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ABSTRACT

The accuracy of sensor measurements is critical to the design of
high-performance control systems since sensor uncertainties can
significantly deteriorate achievable closed-loop dynamical system
performance. Sensor uncertainty can arise due to low sensor quality,
sensor failure or detrimental environmental conditions. For example,
relatively cheap sensor suites are used for low-cost, small-scale
unmanned vehicle applications that can result in inaccurate sensor
measurements. Alternatively, sensor measurements can also be
corrupted by malicious attacks if dynamical systems are controlled
through large-scale, multilayered communication networks as is the
case in cyber-physical systems. This paper presents several adaptive
control architectures for stabilisation of linear dynamical systems in
the presence of sensor uncertainty and sensor attacks. Specifically, we
propose new and novel adaptive controllers for state-independent
and state-dependent sensor uncertainties. In particular, we show
that the proposed controllers guarantee asymptotic stability of the
closed-loopdynamical systemwhen the sensor uncertainties are time-
invariant and uniform ultimate boundedness when the uncertainties
are time-varying. We further discuss the practicality of the proposed
approaches and provide several numerical examples to illustrate the
efficacy of the proposed adaptive control architectures.
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1. Introduction

The design and implementation of control law architectures for modelling and controlling
complex, large-scale network dynamical systems is a nontrivial control engineering task
involving the consideration and operation of computing and communication components
interacting with the physical and biological processes to be controlled. These collections of
complex, large-scalemultilayered dynamical networksmerge the cyberworld of computing
and communications with the physical and biological worlds, and are known as cyber-
physical systems (see [1] and the references therein). Cyber-physical systems are charac-
terised by a large number of highly coupled heterogeneous dynamic network components
andhave becomeubiquitous in the control of large-scale, complex dynamical systems given
the recent advances in embedded sensor, computation, and communication technologies.
Such systems include safety-critical aerospace systems, power systems, communications
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systems, network systems, transportation systems, large-scale manufacturing systems,
integrative biological systems, economic systems, ecological systems, process control sys-
tems and health care systems.

In the aforementioned applications, the system computation and information pro-
cessing is strongly integrated with the physical processes and it has virtually become
impossible to identify whether the dynamical system behaviour is the result of the system
computations (i.e. the computer programs), the governing physical laws or the tight
integration of both working in unison. This is the case, for example, in cooperative control
of unmanned air vehicles and autonomous underwater vehicles for combat, surveillance
and reconnaissance; distributed reconfigurable sensor networks formanaging power levels
of wireless networks; air and ground transportation systems for air traffic control and
payload transport and trafficmanagement; swarms of air vehicle formations for command
and control between heterogeneous air vehicles; and congestion control in communication
networks for routing the flow of information through multilayered networks.

Given that a wide range of cyber-physical systems involve the use of open communi-
cation and computation platform architectures, they are vulnerable to adversarial cyber-
attacks that can have drastic societal ramifications. In particular, attackers can gain access
to sensing computing platforms and manipulate system measurement data to severely
compromise system performance and integrity, and hence, security and safety in cyber-
physical systems is of paramount importance. In contrast to classical estimation and control
problems, wherein physical system variables cannot be measured directly due to sensor
noise and are typically assumed to fluctuate about their true value, controlled systems with
measurement devices that are hijacked and controlled by an adversarial entity that actively
engages to maximally degrade system information require adaptive control algorithms to
recover system performance.

Cyber-physical security involving information security and detection in adversarial
environments have been considered in the literature.[2–13] In particular, early approaches
are focused on classical fault detection, isolation, and recovery schemes (see, for example,
[2,3] and references therein). Specifically, sensor measurements are compared with an
analytical model of the dynamical system by forming a residual signal and analysing this
signal to determine if a fault has occurred. However, in practice it is difficult to identify
a single residual signal per failure mode, and as the number of failure modes increase
this becomes prohibitive. In addition, a common underlying assumption of the classical
fault detection, isolation and recovery schemes is that all dynamical system signals remain
bounded during the fault detection process, which is not a valid assumption; especially if
the adversarial attacks are state-dependent (see, for example, the problem given in Section
5.2 addressing the lateral directional dynamics of an aircraft).

More recently, the authors in [4] consider the problem of control and estimation in a
networked systemwith communication links subject to disturbances, which correspond to
packet losses. The disturbance model is assumed to follow a particular stochastic process
(typically a Bernoulli process), which does not necessarily capture the behaviour of an
attacker. The authors in [5] consider a model in which the attacker plans to maximise
a certain cost; however, their results are limited to one-dimensional systems. In [6–8],
the authors consider the fundamental limitations of attack detection and identification
methods for linear systems. For the particular case of power networks, their approach is
computationally expensive and is not linked to the controller design.
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In [9], adversarial attacks on actuator and sensors are modelled as disturbances. How-
ever, the control methodology presented cannot handle situations where more than half
of the sensors are compromised and the set of attacked nodes change over time. In [10],
the authors consider the problem of sensor attacks under the assumption that a bounded
subset of the sensors is corrupted. However, as in [5], their results are limited to one-
dimensional systems. Finally, sensor attacks based on steady-state operation models are
presented in [11–13]. However, these results fail to exploit the constraints imposed by the
system dynamics and are limited to smart grid models.

In this paper, we present several adaptive control architectures for stabilisation of linear
dynamical systems in the presence of sensor attacks. Unlike the other approaches cited
above, the proposed architectures do not require boundedness of all of the compromised
closed-loop system signals. Furthermore, the proposed approach can account for sensor
attacks that can corrupt all available sensor measurements and we do not assume that
the sensor attacks are constrained to a particular model. In addition, we can address both
transient and steady-state stability and performance. Specifically, we present new adap-
tive control architectures for state-independent and state-dependent sensor uncertainties
under realistic assumptions. The proposed controllers guarantee asymptotic stability of
the closed-loop dynamical system when the sensor uncertainties are time-invariant and
guarantee uniform ultimate boundedness when the uncertainties are time-varying. We
further discuss the practicality of the proposed approaches and provide several numerical
examples to illustrate the proposed framework.

