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Abstract

There are significant potential clinical applications of adaptive control for pharmacology in general, and anesthesia and critical care
unit medicine in particular. Specifically, monitoring and controlling the levels of consciousness in surgery are of particular importance.
Nonnegative and compartmental models provide a broad framework for biological and physiological systems, including clinical phar-
macology, and are well suited for developing models for closed-loop control of drug administration. In this paper, we develop a direct
adaptive control framework for nonlinear uncertain nonnegative and compartmental systems with nonnegative control inputs. The proposed
framework is Lyapunov-based and guarantees partial asymptotic set-point regulation, that is, asymptotic set-point regulation with respect
to part of the closed-loop system states associated with the plant. In addition, the adaptive controller guarantees that the physical system
states remain in the nonnegative orthant of the state space. Finally, a numerical example involving the infusion of the anesthetic drug
propofol for maintaining a desired constant level of consciousness for noncardiac surgery is provided to demonstrate implementation of
the proposed approach.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Adaptive control; Nonlinear compartmental systems; Nonnegative control; Set-point regulation; Automated anesthesia; Electroencephalo-
graphy; Bispectral index

1. Introduction

Nonnegative and compartmental models provide a broad
framework for biological and physiological systems, in-
cluding clinical pharmacology, and are well suited for the
problem of closed-loop control of drug administration.
Specifically, nonnegative and compartmental dynamical
systems [15] are composed of homogeneous interconnected
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subsystems (or compartments) which exchange variable
nonnegative quantities of material with conservation laws
describing transfer, accumulation, and elimination between
the compartments and the environment. It thus follows from
physical considerations that the state trajectory of such sys-
tems remains in the nonnegative orthant of the state space
for nonnegative initial conditions [10]. Using nonnegative
and compartmental model structures, a Lyapunov-based
direct adaptive control framework is developed that guaran-
tees partial asymptotic set-point stability of the closed-loop
system, that is, asymptotic set-point stability with respect
to part of the closed-loop system states associated with the
physiological state variables. Furthermore, the remainder
of the state associated with the adaptive controller gains
is shown to be Lyapunov stable. In addition, the adaptive
controllers are constructed without requiring knowledge of
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the system dynamics while providing a nonnegative control
(source) input for robust stabilization with respect to the
nonnegative orthant.

Administration of drugs to produce general anesthesia has
traditionally been guided by clinical evaluation. However,
the clinical measures of depth of anesthesia are imperfect,
primarily since the most reliable, purposeful movement in re-
sponse to noxious stimulus is masked by the concomitant ad-
ministration of paralytic agents, given to improve operating
conditions for the surgeon. There has been a long-standing
interest in the use of the electroencephalogram (EEG) as
an objective, quantitative measure of consciousness that can
be used as a performance variable for closed-loop control
of anesthesia. Closed-loop control in clinical pharmacol-
ogy may improve the quality of drug administration, lessen-
ing the dependence of patient outcome on the skills of the
clinician [2].

Previous efforts to develop closed-loop control of general
intravenous anesthesia have used a proportional-integral-
derivative control algorithm and linear adaptive control
algorithms based on pharmacokinetic/pharmacodynamic
models [1,23,26,29]. Intravenous anesthesia has also been
delivered by a closed-loop controller that uses auditory-
evoked responses and cardiovascular responses as the con-
trol variables with a fuzzy-logic control algorithm [21].
Adaptive algorithms are promising since the relationships
between drug dose and blood concentration (pharmacoki-
netics) and between blood concentration and physiological
effect (pharmacodynamics) vary widely among individ-
ual subjects [2]. Previous model-based algorithms have
assumed either a fixed pharmacokinetic model or a fixed
pharmacodynamic model [26,29].

In this paper, we present a less restrictive direct adap-
tive control framework that accounts for interpatient and
intrapatient pharmacokinetic and pharmacodynamic vari-
ability. In particular, building on the adaptive control frame-
work for linear compartmental models presented in [12],
we develop a direct adaptive control framework for adaptive
set-point regulation of nonlinear uncertain nonnegative and
compartmental systems. We illustrate the implementation
of the adaptive controller with an example of closed-loop
control of an intravenous anesthetic, propofol, that is char-
acterized by a new nonlinear pharmacokinetic and pharma-
codynamic model. A related but different adaptive control
framework is given in [11]. Specifically, unlike the results
of the present paper which exclusively deal with the specific
problem of clinical pharmacology, wherein the adaptive
control algorithm is tailored to compartmental systems
of a certain structure, the results in [11] address unstable
nonnegative dynamical systems. An additional crucial dif-
ference between the present framework and [11] is that
the proposed adaptive controller guarantees that the control
signal remains nonnegative, which is critical for addressing
active control of drug dosing. These key differences result
in disjoint controller architectures in the sense that neither
result can be obtained as a special case of the other. Finally,

it is important to note that even though adaptive control
for nonnegative systems has received little attention in the
literature, nonadaptive control for nonnegative dynami-
cal systems has been addressed in the literature. Notable
contributions include [3,4,7,14].

