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ABSTRACT. In this paper, we develop stability, dissipativity, and optimality notions for dy-

namical systems with discontinuous vector fields. Specifically, we consider dynamical systems with

Lebesgue measurable and locally essentially bounded vector fields characterized by differential in-

clusions involving Filippov set-valued maps specifying a set of directions for the system velocity and

admitting Filippov solutions with absolutely continuous curves. In addition, we extend classical

dissipativity theory to address the problem of dissipative discontinuous dynamical systems. These

results are then used to derive extended Kalman-Yakubovich-Popov conditions for characterizing

necessary and sufficient conditions for dissipativity of discontinuous systems using Clarke gradients

and locally Lipschitz continuous storage functions. In addition, feedback interconnection stability

results for discontinuous systems are developed thereby providing a generalization of the small gain

and positivity theorems to systems with discontinuous vector fields. Moreover, we consider a dis-

continuous control problem involving a notion of optimality that is directly related to a specified

nonsmooth Lyapunov function to obtain a characterization of optimal discontinuous feedback con-

trollers. Furthermore, using the newly developed dissipativity notions we develop a return difference

inequality to provide connections between dissipativity and optimality of nonlinear discontinuous

controllers for Filippov dynamical systems. Specifically, using the extended Kalman-Yakubovich-

Popov conditions we show that our discontinuous feedback control law satisfies a return difference

inequality if and only if the controller is dissipative with respect to a quadratic supply rate.
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1. INTRODUCTION

Numerous engineering applications give rise to discontinuous dynamical systems.

Specifically, in impact mechanics the motion of a dynamical system is subject to ve-

locity jumps and force discontinuities leading to nonsmooth dynamical systems [1,2].

In mechanical systems subject to unilateral constraints on system positions [3], dis-

continuities occur naturally through system-environment interactions. Alternatively,

control of networks and control over networks with dynamic topologies also give rise

to discontinuous systems [4]. Specifically, link failures or creations in network systems

result in switchings of the communication topology leading to dynamical systems with

discontinuous right-hand sides. In addition, open-loop and feedback controllers also

give rise to discontinuous dynamical systems. In particular, bang-bang controllers

discontinuously switch between maximum and minimum control input values to gen-

erate minimum-time system trajectories [5], whereas sliding mode controllers [6, 7]

use discontinuous feedback control for system stabilization. In switched systems [8,9],

switching algorithms are used to select an appropriate plant (or controller) from a

given finite parameterized family of plants (or controllers) giving rise to discontinuous

systems.

In the case where the vector field defining the dynamical system is a discontinuous

function of the state, system stability can be analyzed using nonsmooth Lyapunov

theory involving concepts such as weak and strong stability notions, differential inclu-

sions, and generalized gradients of locally Lipschitz continuous functions and prox-

imal subdifferentials of lower semicontinuous functions [10]. The consideration of

nonsmooth Lyapunov functions for proving stability of discontinuous systems is an

important extension to classical stability theory since, as shown in [11], there exist

nonsmooth dynamical systems whose equilibria cannot be proved to be stable using

standard continuously differentiable Lyapunov function theory.

In many applications of discontinuous dynamical systems such as mechanical sys-

tems having rigid-body modes, isospectral matrix dynamical systems, and consensus

protocols for dynamical networks, the system dynamics give rise to a continuum of

equilibria. Under such dynamics, the limiting system state achieved is not deter-

mined completely by the dynamics, but depends on the initial system state as well.

For such systems possessing a continuum of equilibria, semistability [12, 13], and not

asymptotic stability, is the relevant notion of stability. Semistability is the prop-

erty whereby every trajectory that starts in a neighborhood of a Lyapunov stable

equilibrium converges to a (possibly different) Lyapunov stable equilibrium.

To address the stability analysis of discontinuous dynamical systems having a

continuum of equilibria, in this paper we extend the theory of semistability to dis-

continuous time-invariant dynamical systems. In particular, we develop sufficient
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conditions to guarantee weak and strong invariance of Filippov solutions. Moreover,

we present Lyapunov-based tests for semistability of autonomous differential inclu-

sions. In addition, we develop sufficient conditions for finite-time semistability of

autonomous discontinuous dynamical systems.

Many physical and engineering systems are open systems, that is, the system

behaviour is described by an evolution law that involves the system state and the

system input with, possibly, an output equation wherein past trajectories together

with the knowledge of any inputs define future trajectories (uniquely or nonuniquely)

and the system output depends on the instantaneous (present) values of the system

state. Dissipativity theory is a system-theoretic concept that provides a powerful

framework for the analysis and control design of open dynamical systems based on

generalized system energy considerations. In particular, dissipativity theory exploits

the notion that numerous physical dynamical systems have certain input-output and

state properties related to conservation, dissipation, and transport of mass and energy.

Such conservation laws are prevalent in dynamical systems, in general, and feedback

control systems, in particular. The dissipation hypothesis on dynamical systems

results in a fundamental constraint on the system dynamical behavior, wherein the

stored energy of a dissipative dynamical system is at most equal to sum of the initial

energy stored in the system and the total externally supplied energy to the system.

Thus, the energy that can be extracted from the system through its input-output

ports is less than or equal to the initial energy stored in the system, and hence, there

can be no internal creation of energy; only conservation or dissipation of energy is

possible.

The key foundation in developing dissipativity theory for nonlinear dynamical

systems with continuously differentiable flows was presented by Willems [14,15] in his

seminal two-part paper on dissipative dynamical systems. In particular, Willems [14]

introduced the definition of dissipativity for general nonlinear dynamical systems

in terms of a dissipation inequality involving a generalized system power input, or

supply rate, and a generalized energy function, or storage function. The dissipation

inequality implies that the increase in generalized system energy over a given time

interval cannot exceed the generalized energy supply delivered to the system during

this time interval. The set of all possible system storage functions is convex and every

system storage function is bounded from below by the available system storage and

bounded from above by the required energy supply.

In light of the fact that energy notions involving conservation, dissipation, and

transport also arise naturally for discontinuous systems, it seems natural that dissi-

pativity theory can play a key role in the analysis and control design of discontinuous

dynamical systems. Specifically, as in the analysis of continuous dynamical systems
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with continuously differentiable flows, dissipativity theory for discontinuous dynami-

cal systems can involve conditions on system parameters that render an input, state,

and output system dissipative. In addition, robust stability for discontinuous dy-

namical systems can be analyzed by viewing a discontinuous dynamical system as

an interconnection of discontinuous dissipative dynamical subsystems. Alternatively,

discontinuous dissipativity theory can be used to design discontinuous feedback con-

trollers that add dissipation and guarantee stability robustness allowing discontinuous

stabilization to be understood in physical terms. As for dynamical systems with con-

tinuously differentiable flows [16], dissipativity theory can play a fundamental role in

addressing robustness, disturbance rejection, stability of feedback interconnections,

and optimality for discontinuous dynamical systems.

Even though passivity notions for the specific problem of the control of mechan-

ical systems with discontinuous friction-type nonlinearities are considered in [17–19]

using input-to-state stability notions and set-valued nonlinearity extensions of the

circle and Popov criterion, the general problem of dissipativity theory in the sense

of Willems [14, 15] for discontinuous dynamical systems and its connections to non-

linear discontinuous feedback regulator theory and inverse optimal control have not

been addressed in the literature. It is important to note, however, that the problem

of stabilization for discontinuous systems with nonsmooth control Lyapunov func-

tions has been extensively addressed in the literature; see [20–25] and the references

therein. However, with the exception of [26, 27] that address the specific problem

of L2-gain stabilizability, these results do not explore the underlying connections be-

tween steady-state viscosity supersolutions of the Hamilton-Jacobi-Bellman equation

and nonsmooth closed-loop Lyapunov functions for guaranteeing both stability and

optimality for discontinuous dynamical systems. In addition, gain, sector, and disk

margin guarantees are not provided in the aforementioned references by exploiting

connections between dissipativity theory, discontinuous nonlinear regulator theory,

and an inverse optimal control problem.

In this paper, we develop Lyapunov-based tests for Lyapunov stability, semista-

bility, finite-time stability, finite-time semistability, and asymptotic stability for non-

linear dynamical systems with discontinuous right-hand sides. Specifically, we develop

new Lyapunov-based results for semistability that do not make assumptions of sign

definiteness on the Lyapunov functions. Instead, our results extend the results of [13]

to discontinuous systems and use nontangency notions between the discontinuous

vector field and weakly invariant or weakly negatively invariant subsets of the level

or sublevel sets of the Lyapunov function. It is important to note that our stability

results are different from the results in the literature [28,29] since the Lipschitz con-

ditions in [28, 29] are not valid for the autonomous differential inclusions considered

in the paper. Moreover, using an extended notion of control Lyapunov functions [21]
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we develop a universal feedback controller for discontinuous dynamical systems based

on the existance of a nonsmooth control Lyapunov function defined in the sense of

generalized Clarke gradients and set-valued Lie derivatives.

Next, we extend the results of [30] to develop dissipativity notions for dynamical

systems with discontinuous vector fields. Specifically, we consider dynamical systems

with Lebesgue measurable and locally essentially bounded vector fields character-

ized by differential inclusions involving Filippov set-valued maps specifying a set of

directions for the system velocity and admitting Filippov solutions with absolutely

continuous curves. Moreover, we develop extended Kalman-Yakubovich-Popov con-

ditions in terms of the discontinuous system dynamics for characterizing dissipativity

via generalized Clarke gradients of locally Lipschitz continuous storage functions. In

addition, using the concepts of dissipativity for discontinuous dynamical systems with

appropriate storage functions and supply rates, we construct nonsmooth Lyapunov

functions for discontinuous feedback systems by appropriately combining the storage

functions for the forward and feedback subsystems. General stability criteria are given

for Lyapunov, asymptotic, and exponential stability as well as finite-time stability for

feedback interconnections of discontinuous dynamical systems. In the case where the

supply rate involves the net system power or weighted input-output energy, these

results provide extensions of the positivity and small gain theorems to discontinuous

dynamical systems.

Finally, we consider a notion of optimality that is directly related to a given non-

smooth Lyapunov function. Specifically, an optimal control problem is stated and

sufficient Hamilton-Jacobi-Bellman conditions are used to characterize an optimal

discontinuous feedback controller. In addition, we develop sufficient conditions for

gain, sector, and disk margin guarantees for Filippov nonlinear dynamical systems

controlled by optimal and inverse optimal discontinuous regulators. Furthermore, we

develop a counterpart to the classical return difference inequality for continuous-time

systems with continuously differentiable flows [31,32] for Filippov dynamical systems

and provide connections between dissipativity and optimality for discontinuous non-

linear controllers. In particular, we show an equivalence between dissipativity and

optimality of discontinuous controllers holds for Filippov dynamical systems. Specifi-

cally, we show that an optimal nonlinear controller φ(x) satisfying a return difference

condition is equivalent to the fact that the Filippov dynamical system with input

u and output y = −φ(x) is dissipative with respect to a supply rate of the form

[u+ y]T[u+ y] − uTu.

2. NOTATION AND MATHEMATICAL PRELIMINARIES

The notation used in this paper is fairly standard. Specifically, R denotes the set

of real numbers, R
n denotes the set of n× 1 real column vectors, Z+ denotes the set
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of nonnegative integers, and (·)T denotes transpose. We write ∂S and S to denote

the boundary and the closure of the subset S ⊂ R
n, respectively. Furthermore, we

write ‖ · ‖ for the Euclidean vector norm on R
n, Bε(α), α ∈ R

n, ε > 0, for the open

ball centered at α with radius ε, dist(p,M) for the distance from a point p to the

set M, that is, dist(p,M) � infx∈M ‖p − x‖, and x(t) → M as t → ∞ to denote

that x(t) approaches the set M, that is, for every ε > 0 there exists T > t0 such

that dist(x(t),M) < ε for all t > T . Finally, the notions of openness, convergence,

continuity, and compactness that we use throughout the paper refer to the topology

generated on R
n by the norm ‖ · ‖.

In this paper, we consider nonlinear dynamical systems G of the form

ẋ(t) = f(x(t)), x(t0) = x0, a.e. t ≥ t0, (1)

where, for every t ≥ t0, x(t) ∈ D ⊆ R
n, f : D → R

n is Lebesgue measurable

and locally essentially bounded [33] with respect to x, that is, f is bounded on a

bounded neighborhood of every point x, excluding sets of measure zero, and admits

an equilibrium point at xe ∈ D; that is, f(xe) = 0.

An absolutely continuous function x : [t0, τ ] → R
n is said to be a Filippov solution

[33] of (1) on the interval [t0, τ ] with initial condition x(t0) = x0, if x(t) satisfies

ẋ(t) ∈ K[f ](x(t)), a.e. t ∈ [t0, τ ], (2)

where the Filippov set-valued map K[f ] : R
n → 2R

n

is defined by

K[f ](x) �
⋂
δ>0

⋂
μ(S)=0

co{f(Bδ(x)\S}, x ∈ R
n, (3)

2R
n

denotes the collection of all subsets of R
n, μ(·) denotes the Lebesgue measure

in R
n, “co” denotes convex closure, and

⋂
μ(S)=0 denotes the intersection over all

sets S of Lebesgue measure zero.1 Note that since f is locally essentially bounded,

K[f ](·) is upper semicontinuous and has nonempty, compact, and convex values.

Thus, Filippov solutions are limits of solutions to G with f averaged over progressively

smaller neighborhoods around the solution point, and hence, allow solutions to be

defined at points where f itself is not defined. Hence, the tangent vector to a Filippov

solution, when it exists, lies in the convex closure of the limiting values of the system

vector field f(·) in progressively smaller neighborhoods around the solution point.

Dynamical systems of the form given by (1) are called differential inclusions in the

literature [34] and, for every state x ∈ R
n, they specify a set of possible evolutions of

G rather than a single one.

1Alternatively, we can consider Krasovskii solutions of (1) wherein the possible misbehavior of

the derivative of the state on null measure sets is not ignored; that is, K[f ](x) is replaced with

K[f ](x) =
⋂

δ>0
co{f(Bδ(x))} and where f is assumed to be locally bounded.
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Since the Filippov set-valued map given by (3) is upper semicontinuous with

nonempty, convex, and compact values, and K[f ](·) is also locally bounded [33, p. 85],

it follows that Filippov solutions to (1) exist [33, Thm. 1, p. 77]. Recall that the

Filippov solution t 
→ x(t) to (1) is a right maximal solution if it cannot be extended

(either uniquely or nonuniquely) forward in time. We assume that all right maximal

Filippov solutions to (1) exist on [t0,∞), and hence, we assume that (1) is forward

complete. Recall that (1) is forward complete if and only if the Filippov solutions

to (1) are uniformly globally sliding time stable [35, Lem 1, p. 182]. An equilibrium

point of (1) is a point xe ∈ R
n such that 0 ∈ K[f ](xe). It is easy to see that xe

is an equilibrium point of (1) if and only if the constant function x(·) = xe is a

Filippov solution of (1). We denote the set of equilibrium points of (1) by E . Since

the set-valued map K[f ](·) is upper semicontinuous, it follows that E is closed.

To develop stability properties for discontinuous dynamical systems given by (1),

we need to introduce the notion of generalized derivatives and gradients. Here we

focus on Clarke generalized derivatives and gradients [24].

Definition 2.1 ([24], [25]). Let V : R
n → R be a locally Lipschitz continuous func-

tion. The Clarke upper generalized derivative of V (·) at x in the direction of v ∈ R
n

is defined by

V o(x, v) � lim sup
y→x,h→0+

V (y + hv) − V (y)

h
. (4)

The Clarke generalized gradient ∂V : R
n → 2R

1×n

of V (·) at x is the set

∂V (x) � co
{

lim
i→∞

∇V (xi) : xi → x, xi �∈ N ∪ S
}
, (5)

where co denotes the convex hull, ∇ denotes the nabla operator, N is the set of

measure zero of points where ∇V does not exist, S is any subset of R
n of measure

zero, and the increasing unbounded sequence {xi}i∈Z+
⊂ R

n converges to x ∈ R
n.

Note that (4) always exists. Furthermore, note that it follows from Definition 2.1

that the generalized gradient of V at x consists of all convex combinations of all the

possible limits of the gradient at neighboring points where V is differentiable. In

addition, note that since V (·) is Lipschitz continuous, it follows from Rademacher’s

theorem [36, Thm 6, p. 281] that the gradient ∇V (·) of V (·) exists almost everywhere,

and hence, ∇V (·) is bounded. Specifically, for every x ∈ R
n, every ε > 0, and every

Lipschitz constant L for V on Bε(x), ∂V (x) ⊆ BL(0). Thus, since for every x ∈ R
n,

∂V (x) is convex, closed, and bounded, it follows that ∂V (x) is compact.

In order to state the main results of this paper, we need some additional notation

and definitions. Given a locally Lipschitz continuous function V : R
n → R, the set-

valued Lie derivative LfV : R
n → 2R of V with respect to f at x [25, 37] is defined
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as

LfV (x) �

{
a ∈ R : there exists v ∈ K[f ](x) such that pTv = a for all pT ∈ ∂V (x)

}
⊆

⋂
pT∈∂V (x)

pTK[f ](x). (6)

If K[f ](x) is convex with compact values, then LfV (x), x ∈ R
n, is a closed and

bounded, possibly empty, interval in R. If V (·) is continuously differentiable at x,

then LfV (x) = {∇V (x) ·v : v ∈ K[f ](x)}. In the case where LfV (x) is nonempty, we

use the notion maxLfV (x) (resp., minLfV (x)) to denote the largest (resp., smallest)

element of LfV (x). Furthermore, we adopt the convention max∅ = −∞. Finally,

recall that a function V : R
n → R is regular at x ∈ R

n [24, Def. 2.3.4] if, for all

v ∈ R
n, the right directional derivative V ′

+(x, v) � limh→0+
1
h
[V (x+hv)−V (x)] exists

and V ′
+(x, v) = V o(x, v). V is called regular on R

n if it is regular at every x ∈ R
n.

3. NONSMOOTH STABILITY THEORY FOR DISCONTINUOUS

DIFFERENTIAL EQUATIONS

In this section, we study the stability of discontinuous systems. For stating the

main stability theorems we assume that all right maximal Filippov solutions to (1)

exist on [0,∞). We say that a set M is weakly positively invariant (resp., strongly

positively invariant) with respect to (1) if, for every x0 ∈ M, M contains a right

maximal solution (resp., all right maximal solutions) of (1) [25,38]. The set M ⊆ R
q

is weakly negatively invariant if, for every x ∈ N and t ≥ 0, there exist z ∈ N and

a Filippov solution ψ(·) to (1) with ψ(0) = z such that ψ(t) = x and ψ(τ) ∈ N for

all τ ∈ [0, t]. Finally, the set M ⊆ R
q is weakly invariant if M is weakly positively

invariant as well as weakly negatively invariant.

The next definition introduces the notion of Lyapunov stability, semistability,

and asymptotic stability for discontinuous dynamical systems. The adjective “weak”

is used in reference to a stability property when the stability property is satisfied

by at least one Filippov solution starting from every initial condition in D, whereas

“strong” is used when the stability property is satisfied by all Filippov solutions

starting from every initial condition in D. In this section, however, we provide strong

stability theorems for (1) and, hence, we omit the adjective “strong” in the statement

of our results.

Definition 3.1. Let D ⊆ R
n be an open strongly positively invariant set with respect

to (1). An equilibrium point xe ∈ D of (1) is Lyapunov stable if, for every ε > 0,

there exists δ = δ(ε) > 0 such that, for every initial condition x0 ∈ Bδ(xe) and every

Filippov solution x(t) with the initial condition x(0) = x0, x(t) ∈ Bε(xe) for all t ≥ 0.

An equilibrium point xe ∈ D of (1) is semistable if xe is Lyapunov stable and there

exists an open subset D0 of D containing xe such that, for all initial conditions in
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D0, the Filippov solutions of (1) converge to a Lyapunov stable equilibrium point.

An equilibrium point xe ∈ D of (1) is asymptotically stable if xe is Lyapunvov stable

and there exists δ = δ(ε) > 0 such that if x0 ∈ Bδ(xe), then the Filippov solutions

of (1) converge to xe. An equilibrium point xe ∈ D of (1) is exponentially stable if

there exits positive constants α, β, and δ such that if x0 ∈ Bδ(xe), then every Filipov

solution to (1) satisfies ‖x(t)‖ ≤ ‖x0‖e−β, t ≥ 0. The system (1) is semistable (resp.,

asymptotically stable) with respect to D if every Filippov solution with initial con-

dition in D converges to a Lyapunov stable equilibrium (resp., the Lyapunov stable

equilibrium xe). Finally, (1) is said to be globally semistable (resp., globally asymptot-

ically stable, globally exponentially stable) if (1) is semistable (resp., asymptotically

stable, exponentially stable) with respect to R
n.

Next, we introduce the definition of finite-time semistability and finite-time sta-

bility of (1).