Although our proposed adaptive control architectures build on the solid foundation of
adaptive control theory, they significantly go beyond classical adaptive control architec-
tures (see, for example, [14–19]). Specifically, since the class of uncertainties considered
in this paper originates from sensor attacks resulting from devices that are hijacked
and controlled by an adversarial entity, we require new and novel adaptive controller
frameworks as compared to classical adaptive control architectures that focus on the
class of uncertainties originating from parametric uncertainty and system nonlinearities.
Finally, although we only consider stabilisation of linear dynamical systems to elucidate
our proposed adaptive control approach for mitigating sensor attacks, the proposed
framework can be readily extended to address command following problems as well as
system nonlinearities.

The contents of the paper are as follows. In Section 2, we present the problem for-
mulation for adaptive stabilisation of linear dynamical systems in the presence of sensor
attacks. In Section 3, we develop an adaptive controller architecture for addressing state-
independent sensor uncertainties, whereas Section 4 extends this architecture to address
state-dependent sensor uncertainties. In Section 5, we provide several illustrative numer-
ical examples that highlight the proposed adaptive stabilisation framework. Finally, in
Section 6, we present conclusions and highlight some recommendations for future
research.

The notation used in this paper is fairly standard. Specifically, R denotes the set of
real numbers, R

n denotes the set of n × 1 real column vectors, R
n×m denotes the set of

n × m real matrices, ( · )T denotes the transpose operator, ( · )−1 denotes the inverse
operator, det( · ) denotes the determinant operator and ‖ · ‖2 denotes the Euclidian
norm. Furthermore, wewriteλmin(A) (resp.,λmax(A)) for theminimum (resp.,maximum)
eigenvalue of the Hermitian matrix A, spec(A) for the spectrum of the Hermitian matrix
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Figure 1. Closed-loop dynamical system in the presence of sensor attacks.

A including multiplicity and x (resp., x) for the lower bound (resp., upper bound) of a
bounded signal x(t) ∈ R

n, t ≥ 0, that is, x ≤ ‖x(t)‖2, t ≥ 0 (resp., ‖x(t)‖2 ≤ x, t ≥ 0).

2. Problem formulation

Consider the linear dynamical system G given by

ẋ(t) = Ax(t) + Bu(t), x(0) = x0, t ≥ 0, (1)

where x(t) ∈ R
n, t ≥ 0, is the state vector, u(t) ∈ R

m, t ≥ 0, is the control input and
A ∈ R

n×n and B ∈ R
n×m are known system matrices. We assume that the pair (A,B)

is controllable and the control input u( ·) is restricted to the class of admissible controls
consisting of measurable functions such that u(t) ∈ R

m, t ≥ 0. In addition, we assume
that the compromised system state

x̃(t) = x(t) + δ(t, x(t)), t ≥ 0, (2)

is available for feedback, where x̃(t) ∈ R
n, t ≥ 0 and δ : R × R

n → R
n capture sensor

attacks. In particular, if δ(·, ·) is nonzero, then the uncompromised state vector x(t), t ≥ 0,
is corrupted with a faulty (or malicious) signal δ(·, ·). Alternatively, if δ(t, x) ≡ 0 is zero,
then x̃(t) = x(t), t ≥ 0, and the uncompromised state vector is available for feedback; see
Figure 1.

Since (A,B) is controllable, there exists a feedback gain matrix K ∈ R
m×n that asymp-

totically stabilises the linear dynamical system G when the state vector is available for
feedback, that is,

ẋ(t) = Arx(t), x(0) = x0, t ≥ 0, (3)

where Ar � A + BK is Hurwitz. In this case, it follows from converse Lyapunov theory
[20] that for every positive definitematrixR ∈ R

n×n, there exists a unique positive-definite
P ∈ R

n×n satisfying
0 = AT

r P + PAr + R. (4)

For δ(t, x(t)) �= 0, t ≥ 0, our objective is to design a controller Gc of the form

u(t) = Kx̃(t) + v(t), t ≥ 0, (5)
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where v(t) ∈ R
m, t ≥ 0, is a corrective signal that suppresses or counteracts the effect of

δ(t, x(t)), t ≥ 0, to asymptotically (or approximately) recover the ideal systemperformance
achieved when the state vector is available for feedback.

Even though, for simplicity of exposition, we consider a linear dynamical system G
given by (1) and a linear controller Gc given by (5), the results in this paper can be readily
extended to the case where G and Gc are given by

ẋ(t) = f (x(t)) + G(x(t))u(t), x(0) = x0, t ≥ 0, (6)
u(t) = φ(x̃(t)) + v(t), (7)

where f : R
n → R

n, f (0) = 0, G : R
n → R

n×m, and φ : R
n → R

m. In this case,
we assume that φ(x̃) asymptotically stabilises G when the uncompromised state vector is
available for feedback, that is, the zero solution x(t) ≡ 0 of (6) with u(t) = φ(x(t)) and
v(t) ≡ 0 is asymptotically stable. In this case, there exists a continuously differentiable
function V : R

n → R and a function l : R
n → R

p such that V(0) = 0, l(0) = 0, and

0 = V ′(x)fr(x) + lT(x)l(x), (8)

where V ′(x) � ∂V/∂x, fr(x) � f (x) + G(x)φ(x), and lT(x)l(x) > 0, x �= 0. A similar
construction can be used to extend the framework to command following.