2. Mathematical preliminaries

In this section we introduce notation, several definitions,
and some key results concerning nonlinear nonnegative dy-
namical systems [5,10] that are necessary for developing the
main results of this paper. Specifically, for x ∈ Rn we write
x� �0 (resp., x?0) to indicate that every component of x
is nonnegative (resp., positive). In this case, we state that x is
nonnegative or positive, respectively. Likewise, A ∈ Rn×m

is nonnegative or positive if every entry of A is nonnega-
tive or positive, respectively, which is written as A� �0
or A?0, respectively. Let R

n

+ and Rn+ denote the nonneg-
ative and positive orthants of Rn, that is, if x ∈ Rn, then
x ∈ R

n

+ and x ∈ Rn+ are equivalent, respectively, to x� �0
and x?0. Finally, we state that a real function u : [0, T ] →
Rm is a nonnegative (resp., positive) function if u(t)� �0
(resp., u(t)?0) on the interval [0, T ].

In this paper we consider controlled nonlinear dynamical
systems of the form

ẋ(t) = f (x(t)) + G(x(t))u(t), x(0) = x0, t �0, (1)

where x(t) ∈ Rn, t �0, u(t) ∈ Rm, t �0, f : Rn → Rn

is Lipschitz continuous and satisfies f (0) = 0, G : Rn →
Rn×m is continuous, and u : [0, ∞) → Rm is measurable
and locally bounded.

The following definitions and proposition are needed for
the main result of the paper.

Definition 2.1 (Haddad and Chellaboina [10]). Let f =
[f1, . . . , fn]T : D → Rn, where D is an open subset of
Rn that contains R

n

+. Then, f is essentially nonnegative if

fi(x)�0, for all i = 1, . . . , n, and x ∈ R
n

+ such that xi = 0,
where xi denotes the ith element of x.

Definition 2.2. The nonlinear dynamical system given by
(1) is nonnegative if for every x(0) ∈ R

n

+ and u(t)� �0,
t �0, the solution x(t), t �0, to (1) is nonnegative.

Proposition 2.1 (Haddad and Chellaboina [10]). The non-
linear dynamical system given by (1) is nonnegative if
f : Rn → Rn is essentially nonnegative and G(x)� �0,
x ∈ R

n

+.

It follows from Proposition 2.1 that a nonnegative input
signal G(x(t))u(t), t �0, is sufficient to guarantee the non-
negativity of the state of (1).
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3. Adaptive control for nonlinear nonnegative
uncertain dynamical systems

In this section, we consider the problem of character-
izing adaptive feedback control laws for nonlinear non-
negative and compartmental uncertain dynamical systems
to achieve set-point regulation in the nonnegative orthant.
Specifically, we consider the controlled nonlinear uncer-
tain system G given by (1), where x(t) ∈ Rn, t �0, is
the state vector, u(t) ∈ Rm, t �0, is the control input,
f : Rn → Rn is an unknown essentially nonnegative func-
tion and satisfies f (0) = 0, and G : Rn → Rn×m is an
unknown nonnegative input matrix function. The control
input u(·) in (1) is restricted to the class of admissible
controls consisting of measurable and locally bounded
functions such that u(t) ∈ Rm, t �0. Furthermore, for the
nonlinear system G we assume that the properties required
for the existence and uniqueness of solutions are satisfied,
that is, f (·), G(·), and u(·) satisfy sufficient regularity
conditions such that (1) has a unique solution forward
in time.