Definition 3.2. Let D ⊆ R
n be an open strongly positively invariant set with respect

to (1). An equilibrium point xe ∈ E of (1) is said to be finite-time-semistable (resp.,

finite-time stable) if there exist an open neighborhood U ⊆ D of xe and a function T :

U\E → (0,∞), called the settling-time function, such that the following statements

hold:

i) For every x ∈ U\E and every Filippov solution ψ(t) of (1) with ψ(0) = x, ψ(t) ∈
U\E for all t ∈ [0, T (x)), and limt→T (x) ψ(t) exists (resp., limt→T (x) ψ(t) = xe) and

is contained in U ∩ E .

ii) xe is semistable (resp., Lyapunov stable and U ∩ E = {xe}).
An equilibrium point xe ∈ E of (1) is said to be globally finite-time-semistable (resp.,

globally finite-time stable) if it is finite-time-semistable (resp., finite-time stable) with

D = U = R
n. The system (1) is said to be finite-time-semistable if every equilibrium

point in E is finite-time-semistable. Finally, (1) is said to be globally finite-time-

semistable if every equilibrium point in E is globally finite-time-semistable.

Given an absolutely continuous curve γ : [0,∞) → R
n, the positive limit set of

γ is the set Ω(γ) of points y ∈ R
n for which there exists an increasing divergent

sequence {ti}∞i=1 satisfying limi→∞ γ(ti) = y. We denote the positive limit set of a

Filippov solution ψ(·) of (1) by Ω(ψ). The positive limit set of a bounded Filippov

solution of (1) is nonempty and weakly invariant with respect to (1) [33, Lem. 4, p.

130].

Next, we state sufficient conditions for stability of discontinuous dynamical sys-

tems. Here, we state the stability theorems for only the local case; the global stability

theorems are similar except for the additional assumption of properness on the Lya-

punov function and nonrestricting the domain of analysis.
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Theorem 3.1 ([25, 39]). Consider the discontinuous nonlinear dynamical system G
given by (1). Let xe be an equilibrium point of G and let D ⊆ R

n be an open and

connected set with xe ∈ D. If V : D → R is a positive definite, locally Lipschitz

continuous, and regular function such that maxLfV (x) ≤ 0 (resp., maxLfV (x) < 0,

x �= xe) for almost all x ∈ D such that LfV (x) �= ∅, then xe is Lyapunov (resp.,

asymptotically) stable. Finally, if there exists scalars α, β, γ > 0, and p ≥ 1 such that

V : D → R satisfies α‖x− xe‖p ≤ V (x) ≤ ‖x−xe‖p and maxLfV (x) ≤ −γ‖x− xe‖p

for almost all x ∈ D, x �= xe, such that LfV (x) �= ∅, then xe is exponentially stable.

The next result presents an extenson of the Krasovskii-LaSalle invariant set the-

orem to discontinuous dynamical systems.

Theorem 3.2 ([25, 39]). Consider the discontinuous nonlinear dynamical system G
given by (1). Let xe be an equilibrium point of G, let D ⊆ R

n be an open strongly

positively invariant set with respect to (1) such that xe ∈ D, and let V : D → R be

locally Lipschitz continuous and regular on D. Assume that, for every x ∈ D and

every Filippov solution ψ(·) satisfying ψ(t0) = x, there exists a compact subset Dc

of D containing ψ(t) for all t ≥ 0. Furthermore, assume that maxLfV (x) ≤ 0 for

almost all x ∈ D such that LfV (x) �= ∅. Finally, define R � {x ∈ D : 0 ∈ LfV (x)}
and let M be the largest weakly positively invariant subset of R ∩ D. If x(t0) ∈ Dc,

then x(t) → M as t → ∞. If, alternatively, R contains no invariant set other than

{xe}, then the Filippov solution x(t) ≡ xe of G is asymptotically stable for all x0 ∈ Dc.

Next, we develop Lyapunov-based semistability and finite-time semistability the-

ory for discontinuous dynamical systems of the form given by (1). The following

proposition is needed.

Proposition 3.1. Let D ⊆ R
n be an open strongly positively invariant set with respect

to (1) and let ψ(·) be a Filippov solution of (2) with ψ(0) ∈ D. If z ∈ Ω(ψ) ∩ D is a

Lyapunov stable equilibrium point, then z = limt→∞ ψ(t) and Ω(ψ) = {z}.

Proof. Suppose z ∈ Ω(ψ) ∩ D is Lyapunov stable and let ε > 0. Since z is Lyapunov

stable, there exists δ = δ(ε) > 0 such that, for every y ∈ Bδ(z) and every Filippov

solution η(·) of (2) satisfying η(0) = y, η(t) ∈ Bε(z) for all t ≥ 0. Now, since

z ∈ Ω(ψ), it follows that there exists a divergent sequence {ti}∞i=1 in [0,∞) such

that limi→∞ ψ(ti) = z, and hence, there exists k ≥ 1 such that ψ(tk) ∈ Bδ(z). It

now follows from our construction of δ that ψ(t) ∈ Bε(z) for all t ≥ tk. Since ε was

chosen arbitrarily, it follows that z = limt→∞ ψ(t). Thus, limn→∞ ψ(tn) = z for every

divergent sequence {tn}∞n=1, and hence, Ω(ψ) = {z}.

Next, we present sufficient conditions for semistability of (1).
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Theorem 3.3. Let D ⊆ R
n be an open strongly positively invariant set with respect

to (1) and let V : D → R be locally Lipschitz continuous and regular on D. Assume

that, for every x ∈ D and every Filippov solution ψ(·) satisfying ψ(0) = x, there

exists a compact subset of D containing ψ(t) for all t ≥ 0. Furthermore, assume that

maxLfV (x) ≤ 0 for almost all x ∈ D such that LfV (x) �= ∅. Finally, define

R � {x ∈ D : 0 ∈ LfV (x)}. (7)

If every point in the largest weakly positively invariant subset M of R ∩ D is a

Lyapunov stable equilibrium point, then (1) is semistable with respect to D.

Proof. Let x ∈ D, ψ(·) be a Filippov solution to (1) with ψ(0) = x, and Ω(ψ) be the

positive limit set of ψ. First, we show that Ω(ψ) ⊆ R. Since either maxLfV (x) ≤ 0

or LfV (x) = ∅ for almost all x ∈ D, it follows from Lemma 1 of [25] that d
dt
V (ψ(t))

exists and is contained in LfV (ψ(t)) for almost every t ≥ 0. Now, by assumption,

V (ψ(t)) − V (ψ(τ)) =
∫ t

τ
d
dt
V (ψ(s))ds ≤ 0, t ≥ τ , and hence, V (ψ(t)) ≤ V (ψ(τ)),

t ≥ τ , which implies that V (ψ(t)) is a nonincreasing function of time.

The continuity of V and the boundedness of ψ imply that V (ψ(·)) is bounded.

Hence, γx � limt→∞ V (ψ(t)) exists. Next, consider p ∈ Ω(ψ). There exists an increas-

ing unbounded sequence {tn}∞n=1 in [0,∞) such that ψ(tn) → p as n→ ∞. Since V is

continuous on D, it follows that V (p) = V (limn→∞ ψ(tn)) = limn→∞ V (ψ(tn)) = γx,

and hence, V (p) = γx for p ∈ Ω(ψ). In other words, Ω(ψ) is contained in a level set

of V .

Let y ∈ Ω(ψ). Since Ω(ψ) is weakly positively invariant, there exists a Filippov

solution ψ̂(·) of (1) such that ψ̂(0) = y and ψ̂(t) ∈ Ω(ψ) for all t ≥ 0. Since

V (Ω(ψ)) = {V (y)}, d
dt
V (ψ̂(t)) = 0, and hence, it follows from Lemma 1 of [25] that

0 ∈ LfV (ψ̂(t)), that is, ψ̂(t) ∈ R for almost all t ∈ [0, t̂]. In particular, y ∈ R. Since

y ∈ Ω(ψ) was chosen arbitrarily, it follows that Ω(ψ) ⊆ R.

Next, since Ω(ψ) is weakly positively invariant, it follows that Ω(ψ) ⊆ M. More-

over, since every point in M is a Lyapunov stable equilibrium point of (1), it follows

from Proposition 3.1 that Ω(ψ) contains a single point and limt→∞ ψ(t) is a Lya-

punov stable equilibrium. Now, since x ∈ D was chosen arbitrarily, it follows from

Definition 3.1 that (1) is semistable with respect to D.

The following corollary to Theorem 3.3 provides sufficient conditions for finite-

time semistability of (1).

Corollary 3.1. Let D ⊆ R
n be an open strongly positively invariant set with respect to

(1) and let V : D → R be locally Lipschitz continuous and regular on D. Assume that

maxLfV (x) < 0 for almost all x ∈ D\E such that LfV (x) �= ∅. If every equilibrium

in D is Lyapunov stable, then every equilibrium in D is semistable. If, in addition,
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maxLfV (x) ≤ −ε < 0 for almost every x ∈ D\E such that LfV (x) �= ∅, then (1) is

finite-time semistable.

Proof. To prove the first statement, suppose every equilibrium in D, that is, every

point in E ∩ D is Lyapunov stable. By Lyapunov stability, there exists an open set

D′ containing E ∩ D such that D′ is strongly positively invariant with respect to (1)

and every Filippov solution having initial condition in D′ is bounded. Let M denote

the largest weakly positively invariant subset of the set R′ � {x ∈ D′ : 0 ∈ LfV (x)}.
Note that 0 ∈ LfV (x) for every x ∈ E . Since E ∩ D is weakly positively invariant

and contained in D′, it follows that E ∩ D ⊆ M. Since either maxLfV (x) < 0 or

LfV (x) = ∅ for almost all x ∈ D\E , it follows that R′ ⊆ E . Hence, it follows that

M = E ∩D. Theorem 3.3 now implies that (1) is semistable with respect to D′. Since

E ∩ D = E ∩ D′, it follows that every equilibrium in D is semistable.

If, in addition, maxLfV (x) ≤ −ε < 0 for almost every x ∈ D\E such that

LfV (x) �= ∅, then it follows from Proposition 2.8 of [37] that every Filippov solution

originating in D′ reaches R′ in finite time. Thus, it follows from Definition 3.2 that

(1) is finite-time-semistable.

Example 3.1. Consider the nonlinear switched dynamical system on D = R
2 given

by

ẋ1(t) = fσ(t)(x2(t)) − gσ(t)(x1(t)), x1(0) = x10, t ≥ 0, σ(t) ∈ S, (8)

ẋ2(t) = gσ(t)(x1(t)) − fσ(t)(x2(t)), x2(0) = x20, (9)

where x1, x2 ∈ R, σ : [0,∞) → S is a piecewise constant switching signal, S is a finite

index set, for every σ ∈ S, fσ(·) and gσ(·) are Lipschitz continuous, fσ(x2)−gσ(x1) = 0

if and only if x1 = x2, and (x1 − x2)(fσ(x2) − gσ(x1)) ≤ 0, x1, x2 ∈ R. Note that

f−1(0) = {(x1, x2) ∈ R
2 : x1 = x2 = α, α ∈ R}. To show that (8) and (9) is

semistable, consider the Lyapunov function candidate V (x1 − α, x2 − α) = 1
2
(x1 −

α)2 + 1
2
(x2 − α)2, where α ∈ R. Now, it follows that

V̇ (x1 − α, x2 − α) = (x1 − α)[fσ(x2) − gσ(x1)] + (x2 − α)[gσ(x1) − fσ(x2)]

= x1[fσ(x2) − gσ(x1)] + x2[gσ(x1) − fσ(x2)]

= (x1 − x2)[fσ(x2) − gσ(x1)]

≤ 0, (x1, x2) ∈ R × R, (10)

which, by Theorem 3.1, implies that x1 = x2 = α is Lyapunov stable for all α ∈ R.

Next, we rewrite (8) and (9) in the form of the differential inclusion (2) where

x � [x1, x2]
T ∈ R

2 and f(x) � [fσ(x2) − gσ(x1), gσ(x1) − fσ(x2)]
T. Let vx be an

arbitrary element of K[f ](x) and note that the Clarke upper generalized derivative

of V (x) = 1
2
x2

1 + 1
2
x2

2 along a vector vx ∈ K[f ](x) is given by V o(x, vx) = xTvx.

Furthermore, note that the set Dc � {x ∈ R
2 : V (x) ≤ c}, where c > 0, is a compact
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set. Next, consider max V o(x, vx) � maxvx∈K[f ]{xTvx}. It follows from Theorem 1

of [40] and (10) that xTK[f ](x) = K[xTf ](x) = K [(x1 − x2)(fσ(x2) − gσ(x1))] (x),

and hence, by definition of K[f ](x), it follows that maxV o(x, vx) = max co{(x1 −
x2)(fσ(x2) − gσ(x1))}. Note that since, by (10), (x1 − x2)(fσ(x2) − gσ(x1)) ≤ 0,

x ∈ R
2, it follows that maxV o(x, vx) cannot be positive, and hence, the largest value

that maxV o(x, vx) can achieve is zero.

Finally, let R � {(x1, x2) ∈ R
2 : (x1 − x2)(fσ(x2) − gσ(x1)) = 0} = {(x1, x2) ∈

R
2 : x1 = x2 = α, α ∈ R}. Since R consists of equilibrium points, it follows that

M = R. Note that maxLfV (x) ≤ maxV o(x, vx) for every x ∈ R
2 [25]. Hence, it

follows from Theorem 3.3 that x1 = x2 = α is semistable for all α ∈ R. �

Example 3.2. Consider the discontinuous dynamical system on D = R
2 given by

ẋ1(t) = sign(x2(t) − x1(t)), x1(0) = x10, t ≥ 0, (11)

ẋ2(t) = sign(x1(t) − x2(t)), x2(0) = x20, (12)

where x1, x2 ∈ R, sign(x) � x/|x| for x �= 0, and sign(0) � 0. Let f(x1, x2) �

[sign(x2 − x1), sign(x1 − x2)]
T. Consider V (x1, x2) = 1

2
(x1 − α)2 + 1

2
(x2 − α)2, where

α ∈ R. Since V (x1, x2) is differentiable at x = (x1, x2), it follows that LfV (x1, x2) =

[x1 − α, x2 − α]K[f ](x1, x2). Now, it follows from Theorem 1 of [40] that

[x1 − α, x2 − α]K[f ](x) = K[[x1 − α, x2 − α]f ](x)

= K[−(x1 − x2)sign(x1 − x2)](x)

= −(x1 − x2)K[sign(x1 − x2)](x)

= −(x1 − x2)SGN(x1 − x2)

= −|x1 − x2|, (x1, x2) ∈ R
2, (13)

where SGN(·) is defined by [11, 40]

SGN(x) �

⎧⎪⎨
⎪⎩

−1, x < 0,

[−1, 1], x = 0,

1, x > 0.

(14)

Hence, maxLfV (x1, x2) ≤ 0 for almost all (x1, x2) ∈ R
2. Now, it follows from Theo-

rem 3.1 that (x1, x2) = (α, α) is Lyapunov stable. Finally, note that 0 ∈ LfV (x1, x2)

if and only if x1 = x2, and hence, R = {(x1, x2) ∈ R
2 : x1 = x2}. Since R is weakly

positively invariant and every point in R is a Lyapunov stable equilibrium, it follows

from Theorem 3.3 that (11) and (12) is semistable.

Finally, we show that (11) and (12) is finite-time-semistable. To see this, consider

the nonnegative function U(x1, x2) = |x1 − x2|. Note that

∂U(x1, x2) =

{
{sign(x1 − x2)} × {sign(x2 − x1)}, x1 �= x2,

[−1, 1] × [−1, 1], x1 = x2.
(15)
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Figure 1. State trajectories versus time for Example 3.2

Hence, it follows that

LfU(x1, x2) =

{
{−2}, x1 �= x2,

{0}, x1 = x2,
(16)

which implies that maxLfU(x1, x2) = −2 < 0 for almost all (x1, x2) ∈ R
2\R. Now,

it follows from Corollary 3.1 that (11) and (12) is globally finite-time-semistable.

Figure 1 shows the solutions of (11) and (12) for x10 = 4 and x20 = −2. �

Note that Theorem 3.3 and Corollary 3.1 require verifying Lyapunov stability for

concluding semistability and finite-time semistability, respectively. However, finding

the corresponding Lyapunov function can be a difficult task. To overcome this draw-

back, we extend the nontangency-based approach of [13] to discontinuous dynamical

systems in order to guarantee semistability and finite-time semistability by testing

a condition on the vector field f which avoids proving Lyapunov stability. Before

stating our result, we introduce some notation and definitions as well as extended

versions of some results from [13].

A set E ⊆ R
n is connected if and only if every pair of open sets Ui ⊆ R

n, i = 1, 2,

satisfying E ⊆ U1 ∪ U2 and Ui ∩ E �= ∅, i = 1, 2, has a nonempty intersection. A

connected component of the set E ⊆ R
n is a connected subset of E that is not properly

contained in any connected subset of E . Given a set E ⊆ R
n, let coco E denote the

convex cone generated by E .

Definition 3.3. Given x ∈ R
n, the direction cone Fx of f at x is the intersection

of closed convex cones of the form
⋂

μ(S)=0 coco{f(U\S)}, where U ⊆ R
n is an open

neighborhood of x. Let E ⊆ R
n. A vector v ∈ R

n is tangent to E at z ∈ E if there

exist a sequence {zi}∞i=1 in E converging to z and a sequence {hi}∞i=1 of positive real

numbers converging to zero such that limi→∞
1
hi

(zi − z) = v. The tangent cone to E
at z is the closed cone TzE of all vectors tangent to E at z. Finally, the vector field

f is nontangent to the set E at the point z ∈ E if TzE ∩ Fz ⊆ {0}.
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Definition 3.4. Given a point x ∈ R
n and a bounded open neighborhood U ⊂ R

n

of x, the restricted prolongation of x with respect to U is the set RU
x ⊆ U of all

subsequential limits of sequences of the form {ψi(ti)}∞i=1, where {ti}∞i=1 is a sequence

in [0,∞), ψi(·) is a Filippov solution to (1) with ψi(0) = xi, i = 1, 2, . . ., and {xi}∞i=1

is a sequence in U converging to x such that the set {z ∈ R
n : z = ψi(t), t ∈ [0, ti]} is

contained in U for every i = 1, 2, . . ..

Proposition 3.2. Let D ⊆ R
n be an open strongly positively invariant set with respect

to (1). Furthermore, let x ∈ D and let U ⊆ D be a bounded open neighborhood of

x. Then RU
x is connected. Moreover, if x is an equilibrium point of (1), then RU

x is

weakly negatively invariant.

Proof. The proof of connectedness is similar to the proof of the first part of Propo-

sition 6.1 of [13] and, hence, is omitted. To prove weak negative invariance, suppose

x ∈ D is an equilibrium point of (1), and consider z ∈ RU
x . Then there exist a

sequence {ti}∞i=1 in [0,∞), a sequence {xi}∞i=1 in D converging to x, and a sequence

{ψi(·)}∞i=1 of Filippov solutions of (1) such that limi→∞ ψi(ti) = z and, for every i,

ψi(0) = xi and ψi(h) ∈ U for every h ∈ [0, ti].

Now, let t ≥ 0. First, assume z = x. Then ψ ≡ x is a Filippov solution of (1)

such that ψ(0) = x, ψ(t) = z and ψ(τ) ∈ RU
x for all τ ∈ [0, t]. Next consider the case

z �= x. First, suppose that the sequence {ti}∞i=1 has a subsequence {tik}∞k=1 in [0, t].

By choosing a subsequence if necessary, we may assume that the subsequence {tik}∞k=1

converges to T . Necessarily, T ≤ t. By Lemma 1 in [33, p. 87], a subsequence of the

sequence {ψik}∞k=1 converges uniformly on compact subsets of (0, T ) to a Filippov

solution ψ of (1). Moreover, the solution ψ satisfies ψ(0) = x and ψ(T ) = z. For

each s ∈ [0, T ], ψ(s) is a subsequential limit of the sequence {ψik(s)}∞k=1, and hence,

contained in RU
x . It is now easy to verify that the function β : [0, t] → D defined by

β(s) = x, 0 ≤ s ≤ t− T,

= ψ(s− t+ T ), t− T < s ≤ t,

is a Filippov solution of (1) satisfying β(0) = x, β(t) = z, and β(s) ∈ RU
x for all

s ∈ [0, t].

Next, suppose that the sequence {ti}∞i=1 has no subsequence in [0, t]. Then there

exists N > 0 such that ti > t for all i ≥ N . For each i, define βi : [0, t] → D by

β(s) = ψi+N(ti+N −t+s). Clearly, each βi is a Filippov solution of (1). Moreover, the

sequence {βi(t)}∞i=1 converges to z. Let y ∈ D be a subsequential limit of the bounded

sequence {βi(0)}∞i=1. By definition, y ∈ RU
x . By Lemma 1 in [33, p. 87], a subsequence

of {βi}∞i=1 converges uniformly on compact subsets of (0, t) to a Filippov solution β

of (1). Moreover, we may choose the subsequence such that β(0) = y and β(t) = z.

Finally, for each s ∈ [0, t], β(s) is a subsequential limit of the sequence {βi(s)}∞i=1,
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and hence, in RU
x . We have thus shown that there exists a Filippov solution β defined

on [0, t] such that β(s) ∈ RU
x for all s ∈ [0, t] and β(t) = z. Since t ≥ 0 and z ∈ RU

x

were chosen to be arbitrary, it follows that RU
x is weakly negatively invariant.

The following two lemmas and proposition extend related results from [13], and

are needed for the main result of this section.