In this paper, we design the corrective signal v(t), t ≥ 0, in (5) for two important
classes of sensor uncertainties; namely, state-independent and state-dependent sensor
uncertainties. Specifically, for state-independent sensor uncertainties, x̃(t), t ≥ 0, in (2)
takes the form

x̃(t) = x(t) + δ(t), (9)

where δ(t) ∈ R
n, t ≥ 0, is an unknown bounded time-varying disturbance such that

‖δ(t)‖2 ≤ δ, t ≥ 0. For state-dependent sensor uncertainties, we consider

x̃(t) = x(t) + δ(t, x(t)), (10)

with the parameterisation δ(t, x(t)) = w(t)x(t), where w(t) ∈ R, t ≥ 0, is an unknown
bounded time-varying weight with bounded rate of change such that ‖w(t)‖2 ≤ w, t ≥ 0,
and ‖ẇ(t)‖2 ≤ ẇ, t ≥ 0. In this case, we assume that w(t) > −1, t ≥ 0, in order to
construct a feasible corrective signal v(t), t ≥ 0, since w(t) ≡ −1 results in x̃(t) ≡ 0, and
hence, it is not possible to construct v(t), t ≥ 0, to asymptotically recover the ideal system
performance.
Remark 1: In the case where the parameterisation δ(t, x(t)) = w(t)x(t) does not hold,
one can consider a neural network universal function approximator [21] to parameterise
δ(t, x(t))ona compact subset ofRn. For details of such aparameterisation; see, for example,
[21].

3. Adaptive stabilisation for state-independent sensor attacks

In this section, we design the corrective signal v(t), t ≥ 0, in (5) to achieve adaptive
stabilisation in the presence of state-independent sensor uncertainties. In particular, we
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first consider the casewhere the sensor uncertainty in (9) is time-invariant, that is, δ(t) ≡ δ,
t ≥ 0 and then we generalise our results to the time-varying sensor uncertainty case.

3.1. Time-invariant, state-independent sensor attacks

In this subsection, we assume that the sensor uncertainty in (9) is time-invariant, that is,
δ(t) ≡ δ, t ≥ 0 and we consider the controller Gc in (5) with the corrective signal given by

v(t) = −K δ̂(t), (11)

where

˙̂
δ(t) = −γATP̃

(
x̃(t) − x̂(t) − δ̂(t)

)
, δ̂(0) = δ̂0, t ≥ 0, (12)

˙̂x(t) = Arx̂(t) + (
γATP̃ + L

)(
x̃(t) − x̂(t) − δ̂(t)

)
, x̂(0) = x̂0, t ≥ 0, (13)

δ̂(t) ∈ R
n, t ≥ 0, is the estimate of the sensor uncertainty δ, x̂(t) ∈ R

n, t ≥ 0, is the state
estimate of the compromised state vector x(t), t ≥ 0, γ ∈ R is a positive design gain, and
L ∈ R

n×n is the gain matrix for the state estimator dynamics (13) and is such that Ar − L
is Hurwitz. Since Ar − L is Hurwitz, it follows from converse Lyapunov theory [20] that
there exists a unique positive-definite P̃ ∈ R

n×n satisfying

0 = (
Ar − L

)TP̃ + P̃
(
Ar − L

)+R̃, (14)

for a given positive-definite matrix R̃ ∈ R
n×n.

For the statement of the next theorem, define e(t) � x̃(t) − x̂(t) − δ̂(t), t ≥ 0, and
δ̃(t) � δ − δ̂(t), t ≥ 0, and note that

ė(t) = (
Ar − L

)
e(t) − Aδ̃(t), e(0) = e0, t ≥ 0, (15)

˙̃
δ(t) = γATP̃e(t), δ̃(0) = δ̃0, t ≥ 0. (16)

Theorem 1: Consider the linear dynamical system G given by (1) with state-independent
sensor uncertainty given by (9), where δ(t) ≡ δ, t ≥ 0, and assume that det(A) �= 0. Then,
with the controller Gc given by (5) and the corrective signal v(t), t ≥ 0, given by (11), the zero
solution

(
e(t), δ̃(t)

)≡ (0, 0) of the closed-loop system given by (15) and (16) is Lyapunov
stable for all

(
e0, δ̃0

)∈ R
n × R

n and limt→∞ e(t) = 0 and limt→∞ δ̃(t) = 0.
Proof: To show Lyapunov stability of the closed-loop system given by (15) and (16),
consider the Lyapunov function candidate given by

V
(
e, δ̃

)= eTP̃e + γ −1δ̃Tδ̃, (17)

where P̃ satisfies (14). Note that V(0, 0) = 0, V
(
e, δ̃

)
> 0 for all

(
e, δ̃

)�= (0, 0) and V
(
e, δ̃

)
is

radially unbounded. The time derivative of (17) along the closed-loop system trajectories
of (15) and (16) is given by



CYBER-PHYSICAL SYSTEMS 7

V̇
(
e(t), δ̃(t)

) = 2eT(t)P̃
[(
Ar − L

)
e(t) − Aδ̃(t)

]+2δ̃T(t)ATP̃e(t)

= eT(t)
[(
Ar − L

)TP̃ + P̃
(
Ar − L

)]
e(t)

= −eT(t)R̃e(t)
≤ 0, t ≥ 0, (18)

and hence, the closed-loop system given by (15) and (16) is Lyapunov stable for all
(
e0, δ̃0

)∈
R
n × R

n.
To show limt→∞ e(t) = 0, note that

V̈
(
e(t), δ̃(t)

)= −2eT(t)R̃
((
Ar − L

)
e(t) − Aδ̃(t)

)
(19)

is bounded for all t ≥ 0 since
(
e(t), δ̃(t)

)
is bounded for all t ≥ 0. Thus, V̇

(
e(t), δ̃(t)

)
,

t ≥ 0, is uniformly continuous in t. Now, it follows from Barbalat’s lemma [[20], p. 211]
that limt→∞ V̇

(
e(t), δ̃(t)

)= 0, and hence, limt→∞ e(t) = 0.
Finally, to show limt→∞ δ̃(t) = 0, define R �

{
(e, δ̃ ∈ R

n × R
n : V̇(

e, δ̃
)= 0

}
and let

M be the largest invariant set contained inR. In this case, it follows from (15) thatAδ̃ = 0,
and hence, δ̃ = 0 since det(A) �= 0. Thus,

(
e(t), δ̃(t)

)→ M = {
(0, 0)

}
as t → ∞.