As discussed in the Introduction, control (source) inputs
of drug delivery systems for physiological processes are
usually constrained to be nonnegative as are the system
states. Hence, in this paper we develop adaptive control
laws for nonnegative systems with nonnegative control in-
puts. Specifically, for a given desired set point xe ∈ R

n

+,
our aim is to design a control input u(t), t �0, such that
limt→∞‖x(t) − xe‖ = 0. We assume that control inputs are
injected directly into m separate compartments and the input
matrix function is given by

G(x) =
[

BuGn(x)

0(n−m)×m

]
, (2)

where Bu =diag[b1, . . . , bm] is an unknown nonnegative di-
agonal matrix and Gn = diag[gn1(x), . . . , gnm(x)], where
gni : R

n

+ → R+, i = 1, . . . , m, is a known nonnegative
diagonal matrix function. For compartmental systems this
assumption is not restrictive since control inputs correspond
to control inflows to each individual compartment. For the
statement of the next result we assume that for a given
xe ∈ R

n

+, there exists a nonnegative vector ue ∈ R
m

+ such
that

0 = f (xe) + B̂ue, (3)

where B̂ = [Bu, 0m×(n−m)]T, and the equilibrium point xe

of (1) is globally asymptotically stable for all x0 ∈ R
n

+ with
Gn(x(t))u(t) ≡ ue.

Theorem 3.1. Consider the nonlinear uncertain system G
given by (1) where f : Rn → Rn is essentially nonnegative
and G : Rn → Rn×m is nonnegative and is given by (2).

Assume that there exist continuously differentiable functions
Vsi : R → R, i = 1, . . . , m, and V̂s : Rn−m → R, Lipschitz
continuous functions Fi : Rn → Rsi , i = 1, . . . , m, and a
continuous function � : Rn → Rp such that Vs(·) is positive
definite, radially unbounded, Vs(0)= 0, �(0)= 0, Fi(0)= 0,
i = 1, . . . , m, and, for all e ∈ Rn,

V s
′
i (ei)Fi(e)� �0, i = 1, . . . , m, (4)

0 = V ′
s (e)fe(e) + �T(e)�(e), (5)

where Vs(e) = Vs1(e1) + · · · + Vsm(em) + V̂s(em+1, . . . , en)

and fe(e)�f (e+xe)−f (xe). Furthermore, let qi and q̂i , i=
1, . . . , m, be positive constants. Then the adaptive feedback
control law

ui(t) = max{0, ûi(t)}, i = 1, . . . , m, (6)

where

ûi (t) = gn
−1
i (x(t))kT

i (t)Fi(x(t) − xe)

+ gn
−1
i (x(t))�i (t), i = 1, . . . , m, (7)

ki(t) ∈ Rsi , t �0, i = 1, . . . , m, and �i (t) ∈ R, t �0, i =
1, . . . , m, with update laws

k̇T
i (t) =

⎧⎨
⎩

0 if ûi (t) < 0,

− qi

2 V s
′
i (xi(t) − xei

)

×F T
i (x(t) − xe) otherwise,

ki(0)� �0, i = 1, . . . , m, (8)

�̇i (t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if �i (t) = 0

and V s
′
i (xi(t) − xei

)�0,

or if ûi (t)�0,

− q̂i

2 V s
′
i

×(xi(t) − xei
), otherwise,

�i (0) = 0, i = 1, . . . , m, (9)

guarantees that the solution (x(t), K(t), �(t)) ≡ (xe, Kg,

ue), where K(t)�block-diag[kT
1 (t), . . . , kT

m(t)] and Kg�
block-diag[kT

g1
, . . . , kT

gm
]� �0, of the closed-loop system

given by (1), (6), (8), and (9) is Lyapunov stable. If, in
addition, �T(e)�(e) > 0, e ∈ Rn, e �= 0, then x(t) → xe as
t → ∞ for all x0 ∈ R

n

+. Furthermore, u(t)� �0, t �0,

and x(t)� �0, t �0, for all x0 ∈ R
n

+.
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Proof. First, define e(t)�x(t) − xe, F(e)�[F T
1 (e), . . . ,

F T
m(e)]T, Ku(t)�block-diag [kT

u1
(t), . . . , kT

um
(t)], and

�u(t)�[�u1
(t), . . . ,�um

(t)]T, where

kui
(t) =

{
0 if ûi (t)�0,

ki(t) otherwise,
i = 1, . . . , m, (10)

�ui
(t) =

{
0 if ûi (t)�0,

�i (t) otherwise,
i = 1, . . . , m. (11)

Now, note that with u(t), t �0, given by (6) it follows from
(1) that

ẋ(t) = f (x(t)) + B̂Ku(t)F (x(t) − xe) + B̂�u(t),

x(0) = x0, t �0 (12)

or, equivalently, using (3),

ė(t) = fe(e(t)) + B̂Ku(t)F (x(t) − xe)