Lemma 3.1. Let D ⊆ R
n be an open strongly positively invariant set with respect to

(1) and let V : D → R be locally Lipschitz continuous and regular on D. Assume that

V (x) ≥ 0, for all x ∈ D, V (z) = 0 for all z ∈ E , and maxLfV (x) ≤ 0 for almost

every x ∈ D such that LfV (x) �= ∅. For every z ∈ E , let Nz denote the largest weakly

negatively invariant connected subset of R∩D containing z, where R is given by (7).

Then, for every x ∈ E and every bounded open neighborhood V ⊂ D of x, RV
x ⊆ Nx.

Proof. Let x ∈ E and let V ⊂ D be a bounded open neighborhood of x. Consider

z ∈ RV
x . Let {xi}∞i=1 be a sequence in V converging to x and let {ti}∞i=1 be a sequence

in [0,∞) such that the sequence {ψi(ti)}∞i=1 converges to z and, for every i, ψi(τ) ∈
V ⊂ D for every τ ∈ [0, ti], where ψi(·) is a Filippov solution to (1) with ψi(0) = xi.

Since either maxLfV (y) ≤ 0 or LfV (y) = ∅ for almost every y ∈ D, it follows from

Lemma 1 of [25] that d
dt
V (ψ(t)) exists and is contained in LfV (ψ(t)) for almost all

t ∈ [0, τ ], where ψ(·) is a Filippov solution to (1) with ψ(0) = y. Now, by assumption,

V (ψ(τ))− V (y) =
∫ τ

0
d
dt
V (ψ(s))ds ≤ 0, τ ≥ 0, and hence, V (ψ(τ)) ≤ V (y) for y ∈ D

and τ ≥ 0.

Next, note that V (z) = limi→∞ V (ψi(ti)) ≤ limi→∞ V (xi) = V (x), and hence,

V (z) ≤ V (x). Since V (z) ≥ 0 and V (x) = 0 by assumption, it follows that

V (z) = V (x) = 0. Hence, RV
x ⊆ V −1(0) ∩ V ⊂ V −1(0). By Proposition 3.2, RV

x

is weakly negatively invariant and connected, and x ∈ RV
x . Hence, RV

x ⊆ Mx, where

Mx denotes the largest, weakly, negatively invariant connected subset of V −1(0) con-

taining x.

Finally, we show that Mx ⊆ Nx. Let z ∈ Mx and let t > 0. By weak negative

invariance, there exists w ∈ Mx and a Filippov solution ψ(·) to (1) satisfying ψ(0) =

w such that ψ(t) = z and ψ(τ) ∈ Mx ⊆ V −1(0) for all τ ∈ [0, t]. Thus, V (ψ(τ)) =

V (x) = 0 for every τ ∈ [0, t], and hence, by Lemma 1 of [25], 0 ∈ LfV (ψ(τ)) for

almost every τ ∈ [0, t], that is, ψ(τ) ∈ R for almost every τ ∈ [0, t]. It immediately

follows that z ∈ R, and hence, Mx ⊆ R. Since Mx is weakly negatively invariant,

connected, contains x, and is contained in U , it follows that Mx ⊆ Nx. Hence,

RV
x ⊆ Mx ⊆ Nx.

Lemma 3.2. Let D ⊆ R
n be an open strongly positively invariant set with respect to

(1). Furthermore, let x ∈ D and let {xi}∞i=1 be a sequence in D converging to x. Let

Ii ⊆ [0,∞), i = 1, 2, . . ., be intervals containing 0, and let B ⊆ D be the set of all
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subsequential limits contained in D of sequences of the form {ψi(τi)}∞i=1, where, for

each i, τi ∈ Ii and ψi : Ii → D is a Filippov solution of (1) satisfying ψi(0) = xi.

Then B = {x} if and only if f is nontangent to B at x.

Proof. First, we note that x ∈ B since x = limi→∞ ψi(0). Necessity now follows by

noting that if B = {x}, then TxB = {0} and, hence, TxB ∩ Fx ⊆ {0}.
To prove sufficiency, suppose z0 ∈ B, z0 �= x. Let {Uk}∞k=1 be a nested sequence

of bounded open neighborhoods of x in D such that Uk+1 ⊂ Uk and xk ∈ Uk for every

k = 1, 2, . . . ,
⋂

k Uk = {x} and z0 �∈ U1. Since z0 ∈ B, there exists a sequence {τi}∞i=1

such that τi ∈ Ii for every i, and limi→∞ ψi(τi) = z0 �∈ U1. The continuity of Filippov

solutions implies that, for every k, there exists a sequence {hk
j}∞j=k in [0,∞) such that,

for every j ≥ k, hk
j ∈ Ij , h

k
j ≤ τj , ψj(τ) ∈ Uk for every τ ∈ [0, hk

j ), and ψj(h
k
j ) ∈ ∂Uk.

For each k, let zk ∈ ∂Uk be a subsequential limit of the bounded sequence {ψj(h
k
j )}∞j=k.

Then, for every k, it follows that zk ∈ B, zk �= x and limk→∞ zk = x. Now, consider a

subsequential limit v of the bounded sequence {‖zk−x‖−1(zk−x)}. Clearly, v ∈ TxB.

Also ‖v‖ = 1 so that v �= 0. We claim that v ∈ Fx.

Let V ⊆ D be an open neighborhood of x and consider ε > 0. By construction,

there exists k such that ‖v − ‖zk − x‖−1(zk − x)‖ < ε/3. Moreover, since
⋂

i Ui =

{x}, we can assume that Uk ⊆ V. Since zk belongs to the boundary of an open

neighborhood of x, δ � ‖zk − x‖ > 0. Since zk = limi→∞ ψi(h
k
i ) and x = limi→∞ xi,

there exists i such that xi ∈ V, ‖x − xi‖ < εδ/3 and ‖zk − ψi(h
k
i )‖ < εδ/3. Let

S ⊂ D be a zero measure set. Then, K[f ](ψi(τ)) ⊆ co{f(V\S)} for all τ ∈ [0, hk
i ],

so that ψ̇i(τ) ∈ co{f(V\S)} for almost every τ ∈ [0, hk
i ]. Therefore, it follows from

Theorem I.6.13 of [41, p. 145] that w � ψi(h
k
i ) − xi =

∫ hk
i

0
ψ̇i(τ)dτ is contained in

the convex cone generated by co{f(V\S)}. Since S was chosen to be an arbitrary

zero-measure set, it follows that w ∈ ⋂
μ(S)=0 coco{f(V\S)}.

Now,∥∥v − δ−1w
∥∥ =

∥∥v − δ−1(zk − x) − δ−1(ψ(hk
i , xi) − zk) − δ−1(x− xi)

∥∥
≤ ∥∥v − ‖zk − x‖−1(zk − x)

∥∥ + δ−1‖ψ(hk
i , xi) − zk‖ + δ−1‖x− xi‖

< ε.

We have thus shown that, for every ε > 0 there exists w ∈ ⋂
μ(S)=0 coco{f(V\S)}

and δ > 0 such that w �= 0 and ‖v − δ−1w‖ < ε. It follows that v is contained in

the closed convex cone
⋂

μ(S)=0 coco{f(V\S)}. Since V was chosen to be an arbitrary

open neighborhood of x, it follows that v is contained in Fx. Thus, if B �= {x}, then

there exists v ∈ R
n such that v �= 0 and v ∈ TxB ∩ Fx, that is, f is not nontangent

to B at x. Sufficiency now follows.

Proposition 3.3. Let D ⊆ R
n be an open strongly positively invariant set with respect

to (1). Furthermore, let x ∈ D and let U ⊆ D be a bounded open neighborhood of x.
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If the vector field f of (1) is nontangent to RU
x at x, then the point x is a Lyapunov

stable equilibrium of (1).

Proof. Since f is nontangent to RU
x at x, by definition, it follows that TxRU

x∩Fx ⊆ {0}.
Let z ∈ RU

x . Then there exist a sequence {xi}∞i=1 converging to x, a sequence {ti}∞i=1

in [0,∞), and a sequence {ψi}∞i=1 of Filippov solutions of (2) such that ψi(0) = xi

and ψ([0, ti]) ⊆ U for every i = 1, 2, . . ., and limi→∞ ψi(ti) = z.

First, suppose that the sequence {ti}∞i=1 converges to 0. Then it follows from

Theorem 11 of [42] that there exists a Filippov solution ψ̂(·) to (1) with ψ̂(0) = x

such that limi→∞ ψi(ti) = ψ̂(0) = x. Next, suppose the sequence {ti}∞i=1 does not

converge to 0. Then there exists a subsequence {tik}∞k=1 of the sequence {ti}∞i=1 such

that lim infk→∞ tik > 0. Let Ik � [0, tik ] for each k and let B ⊆ U denote the set of

all subsequential limits of sequences of the form {ψik(τk)}∞k=1, where τk ∈ Ik for every

k. By construction, z ∈ B and B ⊆ RU
x . Hence, TxB ∩ Fx ⊆ TxRU

x ∩ Fx ⊆ {0}, that

is, f is nontangent to B at x. Now, it follows from Lemma 3.2 that B = {x}. Hence,

z = x. Since z ∈ RU
x is arbitrary, it follows that RU

x = {x}.
Suppose, ad absurdum, that x is not a Lyapunov stable equilibrium. Then there

exist a bounded open neighborhood V ⊆ U of x, a sequence {xi}∞i=1 in V converging

to x, a sequence {ψi}∞i=1 of Filippov solutions to (2), and a sequence {ti}∞i=1 in [0,∞)

such that ψi(xi) = xi and ψi(ti) ∈ ∂V for every i. Without loss of generality, we

can assume that the sequence {ti}∞i=1 is chosen such that, for every i, ψi(h) ∈ V for

all h ∈ [0, ti). Now, every subsequential limit of the bounded sequence {ψi(ti)}∞i=1 is

distinct from x by construction and is contained in RU
x by definition, which implies

that RU
x \{x} �= ∅. This contradicts our earlier conclusion that RU

x = {x}. Hence, x

is Lyapunov stable.

The following theorem gives sufficient conditions for semistability using nontan-

gency of the vector field f .

Theorem 3.4. Let D ⊆ R
n be an open strongly positively invariant set with respect

to (1) and let V : D → R be locally Lipschitz continuous and regular on D. Assume

that V (x) ≥ 0 for all x ∈ D, V (z) = 0 for all z ∈ E ∩ D, and maxLfV (x) ≤ 0 for

almost every x ∈ D such that LfV (x) �= ∅. Furthermore, for every z ∈ E , let Nz

denote the largest weakly negatively invariant connected subset of R ∩ D containing

z, where R is given by (7). If f is nontangent to Nz at every z ∈ E , then every

equilibrium in D is semistable.

Proof. Let V ⊂ D be a bounded open neighborhood of x ∈ E ∩ D. Since f is

nontangent to Nx at the point x ∈ E ∩ V, it follows that TxNx ∩ Fx ⊆ {0}. Next,

we show that f is nontangent to RV
x at the point x. It follows from Lemma 3.1 that

RV
x ⊆ Nx. Hence, TxRV

x ∩ Fx ⊆ TxNx ∩ Fx ⊆ {0}, that is, TxRV
x ∩ Fx ⊆ {0}. By
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definition, f is nontangent to RV
x at the point x. Now, it follows from Proposition 3.3

that x is a Lyapunov stable equilibrium. Since x ∈ E ∩ D was chosen arbitrarily, it

follows that every equilibrium of (1) in D is Lyapunov stable.

By Lyapunov stability of x, it follows that there exists a strongly positively

invariant neighborhood U ⊂ V of x that is open and bounded, and such that U ⊂ V.

Consider z ∈ U , and let ψ(·) be a Filippov solution of (1) with ψ(0) = z. Then

ψ(·) is bounded in D. Hence, it follows from [33, p. 129] and Theorem 3 of [25] that

Ω(ψ) ⊆ U is nonempty and contained in R.

Let w ∈ Ω(ψ). The invariance and connectedness of Ω(ψ) implies that Ω(ψ) ⊆
Nw. Hence, TwΩ(ψ) ∩ Fw ⊆ TwNw ∩ Fw ⊆ {0}. Now, it follows from Lemma 3.2

(see the proof of Proposition 5.2 of [13]) that limt→∞ ψ(t) exists. Since z ∈ U was

chosen arbitrarily, it follows that every Filippov solution in U converges to a limit.

The strong invariance of U implies that the limit of every Filippov solution in U is

contained in U . Since every equilibrium in U ⊂ V is Lyapunov stable, it follows from

Theorem 24 that x is semistable. Finally, since x ∈ E ∩ D was chosen arbitrarily, it

follows that every equilibrium in D is semistable.

Example 3.3. Consider the discontinuous dynamical system on D = R
4 given by

ẋ1(t) = sign(x3(t) − x4(t)), x1(0) = x10, t ≥ 0, (17)

ẋ2(t) = sign(x4(t) − x3(t)), x2(0) = x20, (18)

ẋ3(t) = sign(x4(t) − x3(t)) + sign(x2(t) − x1(t)), x3(0) = x30, (19)

ẋ4(t) = sign(x3(t) − x4(t)) + sign(x1(t) − x2(t)), x4(0) = x40, (20)

where x1, x2, x3, x4 ∈ R. Let f : R
4 → R

4 denote the vector field of (17)–(20) and

x � [x1, x2, x3, x4] ∈ R
4. Consider the function V (x) = |x1 − x2| + |x3 − x4|. Note

that

∂V (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{sign(x1 − x2)} × {sign(x2 − x1)}
×{sign(x3 − x4)} × {sign(x4 − x3)}, x1 �= x2, x3 �= x4,

[−1, 1] × [−1, 1] × {sign(x3 − x4)} × {sign(x4 − x3)}, x1 = x2, x3 �= x4,

{sign(x1 − x2)} × {sign(x2 − x1)} × [−1, 1] × [−1, 1], x1 �= x2, x3 = x4,

co{(1, 1), (−1, 1), (−1,−1), (1,−1)}, x1 = x2, x3 = x4.

Hence,

LfV (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{−2}, x1 �= x2, x3 �= x4,

∅, x1 = x2, x3 �= x4,

∅, x1 �= x2, x3 = x4,

{0}, x1 = x2, x3 = x4,

(21)

which implies that maxLfV (x) ≤ 0 for almost every x ∈ R
4 such that LfV (x) �= ∅.

Consequently, R = {x ∈ R
4 : x1 = x2, x3 = x4}. Let N denote the largest weakly,
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Figure 2. State trajectories versus time for Example 3.3

negatively invariant subset contained in R. On N , it follows from (17)–(20) that

ẋ1 = ẋ2 = 0 and ẋ3 = ẋ4 = 0. Hence, N = {x ∈ R
4 : x1 = x2 = a, x3 = x4 = b},

a, b ∈ R, which implies that N is the set of equilibrium points.

Next, we show that f for (17)–(20) is nontangent to N at the point z ∈ N .

To see this, note that the tangent cone TzN to the equilibrium set N is orthogonal

to the vectors u1 � [1,−1, 0, 0]T and u2 � [0, 0, 1,−1]T. On the other hand, since

f(z) ∈ span{u1,u2} for all z ∈ R
4, it follows that f(V) ⊆ span{u1,u2} for every

subset V ⊆ R
4. Consequently, the direction cone Fz of f at z ∈ N relative to R

4

satisfies Fz ⊆ span{u1,u2}. Hence, TzN ∩ Fz = {0}, which implies that the vector

field f is nontangent to the set of equilibria N at the point z ∈ N . Note that for every

z ∈ N , the set Nz required by Theorem 3.4 is contained in N . Since nontangency to

N implies nontangency to Nz at the point z ∈ N , it follows from Theorem 3.4 that

every equilibrium point of (17)–(20) in R
4 is semistable.

Finally, note that either maxLfV (x) ≤ −2 < 0 or LfV (x) = ∅ for almost all

x ∈ R
4\R, and hence, it follows from Corollary 3.1 that (17)–(20) is globally finite-

time-semistable. Figure 2 shows the solutions of (17)–(20) for x10 = 4, x20 = −2,

x30 = 1, and x40 = −3. �

4. UNIVERSAL FEEDBACK CONTROLLERS FOR

DISCONTINUOUS SYSTEMS

The consideration of nonsmooth Lyapunov functions for proving stability of feed-

back discontinuous systems is an important extension to classical stability theory

since, as shown in [11], there exist nonsmooth dynamical systems whose equilibria

cannot be proved to be stable using standard continuously differentiable Lyapunov

function theory. For dynamical systems with continuously differentiable flows, the

concept of smooth control Lyapunov functions was developed by Artstein [21] to show
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the existence of a feedback stabilizing controller. A constructive feedback control law

based on smooth control Lyapunov functions was given in [43]. Even though a sta-

bilizing continuous feedback controller guarantees the existence of a smooth control

Lyapunov function, many systems that possess smooth control Lyapunov functions

do not necessarily admit a continuous stabilizing feedback controller [21, 44]. How-

ever, as shown in [44], the existence of a control Lyapunov function allows for the

design of a stabilizing feedback controller that admits Filippov and Krasovskii closed-

loop system solutions. In this and the next section, we use the results of [44, 45] to

develop a constructive universal feedback control law for discontinuous dynamical

systems based on the existence of a nonsmooth control Lyapunov function defined in

the sense of generalized Clarke gradients [24] and set-valued Lie derivatives [25].

Consider the controlled nonlinear dynamical system G given by

ẋ(t) = F (x(t), u(t)), x(t0) = x0, a.e. t ≥ t0, (22)

where, for every t ≥ t0, x(t) ∈ D ⊆ R
n, u(t) ∈ U ⊆ R

m, F : D×U → R
n is Lebesgue

measurable and locally essentially bounded [33] with respect to x, continuous with

respect to u, and admits an equilibrium point at xe ∈ D for some ue ∈ U ; that is,

F (xe, ue) = 0. The control u(·) in (22) is restricted to the class of admissible controls

consisting of measurable and locally essentially bounded functions u(·) such that

u(t) ∈ U , t ≥ 0. For each value u ∈ U , we define the function Fu by Fu(x) = F (x, u).

A measurable function φ : D → U satisfying φ(xe) = ue is called a control law.

If u(t) = φ(x(t)), where φ is a control law and x(t) satisfies (22), then we call u(·)
a feedback control law. Note that the feedback control law is an admissible control

since φ(·) has values in U . Given a control law φ(·) and a feedback control law

u(t) = φ(x(t)), the closed-loop system is given by

ẋ(t) = F (x(t), φ(x(t))), x(0) = x0, a.e. t ≥ 0. (23)

Analogous to the open-loop case, we define the function Fφ by Fφ(x) = F (x, φ(x)).

Note that an arc x(·) (i.e., an absolutely continuous function from [t0, t] to D) satisfies

(22) for an admissible control u(t) ∈ U if and only if [33, p. 152]

ẋ(t) ∈ F(x(t)), x(t0) = x0, a.e. t ≥ t0, (24)

where F(x) � F (x, U), that is, F(x) � {F (x, u) : u ∈ U}.
Here F : D → 2R

n

is a set-valued map that assigns sets to points. The set

F(x) captures all of the directions in R
n that can be generated at x with inputs

u = u(t) ∈ U . The inputs u(·) can be selected as either u : [t0,∞) → U or u : D → U .

We assume that F(x) is an upper semicontinuous, nonempty, convex, and compact

set for all x ∈ R
n. That is, for every x ∈ D and every ε > 0, there exists δ > 0 such

that, for all z ∈ R
n satisfying ‖z − x‖ ≤ δ, F(z) ⊆ F(x) +Bε(0). This assumption is

mainly used to guarantee the existence of Filippov solutions to (23) [33].
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An absolutely continuous function x : [t0, τ ] → R
n is said to be a Filippov

solution [33] of (23) on the interval [t0, τ ] with initial condition x(t0) = x0, if x(t)

satisfies

ẋ(t) ∈ K[Fφ](x(t)), a.e. t ∈ [t0, τ ], (25)

where the Filippov set-valued map K[Fφ] : R
n → 2R

n

is defined by

K[Fφ](x) �
⋂
δ>0

⋂
μ(S)=0

co{Fφ(Bδ(x)\S)}, x ∈ D, (26)

μ(·) denotes the Lebesgue measure in R
n, “co” denotes convex closure, and

⋂
μ(S)=0

denotes the intersection over all sets S of Lebesgue measure zero.2 Note that since F

is locally essentially bounded, K[Fφ](·) is upper semicontinuous and has nonempty,

compact, and convex values.

5. NONSMOOTH CONTROL LYAPUNOV FUNCTIONS

In this section, we consider a feedback control problem and introduce the notion

of control Lyapunov functions for discontinuous dynamical systems. Furthermore,

using the concept of control Lyapunov functions we provide necessary and sufficient

conditions for stabilization of discontinuous nonlinear dynamical systems. To address

the problem of control Lyapunov functions for discontinuous dynamical systems, let

D ⊆ R
n be an open set and let U ⊆ R

m, where 0 ∈ D and 0 ∈ U . Next, consider

the controlled nonlinear discontinuous dynamical system (22), where u(·) is restricted

to the class of admissible controls consisting of measurable functions u(·) such that

u(t) ∈ U for almost all t ≥ 0 and the constraint set U is given. Given a control law

φ(·) and a feedback control u(t) = φ(x(t)), the closed-loop dynamical system is given

by (23).

The following definitions are required for stating the main result of this section.