Remark 2: It follows from (1) and (11) that

ẋ(t) = Arx(t) + BK δ̃(t), x(0) = x0, t ≥ 0, (20)

which, using the boundedness of δ̃(t), t ≥ 0, implies that x(t) is bounded for all t ≥ 0.
Hence, using (9), x̃(t) is bounded for all t ≥ 0. Furthermore, since e(t) = x̃(t)−x̂(t)− δ̂(t),
t ≥ 0, and the signals e(t), t ≥ 0, x̃(t), t ≥ 0, and δ̂(t), t ≥ 0, are bounded, it follows that
x̂(t), t ≥ 0, is bounded.
Remark 3: Since, by Theorem 1, limt→∞ δ̃(t) = 0, it follows from (20) that limt→∞
x(t) = 0. In addition, limt→∞ e(t)= 0 and limt→∞ δ̃(t) = 0 imply limt→∞

(
x(t)−x̂(t)

)=
0, which shows that the state estimate x̂(t), t ≥ 0, converges to the uncompromised state
vector x(t), t ≥ 0.
Remark 4: In the case where det(A) = 0, it can be shown that the solution

(
e(t), δ̃(t)

)
of

the closed-loop system given by (15) and (16) is Lyapunov stable for all
(
e0, δ̃0

)∈ R
n × R

n

and limt→∞ e(t) = 0. In this case, limt→∞ Aδ̃(t) = 0, which implies that only a specific
subset of δ̃(t), t ≥ 0, converges to zero.

3.2. Time-varying, state-independent sensor attacks

In this subsection, we consider time-varying, state-independent sensor attacks with
bounded variation and unbounded rates of change (e.g. an unknown signal corrupted
with measurement noise). To address this problem, define σ(t) � x(t) − x̂(t), t ≥ 0, and
consider the augmented system

ξ̇ (t) = Acξ(t) + Bcδ(t), ξ(0) = ξ0, t ≥ 0, (21)
z(t) = Ccξ(t), (22)
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where ξ(t) �
[
σT(t), δ̂T(t)

]T,

Ac �
[
Ar − γATP̃ − L −BK + γATP̃ + L

−γATP̃ γATP̃

]
, (23)

Bc �
[
BK − γATP̃ − L

−γATP̃

]
, (24)

Cc �
[
0n In

]
, (25)

with det(A) �= 0. Note that in the case where δ(t) ≡ δ, t ≥ 0, it follows from Theorem
1 that the zero solution

(
σ(t), δ̃(t)

)= (
0, 0

)
is asymptotically stable, and hence, Ac is

Hurwitz. Thus, in the presence of time-varying sensor attacks with bounded variations
and unbounded rates of changes, the controller Gc given by (5) with the corrective signal
given by (11), (12) and (13) yields bounded system solutions. In this case, since theDC gain
of the dynamical system given by (21) and (22) is −CcA−1

c Bc = In, we can characterise
the accuracy of the signal z(t) = δ̂(t), t ≥ 0, that can estimate δ(t), t ≥ 0, by resorting to
classical frequency domain methods.[22,23]

Since asymptotic stability of the solution
(
e(t), δ̃(t)

)
, t ≥ 0, is not possible in the

presence of time-varying, state-independent sensor uncertainties, we use time-domain
methods to characterise the effect of controller design parameters on the ultimate bound
of

(
e(t), δ̃(t)

)
, t ≥ 0, in the neighbourhood of the equilibrium point (0, 0). For the

remainder of this section, without loss of generality, we assume that the time-varying
sensor uncertainties are bounded and have bounded rates of change; that is, ‖δ(t)‖2 ≤ δ,
t ≥ 0, and ‖δ̇(t)‖2 ≤ δ̇, t ≥ 0.

For the statement of our next result, it is necessary to introduce the projection operator.
[24] Specifically, let φ : R

n → R be a continuously differentiable convex function given by
φ(θ) � (εθ+1)θTθ−θ2max

εθ θ2max
, where θmax ∈ R is a projection normbound imposed on θ ∈ R

n and
εθ > 0 is a projection tolerance bound. Then, the projection operator Proj : R

n × R
n → R

n

is defined by

Proj(θ , y) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y, if φ(θ) < 0,
y, if φ(θ) ≥ 0 and φ′(θ)y ≤ 0,
y − φ′T(θ)φ′(θ)y

φ′(θ)φ′T(θ)
φ(θ),

ifφ(θ) ≥ 0 and φ′(θ)y > 0,

(26)

where y ∈ R
n. Note that it follows from the definition of the projection operator that

(θ − θ∗)T(Proj(θ , y) − y) ≤ 0, θ∗ ∈ R
n.

Next, for the controller Gc given by (5), we use the corrective signal

v(t) = −K δ̂(t), t ≥ 0, (27)

where

˙̂
δ(t) = γ Proj

(
δ̂(t), −ATP̃

(
x̃(t) − x̂(t) − δ̂(t)

))
, δ̂(0) = δ̂0, t ≥ 0, (28)

˙̂x(t) = Arx̂(t) + L
(
x̃(t) − x̂(t) − δ̂(t)

)
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− γ Proj
(
δ̂(t), −ATP̃

(
x̃(t) − x̂(t) − δ̂(t)

))
, x̂(0) = x̂0, t ≥ 0, (29)

with P̃ satisfying (14). For the statement of the next theorem, recall that e(t) = x̃(t) −
x̂(t) − δ̂(t), t ≥ 0, and δ̃(t) = δ(t) − δ̂(t), t ≥ 0, and note that

ė(t) = (
Ar − L

)
e(t) − Aδ̃(t) + δ̇(t), e(0) = e0, t ≥ 0, (30)

