.

Corollary 5.1: Consider the nonlinear controlled dynamical
system (1) with and assume the hypothesis of The-
orem 5.2 holds. Then , , is strictly decreasing only
at the switching times which occur when the trajectory ,

, enters a new domain of attraction with an associated
lower potential value.

Proof: First, we consider the case where ,

with and . It follows from the continuity
of the closed-loop system trajectories that there exists

such that , which implies that
and . Since , , is a nonin-
creasing function of time, it follows that ,

. Alternatively, assume that , and sup-
pose,ad absurdum, that there exists such that

. Then , , and, since ,
, attains its maximum at , it follows that

, , which contradicts the
fact that , , is a decreasing function of time.
Hence, and , for all

.
Finally, we present the main result of this section. Specifi-

cally, we show that the hierarchical switching nonlinear con-
troller given by , , guarantees that the
closed-loop system trajectories converge to a union of largest
invariant sets contained on the boundary of intersections over
finite intervals of the closure of the generalized Lyapunov level
surfaces. In addition, if the switching setis homeomorphic
to an interval on the real line and/or consists of only isolated
points, then the hierarchical switching nonlinear controller es-
tablishes asymptotic stability of the origin.

Theorem 5.3:Consider the nonlinear controlled dynamical
system (1) with and assume there exists a contin-
uous function , , parameterizing an equilib-
rium manifold of (1), such that , . Further-
more, assume that there exists afeedback control law ,

with , that locally stabilizes with
a domain of attraction estimate and let , ,
be such that Assumption 5.1 holds. In addition, assume ,

, is such that , , given by (7) holds, and,
for , , , is the solution to (2) with the
feedback control law , . If ,

then as , where

. If, in addition,
is homeomorphic to , , with corresponding
to , or consists of only isolated points, then the zero
solution to (2) is locally asymptotically stable with an
estimate of domain of attraction given by. Finally, if
and there exists such that the feedback control law
globally stabilizes , then the above results are global.

Proof: The result follows from Theorems 3.2, 5.1, 5.2, and
the fact that if is homeomorphic to , , with
corresponding to , or consists of only isolated points
then establishing local asymptotic stability
of the zero solution to (2) with an estimate of domain
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of attraction given by . Next, without loss of generality, let
be theuniquevalue of such that . Define

and which is a
compact positively invariant set. Hence, if , it follows
from the first part of the theorem that the origin is asymptotically
stable, with an estimate of the domain of attraction given by

. Now, global asymptotic stability of the origin is immediate
by noting that if , then the forward trajectory of (2)
approaches in a finite time. If, in fact, , then

which implies that for all the feedback control law
, , stabilizes and, by Assumption 5.1,

. In this case, it follows from Remark 4.1 that for all
there exists a finite time such that .

Hence, global attraction as well as global asymptotic stability of
the origin is established for the respective cases.

Remark 5.1:The switching set is quite general in the sense
that it can have a hybrid topological structure involving isolated
points and closed sets homeomorphic to intervals on the real
line. In the special case where the switching setconsists of
only isolated points, the hierarchical switching control strategy
given by , , is piecewise continuous.
Alternatively, in the special case where the switching setis
homeomorphic to an interval on, the hierarchical switching
control strategy given by , , is not neces-
sarily continuous. The continuous control case will be discussed
in Section VI.

Remark 5.2: In the case where the switching setis home-
omorphic to an interval on and a stabilizing controller
for the origin cannot be obtained, i.e., , still
holds. Hence, Theorem 5.3 guarantees attraction of the origin if

. Alternatively, if , then the origin is asymptot-
ically stable.

Finally, it is important to note that since the hierarchical
switching nonlinear controller , , is
constructed such that the switching function , ,
assures that , , defined by (7) is a generalized
Lyapunov function with strictly decreasing values at the
switching points, the possibility of a sliding mode is precluded
with the proposed control scheme. In particular, Theorem
5.2 guarantees that the closed-loop state trajectories cross the
boundary of adjacent regions of attraction in the state space
in a inward direction. Thus, the closed-loop state trajectories
enter the lower potential-valued domain of attraction before
subsequent switching can occur. Hence, the proposed nonlinear
stabilization framework avoids the undesirable effects of
high-speed switching onto an invariant sliding manifold.

VI. EXTENSIONS TONONLINEAR DYNAMIC COMPENSATION

In this section, we provide an online procedure for computing
the switching function , , such that (7) holds, by
constructing an initial value problem for having a fixed-
order dynamic compensator structure. Specifically, we consider
a switching set diffeomorphic to an interval on the real line

and assume that the switching function , , is

. To present this result, consider the nonlinear controlled dy-
namical system given by (1) with a nonlinear feedback dynamic
controller of the form

(8)

(9)

where , , is the controller state vector,
is an open set, , and . Note

that we do not assume any regularity condition on the mappings
and . However, we do assume that the nonlinear

feedback controlled dynamical system given by (1), (8), and (9)
is such that the solutions of the closed-loop system onare
unique and continuously dependent on the closed-loop system
initial conditions.