Definition 5.1. Let φ : D → U be a measurable mapping on D\{0} with φ(0) = 0.

Then (22) is feedback asymptotically stabilizable if the zero Filippov solution x(t) ≡ 0

of the closed-loop discontinuous nonlinear dynamical system (23) is asymptotically

stable.

Definition 5.2. Consider the controlled discontinuous nonlinear dynamical system

given by (22). A locally Lipschitz continuous, regular, and positive-definite function

V : D → R satisfying

inf
u∈U

[maxLFu
V (x)] < 0, a.e. x ∈ D \ {0}, (27)

is called a control Lyapunov function.

2Alternatively, we can consider Krasovskii solutions of (23) wherein the possible misbehavior of

the derivative of the state on null measure sets is not ignored; that is, K[Fφ](x) is replaced with

K[Fφ](x) =
⋂

δ>0
co{Fφ(Bδ(x))} and where Fφ is assumed to be locally bounded.
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Note that if (27) holds, then there exists a feedback control law φ : D → U

such that maxLFφ
V (x) < 0, x ∈ D, x �= 0, and hence, Theorem 3.1 with f(x) =

Fφ(x) = F (x, φ(x)) implies that if there exists a control Lyapunov function for the

discontinuous nonlinear dynamical system (22), then there exists a feedback control

law φ(x) such that the zero Filippov solution x(t) ≡ 0 of the closed-loop system (23)

is strongly asymptotically stable. Conversely, if there exists a feedback control law

u = φ(x) such that the zero Filippov solution x(t) ≡ 0 of the discontinuous nonlinear

dynamical system (22) is strongly asymptotically stable, then, since LFφ
V (x) ⊆ {pTv :

pT ∈ ∂V (x) and v ∈ K[Fφ](x)}, it follows from Theorem 2.7 of [44] that there exists

a locally Lipschitz continuous, regular, and positive-definite function V : D → R

such that maxLFφ
V (x) < 0 for all nonzero x ∈ D or, equivalently, there exists

a control Lyapunov function for the discontinous nonlinear dynamical system (22).

Hence, a given discontinuous dynamical system of the form (22) is strongly feedback

asymptotically stabilizable if and only if there exists a control Lyapunov function

satisfying (27). Finally, in the case where D = R
n and U = R

m the zero Filippov

solution x(t) ≡ 0 to (22) is globally strongly asymptotically stabilizable if and only if

V (x) → ∞ as ||x|| → ∞.

Next, we consider the special case of discontinuous nonlinear systems affine in

the control, and we construct state feedback controllers that globally asymptotically

stabilize the zero Filippov solution of the discontinuous nonlinear dynamical system

under the assumption that the system has a radially unbounded control Lyapunov

function. Specifically, we consider discontinuous nonlinear affine dynamical systems

of the form

ẋ(t) = f(x(t)) +G(x(t))u(t), x(0) = x0, a.e. t ≥ 0, (28)

where f : R
n → R

n, G : R
n → R

n×m, D = R
n, and U = R

m. We assume that f(·)
and G(·) are Lebesgue measurable and locally essentially bounded. Note that (28) is

a special case of (22) with F (x, u) = f(x) +G(x)u. We use the notation f + Gu to

denote the function Fu(x) = f(x) +G(x)u for each u ∈ R
m.

Note that (28) includes piecewise continuous dynamical systems as well as switched

dynamical systems as special cases. For example, if f(·) and G(·) are piecewise con-

tinuous, then (28) can be represented as a differential inclusion involving Filippov set-

valued maps of piecewise-continuous vector fields given by K[f ](x) = co{limi→∞ f(xi) :

xi → x, xi �∈ Sf}, where Sf has measure zero and denotes the set of points where f is

discontinuous [40], and similarly for G(·). Here, we assume that K[f ](·) has at least

one equilibrium point so that, without loss of generality, 0 ∈ K[f ](0).

Next, define

LGV (x) � {q ∈ R
1×m : there exists v ∈ G(x) such that pTv = q for all pT ∈ ∂V (x)},
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where G(x) �
⋂

δ>0

⋂
μ(S)=0 co{G(Bδ(x)\S)}, x ∈ R

n, and
⋂

μ(S)=0 denotes the in-

tersection over all sets S of Lebesgue measure zero. Finally, we assume that the set

LGV (x) is single-valued3 for almost all x ∈ R
n, and that LGV (x) �= ∅ at all other

points x.

Theorem 5.1. Consider the controlled discontinuous nonlinear dynamical system

given by (28). Then a locally Lipschitz continuous, regular, positive-definite, and

radially unbounded function V : R
n → R is a control Lyapunov function for (28) if

and only if

maxLfV (x) < 0, a.e. x ∈ R, (29)

where R �

= {x ∈ R
n \ {0} : LGV (x) = 0}.

Proof. Sufficiency is a direct consequence of the definition of a control Lyapunov

function and the sum rule for computing the generalized gradient of locally Lip-

schitz continuous functions [40]. Specifically, for systems of the form (28), note

that Lf+GuV (x) ⊆ LfV (x) + LGV (x)u for almost all x and all u, and hence,

infu∈U [maxLfV (x) + LGV (x)u] = −∞ when x �∈ R and x �= 0, whereas

infu∈U [maxLfV (x) + LGV (x)u] < 0 for almost all x ∈ R. Hence, (29) implies (27)

with Fu(x) = f(x) +G(x)u.

To prove necessity suppose, ad absurdum, that V (·) is a control Lyapunov function

and (29) does not hold. In this case, there exists a set M ⊆ R of positive measure

such that maxLfV (x) ≥ 0 for all x ∈ M. Let x ∈ M and let α ∈ LfV (x) ∩ [0,∞).

From the definition of a control Lyapunov function, x is such that there exists u such

that maxLf+GuV (x) < 0 and, by the sum rule for generalized gradients, the inclusion

LfV (x) ⊆ Lf+GuV (x) + L−GuV (x) is satisfied (since the sum rule holds for almost

all x). Now, since x ∈ M, we have L−GuV (x) = −LGuV (x) ⊆ −LGV (x)u ⊆ {0}.
Hence, there exists a nonnegative α ∈ Lf+GuV (x), which is a contradiction. This

proves the theorem.

It follows from Theorem 5.1 that the zero Filippov solution x(t) ≡ 0 of a discon-

tinuous nonlinear affine system of the form (28) is globally strongly feedback asymp-

totically stabilizable if and only if there exists a locally Lipschitz continuous, regular,

positive-definite, and radially unbounded function V : R
n → R satisfying (29). Hence,

Theorem 5.1 provides necessary and sufficient conditions for discontinuous nonlinear

system stabilization.

3The assumption that LGV (x) is single-valued is necessary. Specifically, as will be seen later in the

paper, the requirement that there exists z ∈ LGV (x) such that, for all u ∈ R
m, max[LGV (x)u] = zu

holds if and only if LGV (x) is a singleton. To see this, let q, r ∈ LGV (x), with q �= r, and assume,

ad absurdum, that the required z exists. Then, either q − z �= 0 or r − z �= 0. Assume q − z �= 0 and

let uT = q − z. Then, qu − zu = (q − z)u = (q − z)(q − z)T = ‖q − z‖2
2 > 0. Hence, qu > zu, which

leads to a contradiction.
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Next, using Theorem 5.1 we construct an explicit feedback control law that is a

function of the control Lyapunov function V (·). Specifically, consider the feedback

control law given by

φ(x) =

⎧⎨
⎩ −

(
c0 +

α(x)+
√

α2(x)+(βT(x)β(x))2

βT(x)β(x)

)
β(x), β(x) �= 0,

0, β(x) = 0,
(30)

where α(x)
�

= maxLfV (x), β(x)
�

= (LGV (x))T, and c0 ≥ 0 is a constant. In this case,

the control Lyapunov function V (·) of (28) is a Lyapunov function for the closed-loop

system (28) with u = φ(x), where φ(x) is given by (30). To see this, recall that using

the sum rule for computing the generalized gradient of locally Lipschitz continuous

functions [40] it follows that Lf+GuV (x) ⊆ LfV (x) +LGuV (x) for almost all x ∈ R
n.

Now, Theorem 5.1 gives

maxLFφ
V (x) = maxLf+Gφ (31)

≤ max [LfV (x) + LGV (x)φ(x)]

= maxLfV (x) + LGV (x)φ(x)

= α(x) + βT (x)φ(x)

=

{
−c0βT(x)β(x) −√

α2(x) + (βT(x)β(x))2, β(x) �= 0,

α(x), β(x) = 0,

< 0, x ∈ R
n, a.e. x �= 0, (32)

which implies that V (·) is a Lyapunov function for the closed-loop system (28), and

hence, by Theorem 3.1, guaranteeing global strong asymptotic stability with u = φ(x)

given by (30).

Example 5.1. Consider a controlled nonsmooth harmonic oscillator with nonsmooth

friction given by [25]

ẋ1(t) = − sign(x2(t)) − 1

2
sign(x1(t)), x1(0) = x10, a.e. t ≥ 0, (33)

ẋ2(t) = sign(x1(t)) + u(t), x2(0) = x20, (34)

where sign(σ) � σ
|σ|

, σ �= 0, and sign(0) � 0. Next, consider the locally Lipschitz

continuous function V (x) = |x1| + |x2| and note that

∂V (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{sign(x1)} × {sign(x2)}, x1 �= 0, x2 �= 0,

{sign(x1)} × [−1, 1], x1 �= 0, x2 = 0,

[−1, 1] × {sign(x2)}, x2 �= 0, x1 = 0,

co{(1, 1), (−1, 1), (−1,−1), (1,−1)}, (x1, x2) = (0, 0).
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Hence, with f(x) = [− sign(x2) − 1
2
sign(x1), sign(x1)]

T and G = [0, 1]T,

LfV (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{−1
2
}, x1 �= 0, x2 �= 0,

∅, x1 �= 0, x2 = 0,

∅, x2 �= 0, x1 = 0,

{0}, (x1, x2) = (0, 0),

and

LGV (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{sign(x2)}, x1 �= 0, x2 �= 0,

∅, x1 �= 0, x2 = 0,

{sign(x2)}, x2 �= 0, x1 = 0,

{0}, (x1, x2) = (0, 0).

Now, since maxLfV (x) < 0 for all x ∈ R, where R = {x ∈ R
2 \ {0} : LGV (x) = 0},

it follows from Theorem 5.1 that V (x) = |x1| + |x2| is a control Lyapunov function

for (33) and (34).

Next, note that it follows from (30) that

φ(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
⎛
⎝c0 +

−1
2

+
√

1
4

+ sign4(x2)

sign2(x2)

⎞
⎠ sign(x2), sign(x2) �= 0,

0, sign(x2) = 0,

=

⎧⎪⎨
⎪⎩

−
(
c0 +

√
5 − 1

2

)
sign(x2), sign(x2) �= 0,

0, sign(x2) = 0,

(35)

where c0 ≥ 0, and hence, since Lf+GφV (x) ⊆ LfV (x) +LGV (x)φ(x) for almost all x,

maxLf+GφV (x) ≤ −
(
c0 +

√
5

2

)
< 0, sign(x2) �= 0.

Now, it follows from Theorem 3.1 that (35) is a globally strongly stabilizing feedback

controller. In fact, by Corollary 3.1, (35) is a globally finite-time stabilizing controller.

�

Example 5.2. Consider the controlled dynamical system G given by (28), where

x = [x1, x2]
T, u = [u1, u2]

T,

f(x) =

[
|x1|(−x1 + |x2|)
x2(−x1 − |x2|)

]
, G(x) =

[
|x1| 0

0 x2

]
.
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Next, consider the locally Lipschitz continuous function V (x) = 2|x1|+2|x2| and note

that

∂V (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{2 sign(x1)} × {2 sign(x2)}, x1 �= 0, x2 �= 0,

{2 sign(x1)} × [−2, 2], x1 �= 0, x2 = 0,

[−2, 2] × {2 sign(x2)}, x2 �= 0, x1 = 0,

co{(2, 2), (−2, 2), (−2,−2), (2,−2)}, (x1, x2) = (0, 0).

Hence,

LfV (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{−2x2
1 − 2x2

2}, x1 �= 0, x2 �= 0,

{−2x2
1}, x1 �= 0, x2 = 0,

{−2x2
2}, x2 �= 0, x1 = 0,

{0}, (x1, x2) = (0, 0),

and

LGV (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{(2x1, 2|x2|)}, x1 �= 0, x2 �= 0,

{(2x1, 0)}, x1 �= 0, x2 = 0,

{(0, 2|x2|)}, x2 �= 0, x1 = 0,

{(0, 0)}, (x1, x2) = (0, 0).

Now, since maxLfV (x) < 0 for all x ∈ R, where R = {x ∈ R
2 \ {0} : LGV (x) = 0},

it follows from Theorem 5.1 that V (x) = 2|x1|+2|x2| is a control Lyapunov function.

Setting α(x) = maxLfV (x) and β(x) = (LGV (x))T, it follows that β(x)βT (x) =

4(x2
1 + x2

2) and α2(x) + (βT (x)β(x))2 = 4(x2
1 + x2

2)
2 + 16(x4

1 + x4
2 + 2x2

1x
2
2) = 20(x4

1 +

x4
2) + 40x2

1x
2
2 = 20(x2

1 + x2
2)

2, and hence, (30) gives

φ(x) =

⎧⎪⎨
⎪⎩
− (

c0 + (
√

5 − 1)
) [ x1

|x2|

]
, (x1, x2) �= (0, 0),

0, (x1, x2) = (0, 0),

(36)

where c0 ≥ 0. Thus, maxLf+GφV (x) ≤ −|x|2 for all x �= 0. Now, it follows from

Theorem 3.1 that (36) is a globally strongly stabilizing feedback controller. �

6. DISSIPATIVITY THEORY FOR DISCONTINUOUS SYSTEMS

In this section, we extend the notion of classical dissipativity [14,15] of dynamical

systems with continuously differentiable flows to discontinuous systems. Specifically,

we consider nonlinear dynamical systems G of the form

ẋ(t) = F (x(t), u(t)), x(t0) = x0, a.e. t ≥ t0, (37)

y(t) = H(x(t)u(t)), (38)

where, for every t ≥ t0, x(t) ∈ D ⊆ R
n, u(t) ∈ U ⊆ R

m, y(t) ∈ Y ⊆ R
l, F : D× U →

R
n is Lebesgue measurable and locally essentially bounded [33] with respect to x,

continuous with respect to u, admits an equilibrium point at xe ∈ D for some ue ∈ U ;
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that is, F (xe, ue) = 0, and H : D × U → R
l. The following definition is needed for

the main results of this section.

Definition 6.1. i) The discontinuous dynamical system G given by (37) and (38) is

weakly (resp., strongly) dissipative with respect to the (locally Lebesgue integrable)

supply rate s : U × Y → R if there exists a locally Lipschitz continuous, regular,

and nonnegative definite storage function Vs : D → R, such that Vs(0) = 0 and the

dissipation inequality

Vs(x(t)) ≤ Vs(x(t0)) +

∫ t

t0

s(u(σ), y(σ))dσ, t ≥ t0, (39)

is satisfied for at least one (resp., every) Filippov solution x(t), t ≥ t0, of G with

u(t) ∈ U .

ii) The discontinuous dynamical system G given by (37) and (38) is weakly (resp.,

strongly) exponentially dissipative with respect to the (locally Lebesgue integrable)

sypply rate s : U × Y → R if there exist a locally Lipschitz continuous, regular, and

nonnegative storage function Vs : D → R and a scalar ε > 0 such that Vs(0) = 0 and

the dissipation inequality

eεtVs(x(t)) ≤ eεt0Vs(x(t0)) +

∫ t

t0

eεσs(u(σ), y(σ))dσ, t ≥ t0, (40)

is satisfied for one (resp., every) Filippov solution x(t), t ≥ 0, of G with u(t) ∈ U .

iii) The discontinuous dynamical system G given by (37) and (38) is strictly

weakly (resp., strongly) dissipative with respect to the (locally Lebesgue integrable)

supply rate s : U × Y → R if there exist a locally Lipschitz continuous, regular, and

nonnegative storage function Vs : D → R and a scalar ε > 0 such that Vs(0) = 0 and

the dissipation inequality

Vs(x(t)) ≤ Vs(x(t0)) +

∫ t

t0

[s(u(σ), y(σ))− ε]dσ, t ≥ t0, (41)

is satisfied for at least one (resp., every) Filippov solution x(t), t ≥ t0, of G with

u(t) ∈ U .

Since Vs(·) is assumed to be locally Lipschitz continuous and regular, an equiva-

lent statement for the dissipativeness of G involving supply rates s(u, y) is

V̇s(x(t)) ≤ s(u(t), y(t)), a.e. t ≥ 0, (42)

or, equivalently, V̇s(x) ≤ s(u, y), where

V̇s(x) =
d

dt
Vs(ψ(t, x, u))

∣∣∣∣
t=0

� lim sup
h→0+

Vs(ψ(h, x, u)) − Vs(x)

h
, (43)

for every x ∈ R
n, denotes the upper right directional Dini derivative of Vs(x) along

the Filippov state trajectories ψ(t, x, u) of (37) through x ∈ D with u(t) ∈ U at
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t = 0. Alternatively, an equivalent statement for exponentional dissipativeness and

strict dissipativeness of G involving the supply rate s(u, y) is, respectively,

V̇s(x(t)) + εVs(x(t)) ≤ s(u(t), y(t)), a.e. t ≥ 0, (44)

and

V̇s(x(t)) ≤ s(u(t), y(t)) − ε, a.e. t ≥ 0. (45)

The following lemma is necessary for the next proposition. For the statement of

this lemma we require some additional notation. Specifically, given a locally Lipschitz

continuous function V : R
n → R, define the set-valued Lie derivative LF (x,u)V :

R
n × U → 2R of V with respect to F at x and u by

LF (·,u)V (x) �

{
a ∈ R : there exists v ∈ K[F (·, u)](x)

such that pTv = a for all pT ∈ ∂V (x)
}
,

where K[F (·, u)](x) denotes the Filippov set-valued map of F (x, u) over x for each

admissible input u(t) ∈ U . That is, F (·, u) is averaged over progressively smaller

neighborhoods around x ∈ R
n with u ∈ U . Analogously, for fixed t > 0, x ∈ R

n, and

a measurable and locally essentially bounded u : R → U , define the set-valued Lie

derivative LF (x,u(·))V : R
n × U → 2R by

LF (·,u(·))V (x) �

{
a ∈ R : there exists v ∈ K[F (·, u(t))](x)

such that pTv = a for all pT ∈ ∂V (x)
}
,

that is, we fix u(·) ∈ L∞(R, U) and apply the Filippov construction over x. Note

that if ψ(·) is a Filippov solution to (37) with u(·) = u(·), then LF (·,u(·))V (ψ(t)) ⊆
LF (·,u)V (ψ(t)). In addition, note that LF (·,u)V (x) is a closed and bounded, possibly

empty, interval in R.

Lemma 6.1. Let x : [t0, t] → R
n be a Filippov solution of (37) corresponding to

the input u(·) and let V : R
n → R be locally Lipschitz continuous and regular. Then

d
dσ
V (x(σ)) exists for almost all σ ∈ [t0, t] and d

dσ
V (x(σ)) ∈ LF (·,u(·))V (x(σ)) for almost

all σ ∈ [t0, t].

Proof. The proof is similar to the proof of Lemma 1 of [25] and, hence, is omitted.

Proposition 6.1. Consider the discontinuous dynamical system G given by (37) and

(38), and let V : D → R be a locally Lipschitz continuous and regular function such

that V (x) ≥ 0 for all x ∈ R
n and V (0) = 0. Assume there exist a Lebesgue measurable

function s : U × Y → R and a scalar ε > 0 (resp., ε = 0) such that

maxLF (·,u)V (x) ≤ −εV (x) + s(u, y), a.e. u ∈ U. (46)

Then G is strongly exponentially dissipative (resp., strongly dissipative) with respect

to the supply rate s(u, y).
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Proof. It suffices to show that if (46) holds, then (39) holds on the interval [t0, t].

To see this, let x : [t0, t] → R
n be a Filippov solution of (24) with initial condition

x(0) = x0. Now, since by Lemma 6.1 V̇ (x(σ)) ≤ maxLF(·,u(·))V (x(σ)) for almost all

σ ∈ [t0, t], it follows from (46) that V̇ (x(σ)) ≤ −εV (x(σ)) + s(u(σ), y(σ)) for almost

all σ ∈ [t0, t], and hence,

eεσ
[
V̇ (x(σ)) + εV (x(σ))

]
≤ eεσs(u(σ), y(σ)), a.e. σ ∈ [t0, t]. (47)

Now, integrating (47), where the integral is a Lebesgue integral, it follows that (39)

holds with ε > 0 (resp., ε = 0).

Example 6.1. Consider the controlled discontinuous dynamical system G represent-

ing a mass sliding on a horizontal surface subject to a Coulomb frictional force. During

sliding, the Coulomb frictional model states that the magnitude of the friction force

is independent of the magnitude of the system velocity and is equal to the normal

contact force times the coefficient of kinetic friction. The application of this model

to a sliding mass on a horizontal frictional surface gives

ẋ(t) = −sign(x(t)) + u(t), x(0) = x0, a.e. t ≥ 0, (48)

y(t) = x(t). (49)

Equation (48) can be rewritten in the form of a differential inclusion

ẋ(t) ∈ K[f ](x(t)) + u(t), x(0) = x0, a.e. t ≥ 0, (50)

where the Filippov set-valued map K[f ] : R → 2R is given by

K[f ](x) =

⎧⎪⎨
⎪⎩

−1, x > 0,

[−1, 1] , x = 0,

1, x < 0.