+ B̂(�u(t) − ue), e(0) = x0 − xe, t �0. (13)

To show Lyapunov stability of the closed-loop system (8),
(9), and (13) consider the Lyapunov function candidate

V (e, K, �) = Vs(e) + tr(K − Kg)
TQ−1(K − Kg)

+ (� − ue)
TQ̂−1(� − ue) (14)

or, equivalently,

V (e, K, �) = Vs(e) +
m∑

i=1

bi

qi

(ki − kgi
)T(ki − kgi

)

+
m∑

i=1

bi

q̂i

(�i − uei
)2, (15)

where

Q =
[
q1

b1
, . . . ,

qm

bm

]
,

Q̂ = diag

[
q̂1

b1
, . . . ,

q̂m

bm

]
.

Note that V (0, Kg, ue)=0 and, since Vs(·), Q, and Q̂ are pos-
itive definite, V (e, K, �) > 0 for all (e, K, �) �= (0, Kg, ue).
Furthermore, V (e, K, �) is radially unbounded. Now, let-
ting e(t), t �0, denote the solution to (13) and using (8)
and (9), it follows that the Lyapunov derivative along the

closed-loop system trajectories is given by

V̇ (e(t), K(t), �(t))

= V ′
s (e(t))[fe(e(t)) + B̂Ku(t)F (x(t)

− xe) + B̂(�u(t) − ue)]
+ 2tr(K(t) − Kg)

TQ−1K̇(t)

+ 2(�(t) − ue)
TQ̂−1�̇(t)

= −�T(e(t))�(e(t))

+
m∑

i=1

V s
′
i (ei(t))bik

T
ui

(t)Fi(e(t))

+
m∑

i=1

biV s
′
i (ei(t))(�ui

(t) − uei
)

+
m∑

i=1

2bi

qi

k̇T
i (t)(ki(t) − kgi

)

+
m∑

i=1

2bi

q̂i

(�i (t) − uei
)�̇i (t)

= −�T(e(t))�(e(t))

+
m∑

i=1

bi

[
V s

′
i (ei(t))k

T
ui

(t)Fi(e(t))

+ 2

qi

k̇T
i (t)(ki(t) − kgi

)

]

+
m∑

i=1

bi

[
V s

′
i (ei(t))(�ui

(t) − uei
)

+ 2

q̂i

(�i (t) − uei
)�̇i (t)

]
. (16)

For each i ∈ {1, . . . , m} and for the two cases given in
(8) and (9), the last two terms on the right-hand side of (16)
give the following:

(i) If ûi (t)�0, then kui
(t) = 0, �ui

(t) = 0, k̇i (t) = 0 and

�̇i (t)= 0. Furthermore, since �i (t)�0 and ki(t)� �0
for all t �0, it follows from (7) that ûi (t)�0 only if
Fi(x(t)−xe)� �0 which implies V s

′
i (ei(t))�0 by (4),

and hence,

V s
′
i (ei(t))k

T
ui

(t)Fi(e(t))

+ 2

qi

k̇T
i (t)(ki(t) − kgi

) = 0,

V s
′
i (ei(t))(�ui

(t) − uei
) + 2

q̂i

(�i (t) − uei
)

× �̇i (t) = −V s
′
i (ei(t))uei

�0.
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(ii) Otherwise, kui
(t)=ki(t) and �ui

(t)=�i (t), and hence,

V s
′
i (ei(t))k

T
ui

(t)Fi(e(t)) + 2

qi

k̇T
i (t)(ki(t) − kgi

)

= V s
′
i (ei(t))k

T
gi

(t)Fi(e(t))�0,

V s
′
i (ei(t))(�ui

(t) − uei
) + 2

q̂i

(�i (t) − uei
)�̇i (t)

=

⎧⎪⎪⎨
⎪⎪⎩

−V s
′
i (ei(t))

×uei
�0

if �i (t) = 0 and

V s
′
i (xi(t) − xei

)�0,

0 otherwise.