˙̃
δ(t) = δ̇(t) − γ Proj

(
δ̂(t), −ATP̃

(
x̃(t) − x̂(t) − δ̂(t)

))
, δ̃(0) = δ̃0, t ≥ 0. (31)

Theorem 2: Consider the linear dynamical system G given by (1) with state-independent
sensor uncertainty given by (9), where ‖δ(t)‖2 ≤ δ, t ≥ 0, and ‖δ̇(t)‖2 ≤ δ̇, and assume
that det(A) �= 0. Then, with the controller Gc given by (5) and the corrective signal v(t),
t ≥ 0, given by (27), the closed-loop system given by (30) and (31) is uniformly bounded for
all

(
e0, δ̃0

)∈ R
n × R

n with the ultimate bounds

‖e(t)‖2 ≤
[
λmax(P̃)

λmin(P̃)
η21 + 1

γ λmin(P̃)
η22

] 1
2

, t ≥ T , (32)

‖δ̃(t)‖2 ≤
[
γ λmax(P̃)η21 + η22

] 1
2 , t ≥ T , (33)

where η1 � 1√
d1

[
d2

2
√
d1

+
(

d22
4d1 + d3

) 1
2
]
, η2 � δ̂max + δ, d1 � λmin(R̃), d2 � 2λmax(P̃)δ̇,

and d3 � 2γ −1(δ̂max + δ)δ̇.

Proof: To show uniform boundedness of the closed-loop system given by (30) and
(31), consider the Lyapunov-like function given by (17) where P̃ satisfies (14). Note that
V(0, 0) = 0, V

(
e, δ̃

)
> 0 for all

(
e, δ̃

)�= (0, 0), and V
(
e, δ̃

)
is radially unbounded. The time

derivative of (17) along the closed-loop system trajectories of (30) and (31) is given by

V̇
(
e(t), δ̃(t)

) = −eT(t)R̃e(t) − 2eT(t)P̃Aδ̃(t) + 2eT(t)P̃δ̇(t)
−2δ̃T(t)Proj

(
δ̂(t), −ATP̃e(t)

)+2γ −1δ̃T(t)δ̇(t)
= −eT(t)R̃e(t) + 2eT(t)P̃δ̇(t) + 2γ −1δ̃T(t)δ̇(t)

+ 2
(
δ̂(t) − δ(t)

)T(
Proj

(
δ̂(t), −ATP̃e(t)

)−(−ATP̃e(t)
))

≤ −eT(t)R̃e(t) + 2eT(t)P̃δ̇(t) + 2γ −1δ̃T(t)δ̇(t)
≤ −d1‖e(t)‖22 + d2‖e(t)‖2 + d3

= −
[√

d1‖e(t)‖2 − d2
2
√
d1

]2
+ d22
4d1

+ d3, t ≥ 0, (34)

and hence, V̇
(
e(t), δ̃(t)

)
< 0 outside of the compact set

� �
{(
e, δ̃

)∈ R
n × R

n : ‖e‖2 ≤ η1 and ‖δ̃‖2 ≤ η2

}
. (35)
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Figure 2. Effect of L and γ on the ultimate bounds given by (32) and (33).

This proves the uniform boundedness of the solution
(
e(t), δ̃(t)

)
of the closed-loop system

given by (30) and (31) for all
(
e0, δ̃0

)∈ R
n × R

n.[25]
To show the ultimate bounds for e(t), t ≥ T and δ̃(t), t ≥ T , given by (32) and

(33), respectively, note that λmin(P̃)‖e(t)‖22 + γ −1‖δ̃(t)‖22 ≤ λmax(P̃)η21 + γ −1η22, t ≥
T , or, equivalently, λmin(P̃)‖e(t)‖22 ≤ λmax(P̃)η21 + γ −1η22, t ≥ T , and γ −1‖δ̃(t)‖22 ≤
λmax(P̃)η21 + γ −1η22, t ≥ T , which proves (32) and (33).
Remark 5: A similar remark to Remark 2 holds for Theorem 2. Namely, all signals used
to construct the controller Gc given by (5) with the corrective signal defined in (27)–(29)
are bounded.
Remark 6: The ultimate bounds given by (32) and (33) characterise how the controller
parameters need to be chosen in order to achieve small excursions of ‖e(t)‖2 and ‖δ̃(t)‖2
for t ≥ T . This is particularly important to obtain accurate estimates for x̂(t), t ≥ T and
δ̂(t), t ≥ T , and also to suppress the effect of δ̃(t), t ≥ T , in (20). To elucidate the effect of
controller design parameters on (32) and (33), let A = 1 and B = 1 in (1), let K = −1.5
in (5), let δ = 1 and δ̇ = 5 in (9), let R̃ = 1 in (14), and let δ̂max = 1 in (28). Figure 2
illustrates the effect of L ∈ [0, 10] in (14) and γ = {0.1, 1, 10, 50} in (28) on the ultimate
bounds given by (32) and (33). Specifically, as expected, increasing both L and γ yields
smaller ultimate bounds for e(t), t ≥ T and δ̃(t), t ≥ T .
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4. Adaptive stabilisation for state-dependent sensor attacks

In this section, we design the corrective signal v(t), t ≥ 0, in (5) to achieve adaptive
stabilisation in the presence of state-dependent sensor attacks. In particular, we first
consider the case where the sensor uncertainty in (9) is time-invariant, that is, δ(t, x(t)) ≡
δ(x(t)), with δ(x(t)) = wx(t), t ≥ 0, and thenwe generalise our results to the time-varying
sensor uncertainty case.

4.1. Time-invariant, state-dependent sensor attacks

In this subsection, we assume that the sensor attack in (10) is time-invariant, that is,
δ(t, x(t)) ≡ δ(x(t)), with δ(x(t)) = wx(t), t ≥ 0, and consider the controller Gc in (5)
with the corrective signal given by

v(t) = −μ̂(t)Kx̃(t), t ≥ 0, (36)

where
˙̂μ(t) = γ x̃T(t)PBKx̃(t), μ̂(0) = μ̂0, t ≥ 0, (37)

μ̂(t) ∈ R, t ≥ 0, is the estimate of μ � w(1 + w)−1 ∈ R that depends on the sensor
uncertainty w, and γ ∈ R is a positive design gain.