(51)

Let Vs1(x) = x2. Since

V̇s(x) ∈ LF (·,u)Vs1(x)

= ∂Vs(x)(K[f ](x) + u)

= 2xK[f ](x) + 2xu

= −|x| + 2uy

≤ 2uy, (52)

it follows that maxLF (·,u)Vs1(x) ≤ 2uy for all Filippov solutions, which, by Proposi-

tion 6.1, implies that G is strongly dissipative with respect to the supply rate 2uy.

Next, let Vs(x) = |x|. Since

V̇s(x) ∈ LF (·,u)Vs(x) =

{
−1 + sign(x)u, x �= 0,

0, x = 0,



DIFFERENTIAL EQUATIONS WITH DISCONTINUOUS RIGHT-HAND SIDES 485

= −1 + u sign(y), x �= 0, (53)

it follows that maxLF (·,u)Vs2(x) ≤ u sign(y) for almost all x ∈ R and all Filippov

solutions, which, by Proposition 6.1, implies that G is strongly dissipative with respect

to the supply rate u sign(y). �

Next, we show that dissipativeness of discontinuous nonlinear affine dynamical

systems G of the form

ẋ(t) = f(x(t)) +G(x(t))u(t), x(t0) = x0, a.e. t ≥ t0, (54)

y(t) = h(x(t)) + J(x(t))u(t), (55)

where x(t) ∈ D ⊆ R
n, D is an open set with 0 ∈ D, u(t) ∈ U ⊆ R

m, y(t) ∈ Y ⊆ R
l,

f : D → R
n, G : D → R

n×m, h : D → Y , and J : D → R
l×m, can be characterized in

terms of the system functions f(·), G(·), h(·), and J(·). Here, we assume that f(·),
G(·), h(·), and J(·) are Lebesgue measurable and locally essentially bounded.

For the remainder of this section, we consider the special case of dissipative

systems with quadratic supply rates [15], [16]. Specifically, set D = R
n, U = R

m,

Y = R
l, let Q ∈ S

l, R ∈ S
m, and S ∈ R

l×m be given, and assume s(u, y) = yTQy +

2yTSu+uTRu, where S
q denotes the set of q×q symmetric matrices. Furthermore, we

assume that there exists a function κ : R
l → R

m such that κ(0) = 0 and s(κ(y), y) < 0,

y �= 0, so that, as shown by Theorem 3.2 of [46], all storage functions for G are positive

definite. Next, define

LGVs(x) � {q ∈ R
1×m : there exists v ∈ G(x)

such that pTv = q for all pT ∈ ∂Vs(x)},
where G(x) �

⋂
δ>0

⋂
μ(S)=0 co{G(Bδ(x))\S}, x ∈ R

n, and
⋂

μ(S)=0 denotes the in-

tersection over all sets S of Lebesgue measure zero. Finally, we assume that the set

LGVs(x) is single-valued4 for almost all x ∈ R
n modulo LGVs(x) �= ∅. The following

definition is necessary for the statement of the next result.

Definition 6.2 ( [46]). The nonlinear dynamical system G given by (37) and (38) is

weakly (resp., strongly) completely reachable if for every x0 ∈ D ⊆ R
n there exists a

finite time ti < t0 and an admissible input u(t) defined on [ti, t0] such that at least

one (resp., every) Filippov solution x(t), t ≥ ti, of G can be driven from x(ti) = 0 to

4The assumption that LGVs(x) is single-valued is necessary for obtaining Kalman-Yakubovich-

Popov conditions for (54) and (55) with Lebesgue measurable and locally essentially bounded system

functions f(·), G(·), h(·), and J(·), and with locally Lipschitz continuous storage functions Vs(·).
Specifically, as will be seen in the proof of Theorem 6.1, the requirement that there exists z ∈ LGVs(x)

(resp., z ∈ LGVs(x)) such that, for all u ∈ R
m, max[LGVs(x)u] = zu (resp., min[LGVs(x)u] = zu)

used in the proof of Theorem 6.1 holds if and only if LGVs(x) is a singleton. This fact is shown in

Footnote 3 for z ∈ LGVs(x). A similar construction shows the result for z ∈ LGVs(x).
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x(t0) = x0. The nonlinear dynamical system G given by (1) and (2) is weakly (resp.,

strongly) zero-state observable if u(t) ≡ 0 and y(t) ≡ 0 implies x(t) ≡ 0 for at least

one (resp., every) Filippov solution of G.

The following theorem gives necessary and sufficient Kalman-Yakubovich-Popov

conditions for dynamical systems with Lebesgue measurable and locally essentially

bounded system functions.

Theorem 6.1. Let Q ∈ S
l, S ∈ R

l×m, R ∈ S
m, and let G be weakly zero-state

observable and weakly completely reachable. If there exist functions Vs : R
n → R,

� : R
n → R

p, and W : R
n → R

p×m and a scalar ε > 0 (resp., ε = 0) such that Vs(·) is

locally Lipschitz continuous, regular, and positive definite, Vs(0) = 0, and, for almost

all x ∈ R
n,

0 = minLfVs(x) + εVs(x) − hT(x)Qh(x) + �T(x)�(x), (56)

0 =
1

2
LGVs(x) − hT(x)(QJ(x) + S) + �T(x)W(x), (57)

0 = R + STJ(x) + JT(x)S + JT(x)QJ(x) −WT(x)W(x), (58)

[�(x) + W(x)u]T[�(x) + W(x)u] ≥ maxLfVs(x) − minLfVs(x), u ∈ R
m, (59)

then G is weakly exponentially dissipative (resp., weakly dissipative) with respect to the

supply rate s(u, y) = yTQy+2yTSu+uTRu. Conversely, if G is weakly exponentially

dissipative (resp., weakly dissipative) with respect to the supply rate s(u, y), then there

exist functions Vs : R
n → R, � : R

n → R
p, and W : R

n → R
p×m and a scalar ε > 0

(resp., ε = 0) such that Vs(·) is locally Lipschitz continuous, regular, and positive

definite, Vs(0) = 0, and, for almost all x ∈ R
n, (56)–(58) hold.

Proof. First, suppose that there exist functions Vs : R
n → R, � : R

n → R
p, and

W : R
n → R

p×m and a scalar ε > 0 such that Vs(·) is locally Lipschitz continuous,

regular, and positive definite, and (56)–(59) are satisfied. Then, for every admissible

input u(t) ∈ R
m, t ≥ 0, it follows from (56)–(59) that∫ t2

t1

eεts(u(t), y(t))dt

=

∫ t2

t1

eεt
[
yT(t)Qy(t) + 2yT(t)Su(t) + uT(t)Ru(t)

]
dt

=

∫ t2

t1

eεt
[
hT(x(t))Qh(x(t)) + 2hT(x(t))(S +QJ(x(t)))u(t)

+uT(t)(JT(x(t))QJ(x(t)) + STJ(x(t)) + JT(x(t))S +R)u(t)
]
dt

=

∫ t2

t1

eεt
[
minLfVs(x(t)) + εVs(x(t)) + LGVs(x(t))u(t) + �T(x(t))�(x(t))

+2�T(x(t))W(x(t))u(t) + uT(t)WT(x(t))W(x(t))u(t)
]
dt
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=

∫ t2

t1

eεt[minLfVs(x(t)) + LGVs(x(t))u(t) + εVs(x(t))

+[�(x(t)) + W(x(t))u(t)]T[�(x(t)) + W(x(t))u(t)]
]
dt

≥
∫ t2

t1

eεt[maxLfVs(x(t)) + LGVs(x(t))u(t) + εVs(x(t))]dt, (60)

where x(t), t ≥ 0, satisfies (54).

Next, using the sum rule for computing the generalized gradient of a locally

Lipschitz continuous function [40] it follows that

Lf+GuVs(x) ⊆ LfVs(x) + LGuVs(x)

for almost all x ∈ R
n. Now, it follows from Lemma 6.1 that d

dt
Vs(x(t)) ∈ Lf+GuVs(x(t)) ⊆

LfVs(x(t)) + LGuVs(x(t)) for almost all t ≥ 0. Hence,

d

dt
Vs(x(t)) ≤ maxLf+GuVs(x(t))

≤ max [LfVs(x(t)) + LGVs(x(t))u(t)]

= maxLfVs(x(t)) + LGVs(x(t))u(t), a.e. t ≥ 0, u(t) ∈ U. (61)

Next, note that

eεtVs(x(t)) = eεt0Vs(x(t0)) +

∫ t

t0

d

dσ
(eεσVs(x(σ)))dσ, (62)

where the integral in (62) is the Lebesgue integral.

Using (61) and (62), it follows from (60) that∫ t2

t1

eεts(u(t), y(t))dt ≥
∫ t2

t1

eεt

[
d

dt
Vs(x(t)) + εVs(x(t))

]
dt

=

∫ t2

t1

d

dt
(eεtVs(x(t)))dt

= eεt2Vs(x(t2)) − eεt1Vs(x(t1)), a.e. t ≥ 0, u(t) ∈ U.

The assertion now follows from Definition 6.1.

Conversely, suppose that G is weakly exponentially dissipative with respect to

the supply rate map {s(u, y)}. Now, it follows from Theorem 3.1 of [46] that the

smallest available storage map Vas(x) of G is finite for all x ∈ R
n, Vas(0) = 0, and

eεt2Vas(x(t2)) ≤ eεt1Vas(x(t1)) +

∫ t2

t1

eεts(u(t), y(t))dt (63)

for almost all t2 ≥ t1 and u(·) ∈ U . Dividing (63) by t2 − t1 and letting t2 → t1 it

follows that
d

dt
Vas(x(t)) + εVas(x(t)) ≤ s(u(t), y(t)), a.e. t ≥ 0, (64)
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where x(t), t ≥ 0, is a solution satisfying (54) and d
dt
Vas(x(t)) = lim suph→0+[Vas(x(t+

h)) − Vas(x(t))]/h. Now, with t = 0, it follows from (64) that

d

dt
Vas(x0) + εVas(x0) ≤ s(u, y(0)), u ∈ R

m.

Next, let d : R
n × R

m → R be such that

d(x, u) � − d

dt
Vas(x) − εVas(x) + s(u, y). (65)

Now, it follows from (64) that d(x, u) ≥ 0, x ∈ R
n, u ∈ R

m. Since d
dt
Vas(x) ∈

LfVas(x) + LGuVas(x) for almost all x ∈ R
n, it follows that

d

dt
Vas(x) ≥ minLfVas(x) + LGVas(x)u, a.e. x ∈ R

n, u ∈ R
m, (66)

and hence, it follows from (65) and (66) that

−[minLfVas(x) + LGVas(x)u+ εVas(x)] + s(u, h(x) + J(x)u) ≥ d(x, u) ≥ 0,

a.e. x ∈ R
n, u ∈ R

m. (67)

Since the left-hand side of (67) is quadratic in u, there exist functions � : R
n → R

p

and W : R
n → R

p×m such that

[�(x) + W(x)u]T[�(x) + W(x)u]

= −[minLfVas(x) + LGVas(x)u+ εVas(x)] + s(u, h(x) + J(x)u)

= −[minLfVas(x) + LGVas(x)u+ εVas(x)] + [h(x) + J(x)u]T

×Q[h(x) + J(x)u] + 2[h(x) + J(x)u]TSu+ uTRu.

Now, equating coefficients of equal powers yields (56)–(58) with Vs(x) = Vas(x) and

with the positive definiteness of Vs(x), x ∈ R
n, following from Theorem 3.2 of [46].

Finally, the proof for the weakly dissipative case follows by using an identical

construction with ε = 0.

Remark 6.1. Note that if WT(x)W(x) is invertible for all x ∈ R
n, then inequality

(59) can be equivalently written as

[�(x) −W(x)(WT(x)W(x))−1WT(x)�(x)]T[�(x) −W(x)(WT(x)W(x))−1WT(x)�(x)]

≥ maxLfVs(x) − minLfVs(x), x ∈ R
n, (68)

which is free of u ∈ R
m. This follows from the fact that (59) holds if and only if

min
u

[�(x) + W(x)u]T[�(x) + W(x)u] ≥ maxLfVs(x) − minLfVs(x), x ∈ R
n, (69)

holds. A similar expression to (68) involving generalized inverses also holds in the

case where WT(x)W(x) is singular for some x ∈ R
n.

The following result gives sufficient conditions for weak dissipativity and weak

exponential dissipativity of G based on maxLfVs(·).
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Theorem 6.2. Let Q ∈ S
l, S ∈ R

l×m, R ∈ S
m, and let G be weakly zero-state

observable and weakly completely reachable. If there exist functions Vs : R
n → R,

� : R
n → R

p, and W : R
n → R

p×m and a scalar ε > 0 (resp., ε = 0) such that Vs(·) is

locally Lipschitz continuous, regular, and positive definite, Vs(0) = 0, and, for almost

all x ∈ R
n,

0 = maxLfVs(x) + εVs(x) − hT(x)Qh(x) + �T(x)�(x), (70)

0 =
1

2
LGVs(x) − hT(x)(QJ(x) + S) + �T(x)W(x), (71)

0 = R + STJ(x) + JT(x)S + JT(x)QJ(x) −WT(x)W(x), (72)

then G is weakly exponentially dissipative (resp., weakly dissipative) with respect to

the supply rate s(u, y) = yTQy + 2yTSu+ uTRu.

Proof. Suppose that there exist functions Vs : R
n → R, � : R

n → R
p, and W :

R
n → R

p×m and a scalar ε > 0 such that Vs(·) is locally Lipschitz continuous, regular,

and positive definite, and (70)–(72) are satisfied. Then, for every admissible input

u(t) ∈ R
m, it follows from (70)–(72) and (61) that∫ t2

t1

eεts(u(t), y(t))dt =

∫ t2

t1

eεt
[
yT(t)Qy(t) + 2yT(t)Su(t) + uT(t)Ru(t)

]
dt

=

∫ t2

t1

eεt
[
hT(x(t))Qh(x(t)) + 2hT(x(t))(S +QJ(x(t)))u(t)

+ uT(t)(JT(x(t))QJ(x(t)) + STJ(x(t))

+ JT(x(t))S +R)u(t)
]
dt

=

∫ t2

t1

eεt[maxLfVs(x(t)) + LGVs(x(t))u(t) + εVs(x(t))

+[�(x(t)) + W(x(t))u(t)]T[�(x(t)) + W(x(t))u(t)]
]
dt

≥
∫ t2

t1

eεt[maxLfVs(x(t)) + LGVs(x(t))u(t) + εVs(x(t))]dt

≥
∫ t2

t1

eεt

[
d

dt
Vs(x(t)) + εVs(x(t))

]
dt

= eεt2Vs(x(t2)) − eεt1Vs(x(t1)), a.e. t ≥ 0,

where x(t), t ≥ t0, is a solution satisfying (54). The result is now immediate from Def-

inition 6.1. The proof for the weak dissipative case follows an identical construction

by setting ε = 0.

Next, we provide several definitions of nonlinear discontinuous dynamical systems

which are dissipative or exponentially dissipative with respect to supply rates of a

specific form.
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Definition 6.3. A discontinuous dynamical system G of the form (37) and (38) with

m = l is weakly (resp., strongly) passive if G is weakly (resp., strongly) dissipative

with respect to the supply rate s(u, y) = 2uTy.

Definition 6.4. A discontinuous dynamical system G of the form (37) and (38) is

weakly (resp., strongly) nonexpansive if G is weakly (resp., strongly) dissipative with

respect to the supply rate s(u, y) = γ2uTu− yTy, where γ > 0 is given.

Definition 6.5. A discontinuous dynamical system G of the form (37) and (38) with

m = l is weakly (resp., strongly) exponentially passive if G is weakly (resp., strongly)

exponentially dissipative with respect to the supply rate s(u, y) = 2uTy.

Definition 6.6. A discontinuous dynamical system G of the form (37) and (38)

is weakly (resp., strongly) exponentially nonexpansive if G is weakly (resp., strongly)

exponentially dissipative with respect to the supply rate s(u, y) = γ2uTu−yTy, where

γ > 0 is given.

The following results present the nonlinear versions of the Kalman-Yakubovich-

Popov strict positive real lemma (resp., positive real lemma) and strict bounded real

lemma (resp., bounded real lemma) for weakly exponentially passive (resp., weakly

passive) and weakly exponentially nonexpansive (resp., weakly nonexpansive) discon-

tinuous systems, respectively.

Corollary 6.1. Let G be weakly zero-state observable and weakly completely reachable.

If there exist functions Vs : R
n → R, � : R

n → R
p, and W : R

n → R
p×m and a scalar

ε > 0 (resp., ε = 0) such that Vs(·) is locally Lipschitz continuous, regular, and

positive definite, Vs(0) = 0, and, for almost all x ∈ R
n,

0 = minLfVs(x) + εVs(x) + �T(x)�(x), (73)

0 =
1

2
LGVs(x) − hT(x) + �T(x)W(x), (74)

0 = J(x) + JT(x) −WT(x)W(x), (75)

[�(x) + W(x)u]T[�(x) + W(x)u] ≥ maxLfVs(x) − minLfVs(x), u ∈ R
m, (76)

then G is weakly exponentially passive (resp., weakly passive). Conversely, if G is

weakly exponentially passive (resp., weakly passive), then there exist functions Vs :

R
n → R, � : R

n → R
p, and W : R

n → R
p×m and a scalar ε > 0 (resp., ε = 0) such

that Vs(·) is locally Lipschitz continuous, regular, and positive definite, Vs(0) = 0,

and, for almost all x ∈ R
n, (73)–(75) hold.

Proof. The result is a direct consequence of Theorem 6.1 with l = m, Q = 0, S = Im,

and R = 0. Specifically, with κ(y) = −y it follows that s(κ(y), y) = −2yTy < 0,

y �= 0, so that all the assumptions of Theorem 6.1 are satisfied.
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Example 6.2. Consider the harmonic oscillator G with Coulomb friction given by [11]

mẍ(t) + b sign(ẋ(t)) + kx(t) = u(t), x(0) = x0, ẋ(0) = ẋ0, a.e. t ≥ 0, (77)

y(t) =
1

2
ẋ(t), (78)

or, equivalently,[
ẋ1(t)

ẋ2(t)

]
=

[
x2(t)

− k
m
x1(t) − b

m
sign(x2(t))

]
+

[
0
1
m

]
u(t),

[
x1(0)

x2(0)

]
=

[
x10

x20

]
, (79)

a.e. t ≥ 0,

y(t) =
1

2
x2(t), (80)

where m, b, k > 0. Next, consider the continuously differentiable storage function

Vs(x) = 1
2
kx2

1 + 1
2
mx2

2 and note that, for almost all x ∈ R
2, LfVs(x) = {−b|x2|} and

LGVs(x) = {x2}, which implies that minLfVs(x) = maxLfVs(x) = −b|x2|. Now,

with �(x) = ±√
b|x2| and W(x) = 0, (73)–(76) are satisfied. Hence, it follows from

Corollary 6.1 that G is weakly passive. �

Example 6.3. Consider a controlled smooth oscillator with nonsmooth friction and

uncertain coefficients given in [25] represented by the differential inclusion G given by

ẋ(t) ∈ K[f ](x(t)) +Gu(t), x(0) = x0, a.e. t ≥ 0, (81)

y(t) =
1

2
x2(t), (82)

where G = [0, 1]T and K[f ] : R
2 → 2R

2

is given by

K[f ](x) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[−2x2 − 1,−x2 − 1] × {x1}, (x1, x2) ∈ R
2 : x1 > 0, x2 > 0,

{−x2 − sign(x1)} × {x1}, (x1, x2) ∈ R
2\({(0, x2) : x2 ∈ R},

∪{(x1, x2) : x1 > 0, x2 > 0},
[−2x2 − 1,−x2 + 1] × {0}, (x1, x2) ∈ R

2 : x2 > 0, x1 = 0,

[−x2 − 1,−x2 + 1] × {0}, (x1, x2) ∈ R
2 : x2 < 0, x1 = 0,

[−1, 1] × {0}, (x1, x2) = (0, 0).

Next, consider the continuously differentiable storage function Vs(x) = 1
2
(x2

1 +x2
2) and

note that for almost all x ∈ R
2,

LfVs(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{[−1, 0]x1x2 − x1}, (x1, x2) ∈ R
2 : x1 > 0, x2 > 0,

{−|x1|}, (x1, x2) ∈ R
2\({(0, x2) : x2 ∈ R},

∪{(x1, x2) : x1 > 0, x2 > 0},
{0}, (x1, x2) ∈ R

2 : x2 �= 0, x1 = 0,

{0}, (x1, x2) = (0, 0),

LGVs(x) = {x2},
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which implies that maxLfVs(x) = 0 and minLfVs(x) = −|x1| for almost all x ∈ R
2.