To construct dynamic controllers of the form (8), (9) we as-
sume that the switching set is such that there exists a closed
interval , , and a diffeomorphism ,
such that , , and . Furthermore, we
assume that and are functions of . Next, re-
call that Theorem 5.3 guarantees that the feedback control law

, , where , , is given by
(7), locally asymptotically stabilizes the origin of the nonlinear
feedback controlled dynamical system (2), andis a subset of
the domain of attraction. Furthermore, note that if
it follows by continuity of the closed-loop trajectories that
there exists a finite time such that and

. Now, define and note that since
is connected and the set-valued map is continuous, it fol-

lows that , , which implies that ,
, can be constant on the interval only

if , , which contradicts the fact that
. Hence, it follows that , , is

a strictly decreasing function and Theorem 5.2 further implies
that , . Thus,

(10)

relates the state trajectories to the switching function
. For the statement of the main result of this section

the following definitions and proposition are needed. Define

(11)

and which, as shown in Propo-
sition 6.1 below, is well defined for all and

. In the case where , define .
Proposition 6.1: Assume is a diffeomor-

phism, is a function, and and are
functions of . Then and , ,
defined in (11), are such that for all

.
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Proof: The result follows by differentiating both sides of
(10) and noting that for all , ,

. Specifically, differentiating both sides of (10) yields

(12)

Next, let , , be such that ,
, and note that (12) evaluated at yields

. Now,
noting that and are scalars, it follows that

, .
Next, we present the main result of this section which pro-

vides an online procedure for computing the switching function
, . Specifically, differentiating both sides of

(10) with respect to time yields a Davidenko–type differential
equation that defines an initial value problem for the switching
function and hence the function , , is charac-
terized via a homotopy map.

Theorem 6.1:Assume is a diffeomorphism,
is a function, and and are functions

of . Then, the solutions and , , of the
closed-loop nonlinear feedback controlled dynamical system

(13)

(14)

are such that , , or, equivalently,
, .

Proof: The result follows by differentiating both sides of
(10) with respect to time and noting that .

Note that the switching function dynamics characterized by
(14) defines a fixed-order dynamic compensator of the form
given by (8), (9). Specifically, defining the compensator state
as so that , the dynamic compensator struc-
ture is given by

(15)

(16)

Now, it follows from Theorems 5.3 and 6.1 that for all
the nonlinear feedback controlled dynamical system given by
(1), (15), and (16), drives to in a finite time .
Note that this result does not violate the assumption of unique-
ness of solutions of (15) since at the finite time

does not correspond to a system equilibrium point.
Next, since , , reaches asymptot-
ically which guarantees asymptotic stability of the origin with
an estimate of the domain of attraction given by. Similar ar-
guments hold for global asymptotic stability in the case where

.
The compensator dynamics (14) characterize the fastest ad-

missible rate of change of the switching function for which
the feedback control (16) maintains stability of the closed-loop
system. As discussed in Section I, this quantifies the notion

of slow-varying system parameters which has been one of the
major shortcomings of gain scheduling practices. It is not sur-
prising to note that this rate is an explicit function of the gradient
of the equilibria-dependent Lyapunov functions and the gradient
of the domains of attraction estimates with respect to the param-
eterized equilibrium manifold. Furthermore, the rate of change
of the switching function also depends on the gradient of the
diffeomorphism evaluated along the switching set; such a de-
pendence can be used to enforce desirable structural properties
of the switching set. For further details see [31].

Finally, to elucidate the hierarchical switching nonlinear con-
troller presented in this section and Section V, we present an al-
gorithm that outlines the key steps in constructing the feedback
controller.

Algorithm 6.1: To construct the hierarchical switching feed-
back control , , perform the following
steps.

1) Construct the equilibrium manifold of (1) using
, where is an arbitrary function of .

Use to explicitly define the mapping
such that , , is an equilibrium

point of (1) corresponding to the parameter value. We
note that the above parameterization can be constructed
using the approaches given in [22], [23].

2) Construct the set such that, for each equilib-
rium point , , there exists a stabilizing con-
troller and an associated domain of attraction
corresponding to the level set and Lyapunov function

. Here, the controllers , , can be ob-
tained using any appropriate standard linear or nonlinear
stabilization scheme.

3) Construct the switching set and a potential func-
tion such that Assumption 5.1 is satisfied. In
particular,

3a) if is an isolated point of with corre-
sponding equilibrium point , then there exists

such that , ;
3b) if is an accumulation point of then

Step 3a) is automatically satisfied if does not
achieve a local minimum at;

3c) if , , is such that ,
then .

4) Given the state-space point at , search for solu-
tions to , .

4a) If no solution exists, is unchanged.
4b) If onesolution exists and then

switch to .
4c) If more than one solution exists, repeat Step 4b)

with replaced by the solution that minimizes
. Note that multiple solutions can be avoided

by modifying the ’s.
5) Construct the hierarchical switching feedback controller

where , , constructed in
Step 4) is such that (7) holds.

Note that the existence of a switching setand a potential
function such that Step 3) is satisfied, can be guaranteed by
modifying Step 4a) as follows:
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4a) Given the state space point at ,
where and , search for the solu-
tions of , .

In this case, the switching set need not be explicitly
defined and is computed online. Furthermore, the case where

recovers the continuous framework described in this
section. Finally, we note that hierarchical controllers based on
the framework in this paper are reported in [18] for controlling
rotating stall and surge in axial flow compressors.

VII. CONCLUSION

A nonlinear control-system design framework predicated on
a hierarchical switching controller architecture parameterized
over a set of system equilibria was developed. Specifically, a hi-
erarchical switching nonlinear control strategy is constructed to
stabilize a given nonlinear system by stabilizing a collection of
nonlinear controlled subsystems. The switching nonlinear con-
troller architecture is designed based on a generalized Lyapunov
function obtained by minimizing a potential function over a
given switching set induced by the parameterized system equi-
libria. An online procedure for computing the switching scheme
was proposed by constructing an initial value problem having a
fixed-order dynamic compensator structure.
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