Next, defineμλ(t) � μ̃(t)λ
1
2 , t ≥ 0, where μ̃(t) � μ−μ̂(t), t ≥ 0 and λ � (1+w)−1 ∈

R. Since w > −1, note that μ and λ are well-defined and λ > 0. For the statement of the
next theorem note that

ẋ(t) = Arx(t) + μλ(t)λ− 1
2BKx̃(t), x(0) = x0, t ≥ 0, (38)

μ̇λ(t) = −γ x̃T(t)PBKx̃(t)λ
1
2 , μλ(0) = μλ0, t ≥ 0. (39)

Theorem 3: Consider the linear dynamical system G given by (1) with state-dependent
sensor uncertainty given by (10), where δ(t, x(t)) ≡ δ(x(t)) and δ(x(t)) = wx(t), t ≥ 0.
Then, with the controller Gc given by (5) and the corrective signal v(t), t ≥ 0, given by (36),
the zero solution

(
x(t),μλ(t)

)= (
0, 0

)
of the closed-loop system given by (38) and (39) is

Lyapunov stable for all
(
x0,μλ0

)∈ R
n × R and limt→∞ x(t) = 0.

Proof: To show Lyapunov stability of the closed-loop system given by (38) and (39),
consider the Lyapunov function candidate given by

V
(
x,μλ

)= xTPx + γ −1μ2
λ, (40)

where P satisfies (4). Note that V(0, 0) = 0, V
(
x,μλ

)
> 0 for all

(
x,μλ

)�= (0, 0), and
V

(
x,μλ

)
is radially unbounded. The time derivative of (40) along the closed-loop system

trajectories of (38) and (39) is given by

V̇
(
x(t),μλ(t)

) = −xT(t)Rx(t) + 2μλ(t)λ− 1
2 xT(t)PBKx̃(t)

− 2μλ(t)λ
1
2 x̃T(t)PBKx̃(t)

= −xT(t)Rx(t) + 2μλ(t)λ
1
2 x̃T(t)PBKx̃(t)

− 2μλ(t)λ
1
2 x̃T(t)PBKx̃(t)
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Figure 3. Nominal system performance of the linear dynamical system given by (55) when the state
vector x(t), t ≥ 0, is available for feedback.

= −xT(t)Rx(t)
≤ 0, t ≥ 0, (41)

where we used the fact that x(t) = λx̃(t), t ≥ 0, which follows from (10) with δ(x(t)) =
wx(t), t ≥ 0. Hence, the closed-loop system given by (38) and (39) is Lyapunov stable for
all

(
x0,μλ0

)∈ R
n × R.

To show limt→∞ x(t) = 0, note that

V̈
(
x(t),μλ(t)

)= −2xT(t)R
(
Arx(t) + μλ(t)λ− 1

2BKx̃(t)
)

(42)

is bounded for all t ≥ 0 since
(
x(t),μλ(t)

)
is bounded for all t ≥ 0. Thus, V̇

(
x(t),μλ(t)

)
,

t ≥ 0, is uniformly continuous in t. Now, it follows from Barbalat’s lemma [[20], p. 211]
that limt→∞ V̇

(
x(t), μλ(t)

)= 0, and hence, limt→∞ x(t) = 0.
Remark 7: Since, by Theorem 3 and the fact that λ > 0, μλ(t), t ≥ 0, is bounded, it
follows from the definition ofμλ(t) that μ̃(t) is bounded for all t ≥ 0. Hence, the estimate
μ̂(t) ∈ R, t ≥ 0, used in the corrective signal (36) is bounded.
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Figure 4. System performance of the linear dynamical system given by (55) in the presence of time-
invariant and state-independent sensor attacks without any corrective signal (i.e. v(t) ≡ 0) in (5).

4.2. Time-varying, state-dependent sensor attacks

In this subsection, we generalise the results of the previous subsection to time-varying
state-dependent sensor attacks in (10). To address this case, we use the corrective signal
given by

v(t) = −μ̂(t)Kx̃(t), t ≥ 0, (43)
where

˙̂μ(t) = γ Proj
(
μ̂(t), x̃T(t)PBKx̃(t)

)
, μ̂(0) = μ̂0, t ≥ 0. (44)

Next, recall that μλ(t) = μ̃(t)λ
1
2 (t), t ≥ 0, with μ̃(t) = μ(t) − μ̂(t), t ≥ 0, μ(t) =

w(t)
(
1+w(t)

)−1, t ≥ 0, and λ(t) = (
1+w(t)

)−1, t ≥ 0. Sincew(t) > −1, note thatμ(t),
t ≥ 0 and λ(t), t ≥ 0, are well-defined and λ(t) > 0, t ≥ 0. For the statement of the next
result, note that

ẋ(t) = Arx(t) + μλ(t)λ− 1
2 (t)BKx̃(t), x(0) = x0, t ≥ 0, (45)

μ̇λ(t) =
(
μ̇(t) − γ Proj

(
μ̂(t), x̃T(t)PBKx̃(t)

))
λ

1
2 (t)

+ 1
2
μλ(t)λ̇(t)λ−1(t), μλ(0) = μλ0, t ≥ 0. (46)

Theorem 4: Consider the linear dynamical system G given by (1) with state-dependent
sensor uncertainty given by (10), where ‖w(t)‖2 ≤ w, t ≥ 0, and ‖ẇ(t)‖2 ≤ ẇ, t ≥ 0.
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Figure 5. System performance of the linear dynamical system given by (55) in the presence of time-
invariant and state-independent sensor attacks with the proposed corrective signal given by (11), (12)
and (13) with γ = 5, L = 2.5I2, and R = I2.