Now, it follows from (73)–(76) that

0 = −|x1| + �2(x), (83)

0 =
1

2
x2 − 1

2
x2 + �(x)W(x), (84)

0 = W2(x), (85)

|x1| ≤ [�(x) + W(x)u]2 , u ∈ R. (86)

Hence, with �(x) = ±√|x1| and W(x) = 0, it follows from Corollary 6.1 that G is

weakly passive. �

Example 6.4. Consider a controlled nonsmooth harmonic oscillator with nonsmooth

friction and nonsmooth output given by ([25])

ẋ(t) = f(x(t)) +Gu(t), x(0) = x0, a.e. t ≥ 0, (87)

y(t) =
1

2
sign(x2(t)), (88)

where f(x) = [− sign(x2) − 1
2
sign(x1), sign(x1)]

T and G = [0, 1]T. Next, consider the

locally Lipschitz continuous storage function Vs(x) = |x1| + |x2| and note that

∂Vs(x1, x2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{sign(x1)} × {sign(x2)}, (x1, x2) ∈ R
2 : x1 �= 0, x2 �= 0,

{sign(x1)} × [−1, 1], (x1, x2) ∈ R
2 : x1 �= 0, x2 = 0,

[−1, 1] × {sign(x2)}, (x1, x2) ∈ R
2 : x2 �= 0, x1 = 0,

co{(1, 1), (−1, 1), (−1,−1), (1,−1)}, (x1, x2) = (0, 0).

Hence,

LfVs(x1, x2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{−1
2
}, (x1, x2) ∈ R

2 : x1 �= 0, x2 �= 0,

∅, (x1, x2) ∈ R
2 : x1 �= 0, x2 = 0,

∅, (x1, x2) ∈ R
2 : x2 �= 0, x1 = 0,

{0}, (x1, x2) = (0, 0),

LGVs(x1, x2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{sign(x2)}, (x1, x2) ∈ R
2 : x1 �= 0, x2 �= 0,

∅, (x1, x2) ∈ R
2 : x1 �= 0, x2 = 0,

{sign(x2)}, (x1, x2) ∈ R
2 : x2 �= 0, x1 = 0,

{0}, (x1, x2) = (0, 0),

which implies that maxLfVs(x) = 0, minLfVs(x) = −1
2
, and LGVs(x) = {sign(x2)}

for almost all x ∈ R
2. Now, it follows from (73)–(76) that

0 = −1

2
+ �2(x), (89)

0 =
1

2
sign(x2) − 1

2
sign(x2) + �(x)W(x), (90)
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0 = W2(x), (91)

1

2
≤ [�(x) + W(x)u]2 , u ∈ R. (92)

Hence, with �(x) = ±
√

1
2

and W(x) = 0, it follows from Corollary 6.1 that G is

weakly passive. �

Corollary 6.2. Let Q ∈ S
l, S ∈ R

l×m, R ∈ S
m, and let G be weakly zero-state

observable and weakly completely reachable. If there exist functions Vs : R
n → R,

� : R
n → R

p, and W : R
n → R

p×m and a scalar ε > 0 (resp., ε = 0) such that Vs(·) is

locally Lipschitz continuous, regular, and positive definite, Vs(0) = 0, and, for almost

all x ∈ R
n,

0 = minLfVs(x) + εVs(x) + hT(x)h(x) + �T(x)�(x), (93)

0 =
1

2
LGVs(x) + hT(x)J(x) + �T(x)W(x), (94)

0 = γ2Im − JT(x)J(x) −WT(x)W(x), (95)

[�(x) + W(x)u]T[�(x) + W(x)u] ≥ maxLfVs(x) − minLfVs(x), u ∈ R
m, (96)

where γ > 0, then G is weakly exponentially nonexpansive (resp., weakly nonexpan-

sive). Conversely, if G is weakly exponentially nonexpansive (resp., weakly nonexpan-

sive), then there exist functions Vs : R
n → R, � : R

n → R
p, and W : R

n → R
p×m and

a scalar ε > 0 (resp., ε = 0) such that Vs(·) is locally Lipschitz continuous, regular,

and positive definite, Vs(0) = 0, and, for almost all x ∈ R
n, (93)–(95) hold.

Proof. The result is a direct consequence of Theorem 6.1 with Q = −Il, S = 0, and

R = γ2Im. Specifically, with κ(y) = − 1
2γ
y it follows that s(κ(y), y) = −3

4
yTy < 0,

y �= 0, so that all the assumptions of Theorem 6.1 are satisfied.

Example 6.5. Consider the controlled dynamical system G given by

ẋ(t) = f(x(t)) +G(x(t))u(t), x(0) = x0, a.e. t ≥ 0, (97)

y(t) = x(t), (98)

where x(t) = [x1(t), x2(t)]
T, u(t) = [u1(t), u2(t)]

T,

f(x) =

[
|x1|(−x1 + |x2|)
x2(−x1 − |x2|)

]
, G(x) =

[
|x1| 0

0 x2

]
.

Next, consider the locally Lipschitz continuous storage function Vs(x) = 2|x1|+ 2|x2|
and note that

∂Vs(x1, x2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{2 sign(x1)} × {2 sign(x2)}, (x1, x2) ∈ R
2 : x1 �= 0, x2 �= 0,

{2 sign(x1)} × [−2, 2], (x1, x2) ∈ R
2 : x1 �= 0, x2 = 0,

[−2, 2] × {2 sign(x2)}, (x1, x2) ∈ R
2 : x2 �= 0, x1 = 0,

co{(2, 2), (−2, 2), (−2,−2), (2,−2)}, (x1, x2) = (0, 0).
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Hence,

LfVs(x1, x2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{−2x2
1 − 2x2

2}, (x1, x2) ∈ R
2 : x1 �= 0, x2 �= 0,

{−2x2
1}, (x1, x2) ∈ R

2 : x1 �= 0, x2 = 0,

{−2x2
2}, (x1, x2) ∈ R

2 : x2 �= 0, x1 = 0,

{0}, (x1, x2) = (0, 0),

LGVs(x1, x2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{[2x1, 2|x2|]}, (x1, x2) ∈ R
2 : x1 �= 0, x2 �= 0,

{[2x1, 0]}, (x1, x2) ∈ R
2 : x1 �= 0, x2 = 0,

{[0, 2|x2|]}, (x1, x2) ∈ R
2 : x2 �= 0, x1 = 0,

{[0, 0]}, (x1, x2) = (0, 0),

which implies that minLfVs(x) = maxLfVs(x) = −2x2
1 − 2x2

2 and LGVs(x) = {[2x1,

2|x2|]} for almost all x ∈ R
2. Now, it follows from (93)–(96) that

0 = −2x2
1 − 2x2

2 + x2
1 + x2

2 + �T(x)�(x), (99)

0 =
1

2
[2x1, 2|x2|] + �T(x)W(x), (100)

0 = γ2I2 −WT(x)W(x), (101)

0 ≤ [�(x) + W(x)u]T [�(x) + W(x)u] , u ∈ R
2. (102)

Hence, with γ = 1, �(x) = −[x1, |x2|]T, and W(x) = I2, it follows from Corollary 6.2

that G is weakly nonexpansive. �

In light of Definition 6.3 the following result is immediate.

Proposition 6.2. Consider the discontinuous dynamical system G given by (37) and

(38). Then the following statements hold:

i) If G is strongly passive with a locally Lipschitz continuous, regular, and positive

definite storage function Vs(·), then the zero solution x(t) ≡ 0 of the undisturbed

(u(t) ≡ 0) system G is strongly Lyapunov stable.

ii) If G is strongly exponentially passive with a locally Lipschitz continuous, regu-

lar, and positive definite storage function Vs(·), then the zero solution x(t) ≡ 0 of the

undisturbed (u(t) ≡ 0) system G is strongly asymptotically stable.

iii) If G is strongly zero-state observable and strongly nonexpansive with locally

Lipschitz continuous, regular, and positive definite storage function Vs(·), then the zero

solution x(t) ≡ 0 of the undisturbed (u(t) ≡ 0) system G is strongly asymptotically

stable.

iv) If G is strongly exponentially nonexpansive with a locally Lipschitz continuous,

regular, and positive definite storage function Vs(·), then the zero solution x(t) ≡ 0 of

the undisturbed (u(t) ≡ 0) system G is strongly asymptotically stable.
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Proof. Statements i)–iv) are immediate and follow from (42)–(44) using Lyapunov

and invariant set stability arguments given by Theorems 3.1 and 3.2, respectively.

7. STABILITY OF FEEDBACK INTERCONNECTIONS OF

DISSIPATIVE DISCONTINUOUS DYNAMICAL SYSTEMS

In this section, we consider feedback interconnections of dissipative discontinu-

ous dynamical systems. Specifically, using the notions of dissipativity and exponential

dissipativity for discontinuous dynamical systems, with appropriate storage functions

and supply rates, we construct (not necessarily smooth) Lyapunov functions for inter-

connected discontinuous dynamical systems by appropriately combining the storage

functions for each subsystem.

We begin by considering the nonlinear discontinuous dynamical system G given

by

ẋ(t) = f(x(t)) +G(x(t))u(t), x(0) = x0, a.e. t ≥ 0, (103)

y(t) = h(x(t)) + J(x(t))u(t), (104)

where x ∈ R
n, u ∈ R

m, y ∈ R
l, f : R

n → R
n, G : R

n → R
n×m, h : R

n → R
l, and

J : R
n → R

l×m, with the nonlinear feedback discontinuous system Gc given by

ẋc(t) = fc(xc(t)) +Gc(uc(t), xc(t))uc(t), xc(0) = xc0, a.e. t ≥ 0, (105)

yc(t) = hc(uc(t), xc(t)) + Jc(uc(t), xc(t))uc(t), (106)

where xc ∈ R
nc, uc ∈ R

l, yc ∈ R
m, fc : R

nc → R
nc, Gc : R

l × R
nc → R

nc×l, hc :

R
l×R

nc → R
m, and Jc : R

l×R
nc → R

m×l. We assume that f(·), G(·), h(·), J(·), fc(·),
Gc(·), hc(·, ·), and Jc(·, ·) are Lebesgue measurable and locally essentially bounded,

(105) and (106) has at least one equilibrium point, and the required properties for

the existence of solutions of the feedback interconnection of G and Gc are satisfied.

Note that with the negative feedback interconnection given by Figure 3, uc = y and

yc = −u. We assume that the negative feedback interconnection of G and Gc is well

posed, that is, det[Im + Jc(y, xc)J(x)] �= 0 for all y, x, and xc.

G

Gc
�

�

Figure 3. Feedback interconnection of G and Gc.

The following results give sufficient conditions for Lyapunov, asymptotic, and

exponential stability of the feedback interconnection given by Figure 3. In this section,

+

–
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we assume that the forward path G and the feedback path Gc in Figure 3 are strongly

dissipative systems. This assumption holds when the closed-loop system (103)–(106)

admits a unique solution and is only made for notational convenience. Finally, we

also note that the obtained stability results also hold for the case where G and Gc

are weakly dissipative. In this case, however, the set-valued Lie derivative operator

should be replaced with the upper right Dini directional derivative in the proofs of

the stability theorems.

The following lemma is necessary for the next theorem.

Lemma 7.1 ([25]). Let x : [t0, t] → R
q be a Filippov solution of the discontinuous

dynamical system (23) and let V : R
q → R be locally Lipschitz continuous and regular.

Then d
dσ
V (x(σ)) exists for almost all σ ∈ [t0, t] and d

dσ
V (x(σ)) ∈ LfV (x(σ)) for

almost all σ ∈ [t0, t].

Theorem 7.1. Consider the closed-loop system consisting of the nonlinear discontin-

uous dynamical systems G given by (103) and (104), and Gc given by (105) and (106)

with input-output pairs (u, y) and (uc, yc), respectively, and with uc = y and yc = −u.
Assume G and Gc are strongly zero-state observable, strongly completely reachable,

and strongly dissipative with respect to the supply rates s(u, y) and sc(uc, yc) and with

locally Lipschitz continuous, regular, and radially unbounded storage functions Vs(·)
and Vsc(·), respectively, such that Vs(0) = 0 and Vsc(0) = 0. Furthermore, assume

there exists a scalar σ > 0 such that s(u, y) + σsc(uc, yc) ≤ 0, for all u ∈ R
m, y ∈ R

l,

uc ∈ R
l, yc ∈ R

m such that uc = y and yc = −u. Then the following statements hold:

i) The negative feedback interconnection of G and Gc is strongly Lyapunov stable.

ii) If Gc is strongly exponentially dissipative with respect to supply rate sc(uc, yc)

and rank [Gc(uc, 0)] = m, uc ∈ R
l, then the negative feedback interconnection of G

and Gc is globally strongly asymptotically stable.

iii) If G and Gc are strongly exponentially dissipative with respect to supply rates

s(u, y) and sc(uc, yc), respectively, and Vs(·) and Vsc(·) are such that there exist con-

stants α, αc, β, and βc > 0 such that

α‖x‖2 ≤ Vs(x) ≤ β‖x‖2, x ∈ R
n, (107)

αc‖xc‖2 ≤ Vsc(xc) ≤ βc‖xc‖2, xc ∈ R
nc, (108)

then the negative feedback interconnection of G and Gc is globally strongly exponentially

stable.

Proof. i) Note that the closed-loop dynamics of the feedback interconnection of G and

Gc has a form given by[
ẋ(t)

ẋc(t)

]
=

[
f1(x(t), xc(t))

f2(x(t), xc(t))

]
� f̃(x(t), xc(t)),

[
x(t0)

xc(t0)

]
=

[
x0

xc0

]
, a.e. t ≥ t0. (109)
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Now, consider the Lyapunov function candidate V (x, xc) = Vs(x) + σVsc(xc). Since

Lf̃V (x, xc) ⊆ Lf̃Vs(x) + σLf̃Vsc(xc) for almost all (x, xc) ∈ R
n × R

nc , it follows that

maxLf̃V (x, xc) ≤ max{Lf1
Vs(x) + σLf2

Vsc(xc)}
≤ maxLf1

Vs(x) + σmaxLf2
Vsc(xc).

Next, since s(u, y) + σsc(uc, yc) ≤ 0, for all u ∈ R
m, y ∈ R

l, uc ∈ R
l, yc ∈ R

m,
d
dt
Vs(x(t)) ∈ Lf1

Vs(x(t)), a.e. t ≥ 0, and d
dt
Vsc(xc(t)) ∈ Lf2

Vsc(xc(t)), a.e. t ≥ 0, there

exist u′, y′, u′c and y′c such that

maxLf̃V (x, xc) ≤ maxLf1
Vs(x) + σmaxLf2

Vsc(xc) ≤ s(u′, y′) + σsc(u
′
c, y

′
c) ≤ 0

for almost all x ∈ R
n and xc ∈ R

nc. Now, it follows from Theorem 3.1 that the

negative feedback interconnection of G and Gc is strongly Lyapunov stable.

ii) If Gc is strongly exponentially dissipative it follows that there exist u′, y′, u′c
and y′c and a scalar εc > 0 such that

d

dt
V (x, xc) ≤ maxLf̃V (x, xc)

≤ maxLf1
Vs(x) + σmaxLf2

Vsc(xc)

≤ −σεcVsc(xc) + s(u′, y′) + σsc(u
′
c, y

′
c)

≤ −σεcVsc(xc), a.e. (x, xc) ∈ R
n × R

nc.

Now, let R � {(x, xc) ∈ R
n × R

nc : d
dt
V (x, xc) = 0 ∈ Lf̃V (x, xc)} and, since

Vsc(xc) is positive definite, note that d
dt
V (x, xc) = 0 if and only if xc = 0. Now, since

rank[Gc(uc, 0)] = m, uc ∈ R
l, it follows that on every invariant set M contained in

R, uc(t) = y(t) ≡ 0, and hence, by (106), u(t) ≡ 0 so that ẋ(t) = f(x(t)). Now,

since G is strongly zero-state observable it follows that M = {(0, 0)} is the largest

strongly positively invariant set contained in R. Hence, it follows from Theorem 3.2

that dist(ψ(t),M) → 0 as t → ∞ for all Filippov solutions ψ(·) of (109). Now,

global strong asymptotic stability of the negative feedback interconnection of G and

Gc follows from the fact that Vs(·) and Vsc(·) are, by assumption, radially unbounded.

iii) Finally, if G and Gc are strongly exponentially dissipative it follows that there

exist u′, y′, u′c and y′c, and scalars ε > 0 and εc > 0 such that

maxLf̃V (x, xc) ≤ maxLf1
Vs(x) + σmaxLf2

Vsc(xc)

≤ −εVs(x) − σεcVsc(xc) + s(u′, y′) + σsc(u
′
c, y

′
c)

≤ −min{ε, εc}V (x, xc), (x, xc) ∈ R
n × R

nc .

Hence, it follows from Theorem 3.1 that the negative feedback interconnection of G
and Gc is globally strongly exponentially stable.
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The next result presents Lyapunov, asymptotic, and exponential stability of dissi-

pative discontinuous feedback systems with supply rate maps consisting of quadratic

supply rates.

Theorem 7.2. Let Q ∈ S
l, S ∈ R

l×m, R ∈ S
m, Qc ∈ S

m, Sc ∈ R
m×l, and

Sc ∈ S
l. Consider the closed-loop system consisting of the nonlinear discontinu-

ous dynamical systems G given by (103) and (104) and Gc given by (105) and (106),

and assume G and Gc are strongly zero-state observable. Furthermore, assume G is

strongly dissipative with respect to the supply rate s(u, y) = yTQy + 2yTSu + uTRu

and has a locally Lipschitz continuous, regular, and radially unbounded storage func-

tion Vs(·), and Gc is strongly dissipative with respect to the supply rate sc(uc, yc) =

yT
c Qcyc + 2yT

c Scuc + uT
c Rcuc and has a locally Lipschitz continuous, regular, and ra-

dially unbounded storage function Vsc(·). Finally, assume there exists σ > 0 such

that

Q̂ �

[
Q+ σRc −S + σST

c

−ST + σSc R+ σQc

]
≤ 0. (110)

Then the following statements hold:

i) The negative feedback interconnection of G and Gc is strongly Lyapunov stable.

ii) If Gc is strongly exponentially dissipative with respect to supply rate sc(uc, yc)

and rank[Gc(uc, 0)] = m, uc ∈ R
l, then the negative feedback interconnection of G and

Gc is globally strongly asymptotically stable.

iii) If G and Gc are strongly exponentially dissipative with respect to supply rates

s(u, y) and sc(uc, yc) and there exist constants α, β, αc, and βc > 0 such that (107)

and (108) hold, then the negative feedback interconnection of G and Gc is globally

strongly exponentially stable.

iv) If Q̂ < 0, then the negative feedback interconnection of G and Gc is globally

strongly asymptotically stable.

Proof. Statements i)–iii) are a direct consequence of Theorem 7.1 by noting that

s(u, y) + σsc(uc, yc) =

[
y

yc

]T

Q̂

[
y

yc

]
,

and hence, s(u, y) + σsc(uc, yc) ≤ 0.

To show iv) consider the Lyapunov function candidate V (x, xc) = Vs(x)+σVsc(xc).

Now, since G and Gc are strongly dissipative it follows that there exist u′, y′, u′c and

y′c with u′c = y′ and y′c = −u′ such that

d

dt
V (x, xc) ≤ maxLf̃V (x, xc)

≤ maxLf1
Vs(x) + σmaxLf2

Vsc(xc)

≤ s(u, y) + σsc(uc, yc)
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= yTQy + 2yTSu+ uTRu+ σ(yT
c Qcyc + 2yT

c Scuc + uT
c Rcuc)

=

[
y

yc

]T

Q̂

[
y

yc

]

≤ 0, a.e. (x, xc) ∈ R
n × R

nc ,

which implies that the negative feedback interconnection of G and Gc is strongly Lya-

punov stable. Next, let R � {(x, xc) ∈ R
n × R

nc : d
dt
V (x, xc) = 0 ∈ Lf̃V (x, xc)}

and note that d
dt
V (x, xc) = 0 if and only if (y, yc) = (0, 0). Now, since G and Gc

are strongly zero-state observable it follows that M = {(0, 0)} is the largest strongly

positively invariant set contained in R. Hence, it follows from Theorem 3.2 that

dist(ψ(t),M) → 0 as t → ∞ for all Filippov solutions ψ(·) of (109). Finally, global

strong asymptotic stability follows from the fact that Vs(·) and Vsc(·) are, by assump-

tion, radially unbounded, and hence, V (x, xc) → ∞ as ||(x, xc)|| → ∞.

The following corollary to Theorem 7.2 is necessary for the results in Section 11.

Corollary 7.1. Consider the closed-loop system consisting of the discontinuous non-

linear dynamical systems G given by (103) and (104), and Gc given by (105) and

(106). Let α, β, αc, βc, δ ∈ R be such that β > 0, 0 < α + β, 0 < 2δ < β − α,

αc = α+ δ, and βc = β− δ, let M ∈ R
m×m be positive definite, and assume G and Gc

are strongly zero-state observable. If G is strongly dissipative with respect to the supply

rate s(u, y) = uTMy+ αβ

α+β
yTMy+ 1

α+β
uTMu and has a locally Lipschitz continuous,

regular, and radially unbounded storage function Vs(·), and Gc is strongly dissipa-

tive with respect to the supply rate sc(uc, yc) = uT
c Myc − 1

αc+βc
yT

c Myc − αcβc

αc+βc
uT

c Muc

and has a locally Lipschitz continuous, regular, and radially unbounded storage func-

tion Vsc(·), then the negative feedback interconnection of G and Gc is globally strongly

asymptotically stable.