Hence, it follows that in either case

V̇ (e(t), K(t), �(t))� − �T(e(t))�(e(t))�0, t �0, (17)

which proves that the solution (e(t), K(t), �(t)) ≡
(0, Kg, ue) to (8), (9), and (13) is Lyapunov stable. Thus,
the solutions of the closed-loop system (8), (9), and (13)
are bounded in Rn × Rm×s × Rm, and hence, since Vsi (·) is
continuously differentiable and Fi(·) is Lipschitz continu-
ous for i = 1, . . . , m, it follows from Theorem 2.4 of Khalil
[20] that there exists a unique solution to (8), (9), and (13)
that is defined for all t �0. Furthermore, it follows from
Theorem 4.4 of Khalil [20] that �(e(t)) → 0 as t → ∞. If,
in addition, �T(e)�(e) > 0, e ∈ Rn, e �= 0, then x(t) → xe
as t → ∞ for all x0 ∈ R

n

+. Finally, u(t)� �0, t �0, is a
restatement of (6). Now, since f : Rn → Rnis essentially
nonnegative, G(x)� �0, x ∈ R

n

+, and u(t)� �0, t �0, it
follows from Proposition 2.1 that x(t)� �0, t �0, for all
x0 ∈ R

n

+. �

In Theorem 3.1 the control input u(t), t �0, is always non-
negative regardless of the values of xi(t), ki(t), and �i (t),
t �0, i =1, . . . , m, which ensures that the closed-loop plant
states remain nonnegative by Proposition 2.1 for nonnegative
and compartmental dynamical systems. Furthermore, note
that in Theorem 3.1 we assumed that the equilibrium point xe
of (1) is globally asymptotically stable with Gn(x(t))u(t) ≡
ue. In general, however, unlike linear nonnegative systems
with asymptotically stable plant dynamics, a given set point
xe ∈ R

n

+ for the nonlinear nonnegative dynamical system
(1) may not be asymptotically stabilizable with a constant
control Gn(x(t))u(t) ≡ ue ∈ R

m

+. However, if f (x) is ho-

mogeneous, cooperative, that is, the Jacobian matrix �f (x)

�x

is essentially nonnegative for all x ∈ R
n

+ [28], the Jaco-

bian matrix �f (x)

�x
is irreducible for all x ∈ R

n

+ [28], and
the zero solution x(t) ≡ 0 of the undisturbed (u(t) ≡ 0)
system (1) is globally asymptotically stable, then the set
point xe ∈ Rn+ satisfying (3) is a unique equilibrium point
with Gn(x(t))u(t) ≡ ue ∈ Rm+ and is also asymptotically

stable for all x0 ∈ R
n

+ [6]. This implies that the solution
x(t) ≡ xe to (1) with Gn(x(t))u(t) ≡ ue is asymptotically

stable. Finally, we note that if the equilibrium point xe of
(1) is locally asymptotically stable for all x0 ∈ D ⊂ R

n

+
with Gn(x(t))u(t) ≡ ue, then Theorem 3.1 guarantees local
asymptotic stability.

It is important to note that the adaptive control law (6),
(8), and (9) does not require the explicit knowledge of the
nonnegative vector ue; all that is required is the existence of
the nonnegative constant vector ue and a partially component
decoupled Lyapunov function Vs(e) such that (4) and (5) are
satisfied and the equilibrium condition (3) holds. Further-
more, note that in the case where F(e) is only a function of
ê�[e1, . . . , em]T, the adaptive feedback controller given in
Theorem 3.1 can be viewed as an adaptive output feedback
controller with outputs y = Cx, where C�[Im, 0m×(n−m)].
In this case, it follows from (6) that the explicit knowledge
of xu�[xm+1, . . . , xn]T and xeu =[xem+1, . . . , xen]T as well
as ue ∈ Rm is not required. In addition, if f (·) in (1) is given
by a linear function, that is, f (x)=Ax, where A ∈ Rn×n is
essentially nonnegative and asymptotically stable, then fe(·)
is given by fe(e) = Ae. In this case, it follows from Theo-
rem 3.3 of Haddad and Chellaboina [10] that there exist a
positive diagonal matrix P ∈ Rn×n and a positive-definite
matrix R ∈ Rn×n such that

0 = ATP + PA + R (18)

and hence, we can always construct a component decou-
pled function Vs(e) = eTPe which satisfies (5). Further-
more, in this case, we can always construct functions Fi(·),
i = 1, . . . , m, such that (4) holds.

Unlike linear asymptotically stable nonnegative systems,
the existence of a component decoupled Lyapunov function
is not necessarily guaranteed for nonlinear asymptotically
stable nonnegative systems. Even though the existence of
diagonal-type Lyapunov functions for asymptotically stable
nonlinear nonnegative systems is not assured, there do ex-
ist classes of nonnegative dynamical systems that do ad-
mit component decoupled Lyapunov functions. For details,
see [17].