Then, with the controller Gc given by (5) and the corrective signal v(t), t ≥ 0, given by (43),
the closed-loop system given by (45) and (46) is uniformly bounded for all

(
x0,μλ0

)∈ R
n×R

with the ultimate bounds

‖x(t)‖2 ≤
[

1
λmin(P)

(
λmax(P)d−1

1 d2 + γ −1λ
(
μ + μ̂max

)2)] 1
2

, t ≥ T , (47)

‖μλ(t)‖2 ≤
[
γ λmax(P)d−1

1 d2 + λ
(
μ + μ̂max

)2] 1
2 , t ≥ T , (48)

where d1 � λmin(R) and d2 � γ −1
(
2
(
μ + μ̂max

)
μ̇λ + (

μ + μ̂max
)2

λ̇
)
.

Proof: To show uniform boundedness of the closed-loop system given by (45) and
(46), consider the Lyapunov-like function given by (40), where P satisfies (4). Note that
V(0, 0) = 0, V

(
x,μλ

)
> 0 for all

(
x,μλ

) �= (0, 0), and V
(
x,μλ

)
is radially unbounded. The

time derivative of (40) along the closed-loop system trajectories of (45) and (46) is given by
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Figure 6. System performance of the linear dynamical system given by (55) in the presence of time-
varying and state-independent sensor attacks without any corrective signal (i.e. v(t) ≡ 0) in (5).

V̇
(
x(t),μλ(t)

) = −xT(t)Rx(t) + 2μλ(t)λ− 1
2 (t)xT(t)PBKx̃(t)

+ 2γ −1μλ(t)
(
μ̇(t) − γ Proj

(
μ̂(t), x̃T(t)PBKx̃(t)

))
λ

1
2 (t)

+ γ −1μ2
λ(t)λ̇(t)λ−1(t)

= −xT(t)Rx(t) + 2μλ(t)λ
1
2 (t)x̃T(t)PBKx̃(t)

+ 2γ −1μλ(t)
(
μ̇(t) − γ Proj

(
μ̂(t), x̃T(t)PBKx̃(t)

))
λ

1
2 (t)

+ γ −1μ2
λ(t)λ̇(t)λ−1(t), (49)

where we used the fact that x(t) = λ(t)x̃(t), t ≥ 0, which follows from (10).
Next, using

μλ(t)λ
1
2 (t)x̃T(t)PBKx̃(t) − μλ(t)λ

1
2 (t) Proj

(
μ̂(t), x̃T(t)PBKx̃(t)

)
= λ(t)

(
μ̂(t) − μ(t)

)(
Proj

(
μ̂(t), x̃T(t)PBKx̃(t)

)−x̃T(t)PBKx̃(t)
)

≤ 0, (50)
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Figure 7. System performance of the linear dynamical system given by (55) in the presence of time-
varying and state-independent sensor attacks with the proposed corrective signal given by (27), (28)
and (29) with γ = 5, L = 2.5I2, and R = I2.

it follows from (49) that

V̇
(
x(t),μλ(t)

) ≤ −xT(t)Rx(t) + 2γ −1μλ(t)μ̇(t) + γ −1μ2
λ(t)λ̇(t)λ−1(t)

≤ −d1‖x(t)‖22 + d2, t ≥ 0, (51)

and hence, V̇
(
x(t),μλ(t)

)
< 0 outside of the compact set

� �
{(
x,μλ

)∈ R
n × R

n : ‖x‖2 ≤ η1 and ‖μλ‖2 ≤ η2

}
, (52)

where η1 �
√
d2/d1 and η2 � λ

1
2
(
μ + μ̂max

)
. This proves uniform boundedness of the

solution
(
x(t),μλ(t)

)
of the closed-loop system given by (45) and (46) for all

(
x0,μλ0

)∈
R
n × R.[25] The remainder of the proof now follows as in the proof of Theorem 2.

Remark 8: A similar remark to Remark 7 holds for Theorem 4. In particular, it can be
shown that the estimate μ̂(t) ∈ R, t ≥ 0, used in the corrective signal given by (43) is
bounded.
Remark 9: The ultimate bound given for x(t), t ≥ T , in (47) characterises the distance
between the trajectories of the linear dynamical system G in (1) and the zero equilibrium
point. To see the effect of the positive design gain γ in (44) on the ultimate bound of x(t),
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Figure 8. Nominal system performance of the lateral directional dynamics of the aircraft given by (57)
when the state vector x(t), t ≥ 0, is available for feedback.

t ≥ T , note that (47) can be equivalently written as

‖x(t)‖2 ≤ γ − 1
2
√
d∗, t ≥ T , (53)

where

d∗ � 1
λmin(P)

(
λmax(P)d−1

1

(
2
(
μ + μ̂max

)
μ̇λ + (

μ + μ̂max
)2

λ̇
)
+λ

(
μ + μ̂max

)2), (54)
and hence, increasing γ decreases the ultimate bound on x(t), t ≥ T . As compared with
the results of Theorem 2 for the time-varying, state-independent sensor attack case, the
adaptive control architecture in Theorem 4 for the time-varying, state-dependent sensor
attack case has the capability to directly guarantee a smaller ultimate bound by increasing
the design parameter γ unlike the controller of Theorem 2, where both γ and L need to be
tuned simultaneously as discussed in Remark 6.

5. Illustrative numerical examples

In this section, we present two numerical examples to demonstrate the utility and efficacy
of the proposed control architectures for stabilisation of linear dynamical systems in the
presence of sensor attacks.
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Figure 9. System performance of the lateral directional dynamics of the aircraft given by (57) in the
presence of time-invariant and state-dependent sensor attacks without any corrective signal (i.e. v(t) ≡
0) in (5).