Proof. The proof is a direct consequence of Theorem 7.2 with Q = αβ

α+β
M , S = 1

2
M ,

R = 1
α+β

M , Qc = − 1
αc+βc

M , Sc = 1
2
M , and Rc = − αcβc

αc+βc
M . Specifically, let σ > 0

be such that

σ

(
δ2

(α + β)2
− 1

4

)
+

1

4
> 0.

In this case, Q̂ given by (110) satisfies

Q̂ =

[
( αβ

α+β
− σαcβc

αc+βc
)M σ−1

2
M

σ−1
2
M ( 1

α+β
− σ

αc+βc
)M

]
< 0,

so that all the conditions of Theorem 7.2 are satisfied.

The following corollary is a direct consequence of Theorem 7.2. Note that if a

nonlinear discontinuous dynamical system G is strongly dissipative with respect to a

supply rate s(u, y) = uTy− εuTu− ε̂yTy, where ε, ε̂ ≥ 0, then with κ(y) = ky, where



500 W. M. HADDAD

k ∈ R is such that k(1− εk) < ε̂, s(u, y) = [k(1− εk)− ε̂]yTy < 0, y �= 0. Hence, if G
is strongly zero-state observable it follows from Theorem 3.2 of [46] that all storage

functions of G are positive definite.

Corollary 7.2. Consider the closed-loop system consisting of the nonlinear discon-

tinuous dynamical systems G given by (103) and (104) and Gc given by (105) and

(106), and assume G and Gc are strongly zero-state observable. Then the following

statements hold:

i) If G is strongly passive, Gc is strongly exponentially passive, and rank[Gc(uc,0)]=

m, uc ∈ R
l, then the negative feedback interconnection of G and Gc is strongly asymp-

totically stable.

ii) If G and Gc are strongly exponentially passive with storage functions Vs(·)
and Vsc(·), respectively, such that (107) and (108) hold, then the negative feedback

interconnection of G and Gc is strongly exponentially stable.

iii) If G is strongly nonexpansive with gain γ > 0, Gc is strongly exponentially

nonexpansive with gain γc > 0, rank[Gc(uc, 0)] = m, uc ∈ R
l, and γγc ≤ 1, then the

negative feedback interconnection of G and Gc is strongly asymptotically stable.

iv) If G and Gc are strongly exponentially nonexpansive with storage functions

Vs(·) and Vsc(·), respectively, such that (107) and (108) hold, and with gains γ > 0

and γc > 0, respectively, such that γγc ≤ 1, then the negative feedback interconnection

of G and Gc is strongly exponentially stable.

Proof. The proof is a direct consequence of Theorem 7.2. Specifically, i) and ii) follow

from Theorem 7.2 with Q = Qc = 0, S = Sc = Im, and R = Rc = 0, whereas iii) and

iv) follow from Theorem 7.2 with Q = −Il, S = 0, R = γ2Im, Qc = −Ilc , Sc = 0, and

Rc = γ2
cImc

.

Example 7.1. Consider the nonlinear mechanical system G with a discontinuous

spring force given by

ẍ(t) + sign(x(t)) = u(t), x(0) = x0, ẋ(0) = ẋ0, a.e. t ≥ 0, (111)

y(t) =
1

2
ẋ(t), (112)

or, equivalently,

ẋ1(t) = x2(t), x1(0) = x10, a.e. t ≥ 0, (113)

ẋ2(t) = − sign(x1(t)) + u(t), x2(0) = x20, (114)

y(t) =
1

2
x2(t), (115)

and the continuous nonlinear second-order dynamic controller Gc given by

ẋc1(t) = −1

2
xc1(t) − xc2(t), xc1(0) = xc10, t ≥ 0, (116)
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Figure 4. State trajectories of the closed-loop system versus time

for the full-order controller.

ẋc2(t) = −10x3
c1(t) − 10xc2(t) + 5uc(t), xc2(0) = xc20, (117)

yc(t) = 10xc2(t). (118)

Furthermore, consider the feedback interconnection of (113)–(118) given by u = −yc

and uc = y. Next, let Vs(x) = |x1| + 1
2
x2

2 and note that, for almost all x ∈ R
2,

∂Vs(x1, x2) =

{
{sign(x1)} × {x2}, (x1, x2) ∈ R

2 : x1 �= 0,

[−1, 1] × {x2}, (x1, x2) ∈ R
2 : x1 = 0.

Hence, LfVs(x1, x2) = {0} and LGVs(x1, x2) = {x2}, which implies that minLfVs(x) =

maxLfVs(x) = 0 for almost all x ∈ R
2. Now, with ε = 0, �(x) = 0, and W(x) = 0,

(73)–(76) are satisfied. Hence, it follows from Corollary 6.1 that G is weakly passive.

Next, note that with Vsc(xc) = 10x4
c1 + 2x2

c2, ε ∈ (0, 2], �(xc) =

±
√

10x4
c1(2 − ε) + 2x2

c2(20 − ε), and W(xc) ≡ 0, it follows from Corollary 6.1 that Gc

is exponentially passive. Furthermore, rank[Gc(uc, 0)] = 1, uc ∈ R. Now, it follows

from ii) of Theorem 7.2 that the negative feedback interconnection of G and Gc is

globally asymptotically stable. Figure 4 shows the state trajectories of the closed-loop

system versus time for x(0) = [2,−2]T and xc(0) = 0.

Alternatively, we consider the reduced-order dynamic controller Gc given by

ẋc(t) = −10xc(t) + 20uc(t), xc(0) = xc0, t ≥ 0, (119)

yc(t) = 12xc(t). (120)

Note that with Vsc(xc) = 3
5
x2

c , ε = 20, �(xc) ≡ 0, and W(xc) ≡ 0, it follows from

Corollary 6.1 that Gc is exponentially passive. Moreover, rank[Gc(uc, 0)] = 1, uc ∈ R.

Hence, it follows from ii) of Theorem 7.2 that the negative feedback interconnection
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Figure 5. State trajectories of the closed-loop system versus time

for the reduced-order controller.

of G and Gc is globally asymptotically stable. Figure 5 shows the state trajectories of

the closed-loop system versus time for x(0) = [2,−2]T and xc(0) = 0. �

8. FINITE-TIME STABILITY OF FEEDBACK

INTERCONNECTIONS

In this section, we develop finite-time stability conditions for feedback intercon-

nections of dissipative discontinuous dynamical systems G and Gc given by (103) and

(104), and (105) and (106), respectively. Here, for simplicity of exposition, we assume

that J(x) ≡ 0 and Jc(uc, xc) ≡ 0, and Gc is strictly strongly dissipative with respect

to the supply rate sc(uc, yc), and if xc ≡ 0, then uc ≡ 0. The following definition is

needed for the main result of this section.

Definition 8.1. Consider the closed-loop nonlinear dynamical system G̃ consisting of

the nonlinear dynamical systems G and Gc with closed-loop system state x̃ = [xT, xT
c ]T,

where x ∈ R
n and xc ∈ R

nc. The zero solution x̃(·) = 0 of G̃ is partially finite-time

stable with respect to xc if the zero solution x̃(·) = 0 of G̃ is asymptotically stable and

there exists T ∈ [0,∞) such that xc(t) = 0 for all t ≥ T .

It follows from Definition 8.1 that if the zero solution x̃(·) = 0 of G̃ is partially

finite-time stable, then the zero solution x̃(·) = 0 of G̃ is asymptotically stable. How-

ever, the converse is not necessarily true. The following result gives partial finite-time

stability and finite-time stability results for feedback interconnected discontinuous dy-

namical systems.

Theorem 8.1. Consider the closed-loop system consisting of the nonlinear dynamical

systems G and Gc with input-output pairs (u, y) and (uc, yc), respectively, and with
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u = −yc and uc = y. Assume that G is zero-state observable, completely reachable,

and weakly dissipative with respect to the supply rate s(u, y) and with a locally Lipschitz

continuous and regular storage function Vs(·). Furthermore, assume that Gc is strictly

strongly dissipative with respect to the set-valued supply rate sc(uc, yc) and with a

locally Lipschitz continuous regular storage function Vsc(·), and with xc ≡ 0 implying

uc ≡ 0. If there exists a scalar κ > 0 such that s(u, y) + κsc(uc, yc) ≤ 0, for all

u ∈ R
m, y ∈ R

l, uc ∈ R
l, yc ∈ R

m such that uc = y and yc = −u, then the zero

solution of the closed-loop system given by G and Gc is partially finite-time stable with

respect to xc. If, alternatively, G is strictly strongly dissipative with respect to the

supply rate s(u, y), then the zero solution of the closed-loop system given by G and Gc

is finite-time stable.

Proof. Consider the Lyapunov function candidate Ṽ (x̃) � Vs(x) + κVsc(xc), where

x̃ � [xT, xT
c ]T. Now, it follows that

Ṽ (x̃(t)) − Ṽ (x̃(0)) ≤
∫ t

0

[s(u(σ), y(σ)) + κsc(uc(σ), yc(σ)) − εc]dσ

≤
∫ t

0

(−εc)dσ

≤ 0, t ≥ 0, (121)

which implies that the closed-loop system is Lyapunov stable.

Next, we show that xc(t), t ≥ 0, converges to zero in finite time. To see this,

suppose, ad absurdum, that this is not the case. Then it follows from (121) that

Ṽ (x̃(t)) ≤ Ṽ (x̃(0)) − εct, x̃(s) �= 0, 0 ≤ s ≤ t. (122)

Letting t → ∞ in (122) yields Ṽ (x̃(t)) → −∞, which contradicts that Ṽ (x̃) ≥ 0,

x̃ ∈ R
n+nc. Hence, there exists T ≥ 0 such that xc(t) = 0 for all t ≥ T .

Next, let R � {x̃ ∈ R
n+nc : maxLf̃ Ṽ (x̃) = 0} and let M be the largest weakly

invariant set contained in M. Since maxLf̃ Ṽ (x̃) < 0 for xc �= 0, it follows that

R ⊆ {x̃ ∈ R
n+nc : xc = 0}. On M, xc(t) ≡ 0 implies that uc(t) = 0 = y(t) and

0 = hc(xc(t)) = yc(t) = −u(t). By complete reachability and zero-state observability,

it follows that x(t) = 0 on M. Hence, M = {0}. Now, it follows from Theorem 3.2

that x̃(t) → M as t → ∞, and hence, x̃(t) → 0 as t → ∞, which implies that the

closed-loop system is asymptotically stable. Thus, the closed-loop system given by

G and Gc is partially finite-time stable with respect to xc. The proof of the second

assertion is similar and, hence, is omitted.

The following corollary is a direct consequence of Theorem 8.1. For this result

we assume that all storage functions of G and Gc are positive definite.
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Figure 6. State trajectories versus time

Corollary 8.1. Consider the closed-loop system consisting of the nonlinear discon-

tinuous dynamical systems G and Gc with input-output pairs (u, y) and (uc, yc), re-

spectively, and with u = −yc and uc = y. Furthermore, assume that G is zero-state

observable and completely reachable. If G is weakly passive and Gc is strictly strongly

passive with xc ≡ 0 implying uc ≡ 0, then the zero solution of the closed-loop system

given by G and Gc is partially finite-time stable with respect to xc. If, alternatively, G
is strictly strongly passive, then the zero solution of the closed-loop system given by G
and Gc is finite-time stable.

Proof. The proof is a direct consequence of Theorem 8.1.

Example 8.1. Consider the nonlinear dynamical system G given by

ẋ1(t) = x2(t), x1(0) = x10, t ≥ 0, (123)

ẋ2(t) = − tanh x1(t) + u(t), x2(0) = x20, (124)

y(t) = x2(t), (125)

and the discontinuous dynamic controller Gc given by

ẋc(t) = −sign(xc(t)) + uc(t), xc(0) = xc0, a.e. t ≥ 0, (126)

yc(t) = sign(xc(t)). (127)

Consider the feedback interconnection of (123)–(127) given by u = −yc and uc = y.

It is easy to verify that G is passive and Gc is strictly strongly passive with storage

functions Vs(x) =
∫ x1

0
tanh(σ)dσ+ 1

2
x2

2 and Vsc(xc) = |xc|, respectively. Now, it follows

from i) of Corollary 8.1 that the closed-loop system given by G and Gc is partially

finite-time stable with respect to xc. Figure 6 shows the state trajectories of the

closed-loop system versus time for x(0) = [2,−2]T and xc(0) = 0. �
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9. STABILITY MARGINS FOR DISCONTINUOUS FEEDBACK

REGULATORS

To develop relative stability margins for discontinuous nonlinear regulators con-

sider the discontinuous nonlinear dynamical system G given by

ẋ(t) = f(x(t)) +G(x(t))u(t), x(0) = x0, a.e. t ≥ 0, (128)

y(t) = −φ(x(t)), (129)

where f(·) and G(·) are Lebesgue measurable and locally essentially bounded, and

φ : R
n → R

m is a discontinuous feedback controller such that G is weakly (resp.,

strongly) asymptotically stable with u = −y. Furthermore, assume that the system G
is weakly (resp., strongly) zero-state observable. Next, we define the relative stability

margins for G given by (128) and (129). Specifically, let uc � −y, yc � u, and

consider the negative feedback interconnection u = Δ(−y) of G and Δ(·) given in

Figure 7, where Δ(·) is either a linear operator Δ(uc) = Δuc, a nonlinear static

operator Δ(uc) = σ(uc), or a dynamic nonlinear operator Δ(·) with input uc and

output yc. Furthermore, we assume that in the nominal case Δ(·) = I(·) so that the

nominal closed-loop system is weakly (resp., strongly) asymptotically stable.

Δ(·) G� �

Figure 7. Multiplicative input uncertainty of G and input operator Δ(·).

Definition 9.1. Let α, β ∈ R be such that 0 < α ≤ 1 ≤ β < ∞. Then the

discontinuous nonlinear dynamical system G given by (128) and (129) is said to have

a weak (resp., strong) gain margin (α, β) if the negative feedback interconnection of

G and Δ(uc) = Δuc is globally weakly (resp., strongly) asymptotically stable for all

Δ = diag[k1, . . . , km], where ki ∈ (α, β), i = 1, . . . , m.

Definition 9.2. Let α, β ∈ R be such that 0 < α ≤ 1 ≤ β < ∞. Then the

discontinuous nonlinear dynamical system G given by (128) and (129) is said to have

a weak (resp., strong) sector margin (α, β) if the negative feedback interconnection of

G and Δ(uc) = σ(uc) is globally weakly (resp., strongly) asymptotically stable for all

nonlinearities σ : R
m → R

m such that σ(0) = 0, σ(uc) = [σ1(uc1), . . . , σm(ucm)]T, and

αu2
ci < σi(uci)uci < βu2

ci, for all uci �= 0, i = 1, . . . , m.

Definition 9.3. Let α, β ∈ R be such that 0 < α ≤ 1 ≤ β < ∞. Then the

discontinuous nonlinear dynamical system G given by (128) and (129) is said to have

a weak (resp., strong) disk margin (α, β) if the negative feedback interconnection of

−

�
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G and Δ(·) is globally weakly (resp., strongly) asymptotically stable for all dynamic

operators Δ(·) such that Δ(·) is weakly (resp., strongly) zero-state observable and

weakly (resp., strongly) dissipative with respect to the supply rate s(uc, yc) = uT
c yc −

1

α̂+β̂
yT

c yc− α̂β̂

α̂+β̂
uT

c uc, where α̂ = α+δ, β̂ = β−δ, and δ ∈ R such that 0 < 2δ < β−α.

Definition 9.4. Let α, β ∈ R be such that 0 < α ≤ 1 ≤ β <∞. Then the discontin-

uous nonlinear dynamical system G given by (128) and (129) is said to have a weak

(resp., strong) structured disk margin (α, β) if the negative feedback interconnection

of G and Δ(·) is globally weakly (resp., strongly) asymptotically stable for all dy-

namic operators Δ(·) such that Δ(·) is weakly (resp., strongly) zero-state observable,

Δ(uc) = diag[δ1(uc1), . . . , δm(ucm)], and δi(·), i = 1, . . . , m, is weakly (resp., strongly)

dissipative with respect to the supply rate s(uci, yci) = uciyci− 1

α̂+β̂
y2

ci− α̂β̂

α̂+β̂
u2

ci, where

α̂ = α + δ, β̂ = β − δ, and δ ∈ R such that 0 < 2δ < β − α.

Remark 9.1. Note that if G has a weak (resp., strong) disk margin (α, β), then G
has weak (resp., strong) gain and sector margins (α, β).

10. NONLINEAR-NONQUADRATIC OPTIMAL REGULATORS FOR

DISCONTINUOUS DYNAMICAL SYSTEMS

In this section, we consider a control problem involving a notion of optimality

with respect to a nonlinear-nonquadratic cost functional. To address the optimal

control problem let D ⊆ R
n be an open set and let U ⊆ R

m, where 0 ∈ D and 0 ∈ U .

Next, consider the controlled nonlinear discontinuous dynamical system (22), where

u(·) is restricted to the class of admissible controls consisting of measurable functions

u(·) such that u(t) ∈ U for almost all t ≥ 0 and the constraint set U is given. Given

a control law φ(·) and a feedback control u(t) = φ(x(t)), the closed-loop dynamical

system shown in the Figure 8 is given by (23).

G

φ(x) �

�

Figure 8. Nonlinear closed-loop feedback system.

Next, we present a main theorem for characterizing feedback controllers that

guarantee stability of the controlled discontinuous dynamical system G and minimize

a nonlinear-nonquadratic performance functional. For the statement of this result let

L : D × U → R be Lipschitz continuous and define the set of regulation controllers

by

S(x0)
�

= {u(·) ∈ U : u(·) is measurable and locally essentially bounded,
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and x(·) driven by (1) satisfies x(t) → 0 as t→ ∞}.
Note that restricting our minimization problem to u(·) ∈ S(x0), that is, inputs corre-

sponding to null convergent solutions, can be interpreted as incorporating a system

detectability condition through the cost.

Theorem 10.1. Consider the controlled discontinuous nonlinear dynamical system

(22) with performance functional5

J(x0, u(·)) �

=

∫ ∞

0

L(x(t), u(t))dt, (130)

where (130) is defined with respect to absolutely continuous state arcs x(·) and mea-

surable control functions u : [0,∞) → U . Assume that there exists a locally Lipschitz

continuous and regular function V : D → R and a control law φ : D → U such that

V (0) = 0, (131)

V (x) > 0, x ∈ D, x �= 0, (132)

φ(0) = 0, (133)

maxLF (·,φ(·))V (x) < 0, a.e. x ∈ D, x �= 0, (134)

H(x, φ(x)) = 0, a.e. x ∈ D, (135)

H(x, u) ≥ 0, a.e. x ∈ D, u ∈ U, (136)

where

H(x, u)
�

= L(x, u) + minLF (·,u)V (x). (137)

Then, with the feedback control u(·) = φ(x(·)), the zero Filippov solution x(t) ≡ 0 of

the closed-loop system (23) is locally strongly asymptotically stable and there exists a

neighborhood of the origin D0 ⊆ D such that

J(x0, φ(x(·))) = V (x0), x0 ∈ D0. (138)

In addition, if x0 ∈ D0, then the feedback control u(·) = φ(x(·)) minimizes J(x0, u(·))
in the sense that

J(x0, φ(x(·))) = min
u(·)∈S(x0)

J(x0, u(·)). (139)

Finally, if D = R
n, U = R

m, and

V (x) → ∞ as ||x|| → ∞, (140)

then the zero Filippov solution x(t) ≡ 0 of the closed-loop system (23) is globally

strongly asymptotically stable.

5Since solutions to (22) are not necessarily unique, J(x0, u(·)) given by (130) depends on the

particular state trajectory x(·) along which we integrate. Alternatively, if we assume that f(·, u) is

essentially one-sided Lipschitz on Bδ(x) for some δ > 0, then there exists a unique Filippov solution

to (22) with initial condition x(t0) = x0 and u(t) ∈ U [33].
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Proof. Local and global strong asymptotic stability follow from (131)–(134) by ap-

plying Theorem 3.1 to the closed-loop system (23). Next, with u(t) ≡ ū(t), where

ū(·) is measurable and locally essentially bounded, let ψ̄(t), t ≥ 0, be any Filippov

solution of (22). Then, it follows that LF (·,ū(·))V (ψ̄(t)) ⊆ LF (·,u)V (ψ̄(t)) for almost

every t ≥ 0. Moreover, it follows from Lemma 6.1 that d
dt
V (ψ̄(t)) ∈ LF (·,ū(·))V (ψ̄(t))

for almost every t ≥ 0. Now, since ū(t) and ψ̄(t) are arbitrary, it follows that

minLF (·,u)V (x(σ)) ≤ d

dσ
V (x(σ))

≤ maxLF (·,u)V (x(σ)), a.e. σ ∈ [0, t], u ∈ U. (141)

Next, let x0 ∈ D0, let u(·) ∈ S(x0), and let x(t) for almost all t ≥ 0 be the

Filippov solution of (1). Then, it follows from (141) that

L(x(t), u(t)) ≥ −V̇ (x(t)) + L(x(t), u(t)) + minLF (·,u)V (x(t))

= −V̇ (x(t)) + H(x(t), u(t)), a.e. t ≥ 0. (142)

Furthermore, note that

V (x(t)) = V (x(t0)) +

∫ t

t0

d

dσ
V (x(σ))dσ, (143)

where the integral in (143) is the Lebesgue integral. Now, using (136), (142), (143),

and the fact that u(.) ∈ S(x0), it follows that

J(x0, u(·)) ≥
∫ ∞

0

[−V̇ (x(t)) + H(x(t), u(t))]dt

= − lim
t→∞

V (x(t)) + V (x0) +

∫ ∞

0

H(x(t), u(t))dt

= V (x0) +

∫ ∞

0

H(x(t), u(t))dt

≥ V (x0)

= J(x0, φ(x(·)),
which yields (139).