4. Nonlinear adaptive control for general anesthesia

To numerically illustrate the efficacy of our adaptive
control framework we consider a nonlinear pharmacoki-
netic model for the intravenous anesthetic propofol. The
pharmacokinetics of propofol are described by the three-
compartment model [2,22] shown in Fig. 1. As discussed in
[2], this model is remarkably effective in describing the drug
distribution for the intravenous anesthetic propofol. The
mass of the drug in the intravascular blood volume (blood
within arteries or veins) as well as the highly perfused or-
gans (organs with high ratios of perfusion to weight) such as
the heart, brain, kidney, and liver is denoted by x1. The re-
mainder of the drug in the body is assumed to reside in two
peripheral compartments, comprised of muscle and fat, and
the masses in these compartments are denoted by x2 and x3.
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u ≡

≡

Continuous

Central
CompartmentCompartment Compartment III

a11(c)x1 Elimination

a12(c)x2

a21(c)x1

a31 (c)x1

a13(c)x3

II

  infusion

Fig. 1. Pharmacokinetic model for drug distribution during anesthesia.

A mass balance of the three-state compartmental model
yields

ẋ1(t) = − [a11(c(t)) + a21(c(t)) + a31(c(t))]x1(t)

+ a12(c(t))x2(t) + a13(c(t))x3(t) + u(t),

x1(0) = x10, t �0, (19)

ẋ2(t) = a21(c(t))x1(t) − a12(c(t))x2(t), x2(0) = x20, (20)

ẋ3(t) = a31(c(t))x1(t) − a13(c(t))x3(t), x3(0) = x30, (21)

where c(t)= x1(t)/Vc, Vc is the volume of the central com-
partment, aij (c), i �= j , is the rate of transfer of drug from
the jth compartment to the ith compartment, a11(c) is the
rate of drug metabolism and elimination (metabolism typi-
cally occurs in the liver), and u(t), t �0, is the infusion rate
of the anesthetic drug propofol into the central compartment.
The transfer coefficients are assumed to be functions of the
drug concentration c since it is well known that the phar-
macokinetics of propofol are influenced by cardiac output
[30] and, in turn, cardiac output is influenced by propofol
plasma concentrations, both due to venodilation (pooling of
blood in dilated veins) and myocardial depression (decrease
in cardiac output) [24].

Experimental data indicate that the transfer coefficients
should be nonincreasing functions of the propofol concen-
tration [24]. By far, the most widely used empirical models
for pharmacodynamic concentration–effect relationships are
modifications of the Hill equation [13]. Applying this al-
most ubiquitous empirical model to the relationship between
transfer coefficients implies that

aij (c) = AijQij (c),

Qij (c) = Q0C
�ij

50,ij /(C
�ij

50,ij + c�ij ), (22)

where for i, j ∈ {1, 2, 3}, i �= j , C50,ij is the drug concen-
tration associated with a 50% decrease in the transfer coeffi-
cient, �ij is a parameter that determines the steepness of the
concentration–effect relationship, and Aij are positive con-
stants. Note that both pharmacokinetic parameters are func-
tions of i and j, that is, there are distinct Hill equations for
each transfer coefficient. Furthermore, since for many drugs
the rate of metabolism a11(c) is proportional to the rate of
transport of drug to the liver we assume that a11(c) is also
proportional to cardiac output so that a11(c) = A11Q11(c).

For simplicity of exposition and to provide a nonlinear
model to illustrate implementation of our adaptive controller,
we will assume that C50 and � are independent of i and j.
Also, since decreases in cardiac output are observed at clini-
cally utilized propofol concentrations we will arbitrarily as-
sign C50 a value of 4 �g/ml since this value is in the mid-
range of clinically utilized values. We will also arbitrarily
assign � a value of 3 [19]. This value is within the typical
range of those observed for ligand–receptor binding (see the
discussion in [8]). Note that these assumptions on C50 and �
(both the independence from i and j and the assumed values)
are made to provide a numerical framework for simulation.
Even if these assumptions are incorrect, the basic Hill equa-
tions relating the transfer coefficients to propofol concen-
tration are consistent with standard pharmacodynamic mod-
eling. Even though the transfer and loss coefficients A12,
A21, A13, A31, and A11 are positive, and � > 1, C50 > 0, and
Q0 > 0, these parameters can be uncertain due to patient
gender, weight, pre-existing disease, age, and concomitant
medication. Hence, the need for adaptive control to regulate
intravenous anesthetics during surgery is essential.