5.1. State-independent sensor attacks

To illustrate the key ideas presented in Section 3, consider the unstable linear dynamical
system given by

[
ẋ1(t)
ẋ2(t)

]
=

[
0 1
1 1

] [
x1(t)
x2(t)

]
+

[
0
1

]
u(t),

[
x1(0)
x2(0)

]
=

[
2

−1

]
, t ≥ 0, (55)

with the state feedback control gain

K = [−1.160, −1.565
]
, (56)

resulting in the nominal system performance (i.e. when the state vector x(t) = [
x1(t),

x2(t)
]T, t ≥ 0, is available for feedback) given in Figure 3. The closed-loop natural

frequency is 0.4 rad/sec and damping ratio is 0.707. To illustrate the results of Theorem 1,
consider a time-invariant and state-independent sensor attack given by (9) with δ =[
1, 1

]T. The system performance of the controller Gc given by (5) without any corrective
signal (i.e. v(t) ≡ 0) is depicted in Figure 4, which clearly results in a nonacceptable system
response.
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Figure 10. System performance of the lateral directional dynamics of the aircraft given by (57) in the
presence of time-invariant and state-dependent sensor attacks with the proposed corrective signal
given by (36) and (37) with γ = 10 and R = I3.

To design the proposed corrective signal (11)–(13), we set γ = 5, L = 2.5I2 and
R = I2. The system performance of the controller Gc given by (5) with the proposed
corrective signal is depicted in Figure 5. As expected from Theorem 1, the proposed
control architecture asymptotically stabilises the linear dynamical system given by (55) for
this sensor attack.

Next, to illustrate the results of Theorem 2, consider a time-varying and state-
independent sensor attack given by (9) with δ(t) = [

1 + 0.25sin(0.25t), 1 + 0.25cos
(0.25t)

]T, t ≥ 0. For this case, the system performance of the controller Gc given by (5)
without any corrective action is depicted in Figure 6. To design the proposed corrective
signal given by (27)–(29), we set γ = 5, L = 2.5I2 and R = I2. The system performance of
the controller Gc given by (5) with the proposed corrective signal is depicted in Figure 7.
This shows the proposed adaptive control architecture recovers the nominal system per-
formance in the face of sensor attacks.
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Figure 11. System performance of the lateral directional dynamics of the aircraft given by (57) in
the presence of time-varying and state-dependent sensor attacks without any corrective signal (i.e.
v(t) ≡ 0) in (5).

5.2. State-dependent sensor attacks

To illustrate the key ideas presented in Section 4, we consider a Lyapunov stable linear
dynamical system representing the lateral directional dynamics of an aircraft [16] given by

⎡
⎣β̇(t)
ṗ(t)
ṙ(t)

⎤
⎦ =

⎡
⎣−0.025 0.104 −0.994

574.7 0 0
16.20 0 0

⎤
⎦

⎡
⎣β(t)
p(t)
r(t)

⎤
⎦

+
⎡
⎣ 0.122 −0.276

−53.61 33.25
195.5 −529.4

⎤
⎦u(t),

⎡
⎣β(0)
p(0)
r(0)

⎤
⎦ =

⎡
⎣ 1

−2
−1

⎤
⎦ , t ≥ 0, (57)

with state feedback control gain
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Figure 12. System performance of the lateral directional dynamics of the aircraft given by (57) in the
presence of time-varying and state-dependent sensor attacks with the proposed corrective signal given
by (43) and (44) with γ = 10 and R = I3.

K =
[
2.053 0.079 −0.045

−3.823 −0.128 0.102

]
, (58)

where the state vector x(t) = [
β(t), p(t), r(t)

]T, t ≥ 0, contains the sideslip angle in
deg, the roll rate in deg/sec, and the yaw rate in deg/sec, respectively, and the control
input u(t) = [

δa(t), δr(t)
]T, t ≥ 0, contains the aileron command in deg and the rudder

command in deg, respectively. The nominal performance of this dynamical system is given
in Figure 8.

To illustrate the results of Theorem 3 consider a time-invariant and state-dependent
sensor attack given by (10) with w = −0.75. The system performance of the controller Gc
given by (5) without any corrective action (i.e. v(t) ≡ 0) results in an unstable closed-loop
system and is shown in Figure 9. To design the proposed corrective signal given by (36) and
(37), we set γ = 10 and R = I3. The system performance of the controller Gc given by (5)
with the proposed corrective signal is depicted in Figure 10. As expected from Theorem 3,
the proposed control architecture asymptotically stabilises the lateral directional dynamics
of the aircraft given by (57) for this sensor attack.

Next, to illustrate the results of Theorem 4 consider a time-varying and state-dependent
sensor attack given by (10) with w(t) = −(

0.75 + 0.15sin(2.5t)
)
, t ≥ 0. For this case,
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the system performance of the controller Gc given by (5) without any corrective action is
depicted in Figure 11. To design the proposed corrective signal given by (43) and (44), we
set γ = 10 and R = I3. The system performance of the controller Gc given by (5) with the
proposed corrective signal is depicted in Figure 12. This shows that the proposed adaptive
control architecture recovers the nominal system performance in the face of sensor attacks.

6. Conclusion

Sensor uncertainties can significantly deteriorate achievable closed-loop system perfor-
mance, especially if such uncertainties are a result of an adversarial attack onmeasurement
devices that actively engages to maximally degrade system information. In this paper, we
presented several control architectures for system stabilisation in the presence of state-
independent and state-dependent sensor attacks. Specifically, using realistic assumptions
for the attack models we showed that the proposed adaptive controller architectures
guarantee asymptotic stability of the closed-loop dynamical system in the face of time-
invariant sensor uncertainties and uniform ultimate boundedness when the uncertainties
are time-varying. Future extensions of this framework will focus on adaptive control
strategies that can suppress the effect of sensor attacks in the presence of unknown system
dynamics. Furthermore, generalisations to nonlinear dynamical systems with partial state
measurementswill also be developed, aswell as extending the present framework to address
simultaneous actuator and sensor attacks.
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