For set-point regulation define e(t)�x(t)−xe, where xe ∈
R3 is the set point satisfying the equilibrium condition for
(19)–(21) with x1(t) ≡ xe1, x2(t) ≡ xe2, x3(t) ≡ xe3, and
u(t) ≡ ue, so that fe(e) = [fe1(e), fe2(e), fe3(e)]T is given
by

fe1(e) = − [ae(c) + a21(c) + a31(c)](e1 + xe1)

+ a12(c)(e2 + xe2) + a13(c)(e3 + xe3)

− [ae(ce) + a21(ce) + a31(ce)]xe1

+ a12(ce)xe2 + a13(ce)xe3, (23)

fe2(e) = a21(c)(e1 + xe1) − a12(c)(e2 + xe2)

− [a21(ce)xe1 − a12(ce)xe2], (24)

fe3(e) = a31(c)(e1 + xe1) − a13(c)(e3 + xe3)

− [a31(ce)xe1 − a13(ce)xe3], (25)

where ce�xe1/Vc. The existence of this equilibrium point
follows from the fact that the Jacobian matrix of (19)–(21)
is essentially nonnegative and every solution of (19)–(21) is
bounded. See Theorem 9 of Jacquez and Simon [16] for de-
tails. Furthermore, let F(e)=e1 and Vs(e)=e2

1+p2e
2
2+p3e

2
3,

where p2, p3 > 0, so that V ′
s1

(e)F (e) = 2e2
1 �0. Next, lin-

earizing fe(e) about 0 and computing the eigenvalues of the
resulting Jacobian matrix, it can be shown that xe is asymp-
totically stable. Since we establish local asymptotic stability
of xe, our results guarantee local asymptotic stabilizability.

Even though propofol concentrations in the blood are
known to be correlated with lack of purposeful responsive-
ness (and presumably consciousness) [18], they cannot be
measured in real-time during surgery. Furthermore, we are
more interested in drug effect (depth of hypnosis) rather
than drug concentration. Hence, we consider a more real-
istic model involving pharmacokinetics (drug concentration
as a function of time) and pharmacodynamics (drug effect
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as a function of concentration) for control of anesthesia.
Specifically, we use an electroencephalogram (EEG) signal
as a measure of drug effect of anesthetic compounds on the
brain [9,23,27]. Since electroencephalography provides real-
time monitoring of the central nervous system activity, it
can be used to quantify levels of consciousness, and hence,
is amenable for feedback (closed-loop) control in general
anesthesia.

The bispectral index (BIS), an EEG indicator, has been
proposed as a measure of anesthetic effect [23]. This index
quantifies the nonlinear relationships between the compo-
nent frequencies in the EEG, as well as analyzes their phase
and amplitude. The BIS signal is related to drug concentra-
tion by the empirical relationship

BIS(ceff) = BIS0

(
1 − c

�
eff

c
�
eff + EC�

50

)
, (26)

where BIS0 denotes the baseline (awake state) value and,
by convention, is typically assigned a value of 100, ceff is
the propofol concentration in �g/ml in the effect-site com-
partment (brain), EC50 is the concentration at half-maximal
effect and represents the patient’s sensitivity to the drug, and
� determines the degree of nonlinearity in (26). Here, the
effect-site compartment is introduced to account for finite
equilibration time between the central compartment concen-
tration and the central nervous system concentration [25].
During actual surgery the BIS signal is obtained directly
from the EEG and not (26).

The effect-site compartment concentration is related to the
concentration in the central compartment by the first-order
model

ċeff(t) = aeff(c(t) − ceff(t)), ceff(0) = c(0), t �0, (27)

where aeff in min−1 is a positive time constant. In reality, the
effect-site compartment equilibrates with the central com-
partment in a matter of a few minutes. The parameters aeff ,
EC50, and � are determined by data fitting and vary from pa-
tient to patient. BIS index values of 0 and 100 correspond,
respectively, to an isoelectric EEG signal (no cerebral elec-
trical activity) and an EEG signal of a fully conscious pa-
tient. The range between 40 and 60 indicates a moderate
hypnotic state [27].

In the following numerical simulation we set EC50 =
5.6 �g/m�, �= 2.39, and BIS0 = 100, so that the BIS signal
is shown in Fig. 2. The target (desired) BIS value, BIStarget,
is set at 50. In this case, the linearized BIS function about
the target BIS value is given by

BIS(ceff) 
 BIS(EC50) − BIS0 · EC�
50

× �c�−1
eff

(c
�
eff + EC�

50)
2

∣∣∣∣∣
ceff=EC50

× (ceff − EC50)

= 109.75 − 10.67ceff . (28)
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Fig. 2. BIS index versus effect-site concentration.
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Fig. 3. Compartmental masses versus time.

Furthermore, for simplicity of exposition, we assume that
the effect-site compartment equilibrates instantaneously
with the central compartment, that is, we assume that
ceff(t)= c(t) for all t �0. Now, using the adaptive feedback
controller (6) with i = 1, F1(x(t)− xe)= BIS(t)− BIStarget,
q1 = qBIS, and q̂1 = q̂BIS, where qBIS1 and q̂BIS1 are posi-
tive constants, it follows from Theorem 3.1 that BIS(t) →
BIStarget as t → ∞ for all (uncertain) nonnegative val-
ues of the pharmacokinetic transfer and loss coefficients
(A12, A21, A13, A31, A11) as well as all (uncertain) nonneg-
ative coefficients �, C50, and Q0 in the range of ceff where
the linearized BIS (28) is valid.

Since our adaptive controller only requires the error signal
BIS(t) − BIStarget over the linearized range of (26), we
do not require knowledge of the slope of the linearized
(28), nor do we require knowledge of the pharmacodynamic
parameters � and EC50. For our simulation we assume
Vc = (0.228 �/kg)(M kg), where M = 70 kg is the mass of
the patient, A21Q0 = 0.112 min−1, A12Q0 = 0.055
min−1, A31Q0 = 0.0419 min−1, A13Q0 = 0.0033 min−1,
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Fig. 4. BIS index versus time and control signal (infusion rate) versus time.

A11Q0 = 0.119 min−1, � = 3, and C50 = 4 �g/m� [19,22].
Note that the parameter values for � and C50 probably ex-
aggerate the effect of propofol on cardiac output. They have
been selected to accentuate nonlinearity but they are not bi-
ologically unrealistic. Furthermore, to illustrate the efficacy
of the proposed adaptive controller we switch the phar-
macodynamic parameters EC50 and �, respectively, from
5.6 �g/m� and 2.39 to 7.2 �g/m� and 3.39 at t =15 min and
back to 5.6 �g/m� and 2.39 at t = 30 min. With qBIS1 = 2 ×
10−6 g/min2, q̂BIS1 =3×10−4 g/min2, and initial conditions
x(0)=[0, 0, 0]T g, k1(0)=0 g/min, and �1(0)=0.01 g/ min,
Fig. 3 shows the masses of propofol in the three compart-
ments versus time. Finally, Fig. 4 shows the BIS index and
the control signal (propofol infusion rate) versus time.

Unlike previous algorithms for closed-loop control of
anesthesia [26,29], the adaptive controller (6)–(9) does not
require knowledge of the pharmacokinetic and pharma-
codynamic parameters. However, the adaptive controller
(6)–(9) does not account for time delays due to equilibration
between the control circulation and the effect-site com-
partment or due to the proprietary signal-averaging algo-
rithms within the BIS monitor. Nevertheless, initial clinical
testing has shown very promising results of this adaptive
controller [2].

5. Conclusion

Nonnegative and compartmental models are remarkably
effective in describing the dynamical behavior of biological
and physiological systems. While compartmental systems
have wide applicability in biology and medicine, their use in
the specific field of pharmacology is indispensable for de-
veloping models for active control of drug administration.
In this paper, we developed an adaptive control framework
for adaptive set-point regulation of nonlinear nonnegative
and compartmental systems. Using Lyapunov methods the
proposed framework was shown to guarantee partial asymp-
totic set-point stability of the closed-loop system while ad-
ditionally guaranteeing the nonnegativity of the closed-loop
system states associated with the plant dynamics along with
the nonnegativity of the control signal. Finally, using a non-
linear three-compartment patient model for the disposition
of anesthetic drug propofol, the proposed adaptive control

framework was illustrated by the control of a desired con-
stant level of consciousness for noncardiac surgery. Even
though measurement noise was not addressed in our frame-
work, it should be noted that EEG signals may have as much
as 10% variation due to noise. While some of the noise is
due to signals emanating from muscle rather than the central
nervous system (and hence minimized by muscle paralysis),
much of it is stochastic in nature.
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