Note that (135) is the steady-state Hamilton-Jacobi-Bellman equation for the

discontinuous dynamical system (22) with the cost J(x0, u(·)). Since we are not

imposing that solutions to (135) be smooth, the Hamilton-Jacobi-Bellman equation

(135) should be interpreted in the viscosity sense (i.e., a viscosity supersolution)

[47, 48] or, equivalently, as in the proximal analysis formalism of [49]. Specifically,

since ∂V (x) ⊆ ∂V (x), where

∂V (x) �

{
p ∈ R

n : lim inf
‖h‖→0

V (x+ h) − V (x) − pTh

‖h‖ ≥ 0

}
,

denotes the subdifferential of V (·) at x [24,49], it follows from (136) that V (x) is a vis-

cosity supersolution of (135). However, in general, V (x) is not a viscosity subsolution
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of (135), which shows that the equivalence between optimal regulation, solvability of

the Hamilton-Jacobi-Bellman equation, and feedback stabilizability breaks down for

nonsmooth value functions V (·). It is important to note that Theorem 10.1 provides

constructive sufficient conditions for optimality of a feedback controller. Further-

more, this controller is stabilizing and its optimality is independent of the system

initial condition x0. Finally, necessary conditions for optimality of nonsmooth regu-

lation and existence of viscosity solutions of the resulting Hamilton-Jacobi-Bellman

equation are discussed in [50, 51].

Next, we specialize Theorem 10.1 to discontinuous affine dynamical systems.

Specifically, we construct discontinuous nonlinear feedback controllers using an op-

timal control framework that minimizes a nonlinear-nonquadratic performance cri-

terion. This is accomplished by choosing the controller such that the total gener-

alized derivative of the Lyapunov function is negative along the closed-loop system

trajectories while providing sufficient conditions for the existence of asymptotically

stabilizing viscosity supersolutions to the Hamilton-Jacobi-Bellman equation. Thus,

these results provide a family of globally stabilizing controllers parameterized by the

cost functional that is minimized.

The controllers obtained in this section are predicated on an inverse optimal con-

trol problem [16,52]. In particular, to avoid the complexity in solving the steady-state

Hamilton-Jacobi-Bellman equation we do not attempt to minimize a given cost func-

tional, but rather, we parameterize a family of stabilizing controllers that minimize

some derived cost functional that provides flexibility in specifying the control law.

Consider the discontinuous nonlinear affine dynamical system given by

ẋ(t) = f(x(t)) +G(x(t))u(t), x(0) = x0, a.e. t ≥ 0, (144)

where f : R
n → R

n, G : R
n → R

n×m, D = R
n, and U = R

m. We assume that f(·)
and G(·) are Lebesgue measurable and locally essentially bounded. Furthermore, we

consider performance integrands L(x, u) of the form

L(x, u) = L1(x) + L2(x)u+ uTR2(x)u, (145)

where L1 : R
n → R, L2 : R

n → R
1×m, and R2 : R

n → P
m with P

m denoting the set of

m×m positive definite matrices, so that (130) becomes

J(x0, u(·)) =

∫ ∞

0

[L1(x(t)) + L2(x(t))u(t) + uT(t)R2(x(t))u(t)]dt. (146)

Theorem 10.2. Consider the discontinuous nonlinear controlled affine dynamical

system (144) with performance functional (146). Assume that there exists a locally

Lipschitz continuous and regular function V : R
n → R such that

V (0) = 0, (147)

L2(0) = 0, (148)
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V (x) > 0, x ∈ R
n, x �= 0, (149)

maxL
[f(x)−

1
2

G(x)R−1

2
(x)LT

2
(x)−

1
2

G(x)R−1

2
(x)LGV T(x)]

V (x) < 0,

a.e. x ∈ R
n, x �= 0, (150)

and

V (x) → ∞ as ||x|| → ∞. (151)

Then the zero Filippov solution x(t) ≡ 0 of the closed-loop discontinuous dynamical

system

ẋ(t) = f(x(t)) +G(x(t))φ(x(t)), x(0) = x0, a.e. t ≥ 0, (152)

is globally strongly asymptotically stable with the feedback control law

φ(x) = −1
2
R−1

2 (x)[LGV (x) + L2(x)]
T, (153)

and the performance functional (146), with

L1(x) = φT(x)R2(x)φ(x) − minLfV (x), (154)

is minimized in the sense that

J(x0, φ(x(·))) = min
u(·)∈S(x0)

J(x0, u(·)), x0 ∈ R
n. (155)

Finally,

J(x0, φ(x(·))) = V (x0), x0 ∈ R
n. (156)

Proof. The result is a direct consequence of Theorem 10.1 with D = R
n, U = R

m,

L(x, u) = L1(x) +L2(x)u+ uTR2(x)u, and f(x, u) = f(x) +G(x)u. Specifically, with

(145) the Hamiltonian has the form

H(x, u) = L1(x) + L2(x)u+ uTR2(x)u+ minLfV (x) + LGV (x)u.

Now, the feedback control law (153) is obtained by setting ∂H
∂u

= 0. With (153),

it follows that (147), (149), (150), and (151) imply (131), (132), (134), and (140),

respectively. Next, since V (·) is locally Lipschitz continuous and regular, and x = 0 is

a local minimum of V (·), it follows that LGV (0) = 0, and hence, since by assumption

L2(0) = 0, it follows that φ(0) = 0, which implies (133). Next, with L1(x) given

by (154) and φ(x) given by (153), (135) holds. Finally, since H(x, u) = H(x, u) −
H(x, φ(x)) = [u− φ(x)]TR2(x)[u− φ(x)] and R2(x) is positive definite for almost all

x ∈ R
n, condition (136) holds. The result now follows as a direct consequence of

Theorem 10.1.
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Example 10.1. To illustrate the utility of Theorem 10.2 we consider a controlled

nonsmooth harmonic oscillator with nonsmooth friction given by [25]

ẋ1(t) = − sign(x2(t)) − 1

2
sign(x1(t)), x1(0) = x10, a.e. t ≥ 0, (157)

ẋ2(t) = sign(x1(t)) + u(t), x2(0) = x20, (158)

where sign(σ) � σ
|σ|

, σ �= 0, and sign(0) � 0. To construct an inverse optimal globally

stabilizing control law for (157) and (88) let V (x) = |x1| + |x2| and note that

∂V (x1, x2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{sign(x1)} × {sign(x2)}, (x1, x2) ∈ R
2 : x1 �= 0, x2 �= 0,

{sign(x1)} × [−1, 1], (x1, x2) ∈ R
2 : x1 �= 0, x2 = 0,

[−1, 1] × {sign(x2)}, (x1, x2) ∈ R
2 : x2 �= 0, x1 = 0,

co{(1, 1), (−1, 1), (−1,−1), (1,−1)}, (x1, x2) = (0, 0).

Hence,

LfV (x1, x2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{−1
2
}, (x1, x2) ∈ R

2 : x1 �= 0, x2 �= 0,

∅, (x1, x2) ∈ R
2 : x1 �= 0, x2 = 0,

∅, (x1, x2) ∈ R
2 : x2 �= 0, x1 = 0,

{0}, (x1, x2) = (0, 0),

LGV (x1, x2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{sign(x2)}, (x1, x2) ∈ R
2 : x1 �= 0, x2 �= 0,

∅, (x1, x2) ∈ R
2 : x1 �= 0, x2 = 0,

{sign(x2)}, (x1, x2) ∈ R
2 : x2 �= 0, x1 = 0,

{0}, (x1, x2) = (0, 0),

which implies that maxLfV (x) = 0, minLfV (x) = −1
2
, and LGV (x) = {sign(x2)}

for almost all x ∈ R
2.

Next, it follows that

Lf̃V (x1, x2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{−1 − 1
2
L2(x1, x2) sign(x2)}, (x1, x2) ∈ R

2 : x1 �= 0, x2 �= 0,

∅, (x1, x2) ∈ R
2 : x1 �= 0, x2 = 0,

{−1 − 1
2
L2(x1, x2) sign(x2)}, (x1, x2) ∈ R

2 : x2 �= 0, x1 = 0,

{0}, (x1, x2) = (0, 0),

where f̃ � f(x) − 1
2
G(x)R−1

2 (x)LT
2 (x) − 1

2
G(x)R−1

2 (x)LGV
T(x) with R2(x) ≡ 1. Let

L(x, u) = L1(x) + L2(x)u + u2. Now, L2(x) = x2 satisfies (150) so that the inverse

optimal control law (153) is given by

φ(x) = −1

2
[sign(x2) + x2], a.e. x ∈ R

2. (159)

In this case, the performance functional (146), with

L1(x) =
1

4
[sign(x2) + x2]

2 +
1

2
, a.e. x ∈ R

2, (160)
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is minimized in the sense of (155). Furthermore, using the feedback control law (159)

it follows that

Lf̃V (x1, x2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{−1 − 1
2
|x2|}, (x1, x2) ∈ R

2 : x1 �= 0, x2 �= 0,

∅, (x1, x2) ∈ R
2 : x1 �= 0, x2 = 0,

{−1 − 1
2
|x2|}, (x1, x2) ∈ R

2 : x2 �= 0, x1 = 0,

{0}, (x1, x2) = (0, 0).

Note that maxLf̃V (x) ≤ 0. Now, let R � {x ∈ R
2 : d

dt
V (x) = 0 ∈ Lf̃V (x)} and

note that d
dt
V (x) = 0 if and only if x = 0. Hence, since M = {(0, 0)} is the largest

strongly positively invariant set contained in R, it follows from Theorem 3.2 that

dist(ψ(t),M) → 0 as t → ∞ for all Filippov solutions ψ(·) of (157) and (88). Now,

since V (x) is radially unbounded, the feedback control law (159) is globally strongly

stabilizing. �

11. GAIN, SECTOR, AND DISK MARGINS OF NONLINEAR-

NONQUADRATIC OPTIMAL REGULATORS FOR

DISCONTINUOUS DYNAMICAL SYSTEMS

In this section, we derive guaranteed gain, sector, and disk margins for nonlin-

ear optimal and inverse optimal regulators that minimize a nonlinear-nonquadratic

performance criterion for discontinuous dynamical systems. Specifically, sufficient

conditions that guarantee gain, sector, and disk margins are given in terms of the

state, control, and cross-weighting nonlinear-nonquadratic weighting functions. In

particular, we consider the discontinuous nonlinear dynamical system given by

ẋ(t) = f(x(t)) +G(x(t))u(t), x(0) = x0, a.e. t ≥ 0, (161)

y(t) = −φ(x(t)), (162)

where f : R
n → R

n, G : R
n → R

n×m, D = R
n, U = R

m, and φ : R
n → R

m, with a

nonquadratic performance criterion

J(x0, u(·)) =

∫ ∞

0

[L1(x(t)) + L2(x(t))u(t) + uT(t)R2(x(t))u(t)]dt, (163)

where L1 : R
n → R, L2 : R

n → R
1×m, and R2 : R

n → R
m×m are given such that

R2(x) > 0, x ∈ R
n, and L2(0) = 0. Once again, we assume that f(·) and G(·)

are Lebesgue measurable and locally essentially bounded. In this case, the optimal

nonlinear feedback controller u = φ(x) that minimizes the nonlinear-nonquadratic

performance criterion (163) is given by the following result.

Theorem 11.1. Consider the discontinuous nonlinear dynamical system given by

(161) and (162) with performance functional (163). Assume that there exists a locally

Lipschitz continuous and regular function V : R
n → R such that

V (0) = 0, (164)
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V (x) > 0, x ∈ R
n, x �= 0, (165)

L2(0) = 0, (166)

maxL
[f(x)−

1
2

G(x)R−1

2
(x)LT

2
(x)−

1
2

G(x)R−1

2
(x)LGV T(x)]

V (x) < 0,

a.e. x ∈ R
n, x �= 0, (167)

L1(x)+minLfV (x)− 1
4
[LGV (x)+L2(x)]R

−1
2 (x)[LGV (x)+L2(x)]

T = 0, a.e. x ∈ R
n,

(168)

and

V (x) → ∞ as ‖x‖ → ∞. (169)

Then the zero Filippov solution x(t) ≡ 0 of the closed-loop discontinuous dynamical

system

ẋ(t) = f(x(t)) +G(x(t))φ(x(t)), x(0) = x0, a.e. t ≥ 0, (170)

is globally strongly asymptotically stable with the feedback control law

φ(x) = −1
2
R−1

2 (x)[LGV (x) + L2(x)]
T, (171)

and the performance functional (163) is minimized in the sense that

J(x0, φ(x(·))) = min
u(·)∈S(x0)

J(x0, u(·)), x0 ∈ R
n. (172)

Finally,

J(x0, φ(x(·))) = V (x0), x0 ∈ R
n. (173)

Proof. The proof is a direct consequence of Theorem 10.1.

The following key lemma is needed.

Lemma 11.1. Consider the discontinuous nonlinear dynamical system G given by

(161) and (162) where φ(x) is a strongly stabilizing feedback control law given by

(171). Suppose V (x), x ∈ R
n, satisfies

0 = minLfV (x) + L1(x) − 1
4
[LGV (x) + L2(x)]R

−1
2 (x)[LGV (x) + L2(x)]

T, (174)

[maxLfV (x) − minLfV (x)] ≤ L1(x)

− 1
4(1−θ2)

L2(x)R
−1
2 (x)LT

2 (x), a.e. x ∈ R
n, (175)

with θ ∈ R such that 0 < θ < 1. Then, for almost all u(t) ∈ U and t1, t2 ≥ 0, t1 < t2,

the solution x(t), t ≥ 0, to (161) satisfies

V (x(t2)) ≤
∫ t2

t1

{
[u(t) + y(t)]TR2(x(t))[u(t) + y(t)]

−θ2uT(t)R2(x(t))u(t)
}
dt+ V (x(t1)). (176)
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Proof. Note that it follows from (171), (174), and (175) that for almost all x ∈ R
n

and u ∈ R
m,

θ2uTR2(x)u ≤ θ2uTR2(x)u+

[
1

2
√

1 − θ2
L2(x)R

−1
2 (x) +

√
1 − θ2uT

]

×R2(x)

[
1

2
√

1 − θ2
L2(x)R

−1
2 (x) +

√
1 − θ2uT

]T

= uTR2(x)u+
1

4(1 − θ2)
L2(x)R

−1
2 (x)LT

2 (x) + L2(x)u

≤ uTR2(x)u+ L2(x)u+ L1(x) − [maxLfV (x) − minLfV (x)]

= uTR2(x)u+ [L2(x) + LGV (x)]u+ minLfV (x) − minLfV (x)

+φT(x)R2(x)φ(x) − maxLfV (x) − LGV (x)u

= [u+ y]TR2(x)[u+ y] − maxLfV (x) − LGV (x)u. (177)

Next, using the sum rule for the generalized gradient of locally Lipschitz con-

tinuous functions [40] it follows that Lf+GuV (x) ⊆ LfV (x) + LGuV (x) for almost

all x ∈ R
n. Now, it follows from Lemma 6.1 that d

dt
V (x(t)) ∈ Lf+GuV (x(t)) ⊆

LfV (x(t)) + LGuV (x(t)) for almost all t ≥ 0. Hence,

d

dt
V (x(t)) ≤ maxLf+GuV (x(t))

≤ max [LfV (x(t)) + LGV (x(t))u(t)]

= maxLfV (x(t)) + LGV (x(t))u(t), a.e. t ≥ 0, u(t) ∈ U. (178)

It follows from (177) and (178) that, for all u(t) ∈ U and almost all t ≥ 0,

θ2uT(t)R2(x(t))u(t) ≤ [u(t) + y(t)]TR2(x(t))[u(t) + y(t)] − d

dt
V (x(t)).

Now, integrating over [t1, t2] and using (143) yields (176).

Note that with R2(x) ≡ Im condition (176) is the counterpart, for discon-

tinuous dynamical systems, of the return difference condition for continuous-time

and discrete-time systems [31, 32, 53]. Next, using the extended nonlinear Kalman-

Yakubovich-Popov conditions for discontinuous dynamical systems given by Theo-

rem 6.1, we show that for a given nonlinear dynamical system G given by (161) and

(162), there exists an equivalence between optimality and dissipativity. For the fol-

lowing result we assume that for the given discontinuous nonlinear system (161), if

there exists a feedback control law φ(x) that minimizes the performance functional

(163) with R2(x) ≡ Im, L2(x) ≡ 0, and L1(x) ≥ 0, x ∈ R
n, then there exists a lo-

cally Lipschitz continuous, regular, and positive-definite function V (x), x ∈ R
n, such

that (174) and (175) are satisfied. Necessary and sufficient conditions such that the

aforementioned statement holds, modulo (175) holding, are given in Theorem 3.7.6

of [24].
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Theorem 11.2. Consider the discontinuous nonlinear dynamical system G given by

(161) and (162). The feedback control law u = φ(x) is optimal with respect to a

performance functional (163) with R2(x) ≡ Im, L2(x) ≡ 0, and L1(x) ≥ 0, x ∈ R
n, if

and only if the nonlinear system G is strongly dissipative with respect to the supply rate

s(u, y) = yTy+2uTy and has a locally Lipschitz continuous, regular, positive-definite,

and radially unbounded storage function V (x), x ∈ R
n.

Proof. If the control law φ(x) is optimal with respect to a performance functional

(163) with R2(x) ≡ Im, L2(x) ≡ 0, and L1(x) ≥ 0, x ∈ R
n, then, by assumption,

there exists a locally Lipschitz continuous, regular, and positive-definite function V (x)

such that (174) and (175) are satisfied. Hence, it follows from Lemma 11.1 that the

solution x(t), t ≥ 0, to (161) satisfies

V (x(t2)) ≤
∫ t2

t1

{
[u(t) + y(t)]T[u(t) + y(t)] − uT(t)u(t)

}
dt+ V (x(t1)), 0 ≤ t1 ≤ t2,

which implies that G is strongly dissipative with respect to the supply rate s(u, y) =

yTy + 2uTy.

Conversely, if G is strongly dissipative with respect to the supply rate s(u, y) =

yTy + 2uTy and has a locally Lipschitz continuous, regular, and positive-definite

storage function, then, with h(x) = −φ(x), J(x) ≡ 0, Q = Im, R = 0, and S = Im,

it follows from Theorem 6.1 that there exists a function � : R
n → R

p such that

φ(x) = −1
2
LGV

T(x) and, for almost all x ∈ R
n,

0 = minLfV (x) − 1
4
LGV (x)LGV

T(x) + �T(x)�(x).

Now, the result follows from Theorem 11.1 with L1(x) = �T(x)�(x).

Example 11.1. Consider the controlled discontinuous dynamical system G represent-

ing a mass sliding on a horizontal surface subject to a Coulomb frictional force given

in Example 6.1. Let V (x) = x2 and note that LfV (x) = {−|x|} and LGV (x) = {2x}
for almost all x ∈ R. Next, it follows that

Lf̃V (x) = −|x| − L2(x)x− 2x2,

where f̃ � f(x) − 1
2
G(x)R−1

2 (x)LT
2 (x) − 1

2
G(x)R−1

2 (x)LGV
T(x) with R2(x) ≡ 1. Let

L(x, u) = L1(x)+L2(x)u+u2. Now, L2(x) = 2x satisfies maxLf̃V (x) < 0 for almost

all x ∈ R, x �= 0, so that the inverse optimal control law is given by

φ(x) = −1

2
[2x+ 2x] = −2x, a.e. x ∈ R. (179)

In this case, the performance functional J(x0, u(·)) =
∫ ∞

0
L(x, u)dt, with

L1(x) = 4x2 + |x|, a.e. x ∈ R, (180)
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is minimized in the sense that

J(x0, φ(x(·))) = min
u(·)∈S(x0)

J(x0, u(·)), x0 ∈ R.

Furthermore, using the feedback control law (179) it follows that

Lf̃V (x) = −|x| − 4x2, a.e x ∈ R.

Note that maxLf̃V (x) ≤ 0. Now, let R � {x ∈ R : d
dt
V (x) = 0 ∈ Lf̃V (x)} and

note that d
dt
V (x) = 0 if and only if x = 0. Hence, since M = {0} is the largest

strongly positively invariant set contained in R, it follows from Theorem 3.2 that

dist(ψ(t),M) → 0 as t → ∞ for all Filippov solutions ψ(·) of (48). Now, since V (x)

is radially unbounded, the feedback control law (179) is globally strongly stabilizing.

Next, note that with L2(x) ≡ 0 it follows from the above analysis that the optimal

control law φ(x) = −x minimizes the cost functional

J(x0, u(·)) =

∫ ∞

0

[x2(t) + |x(t)| + u2(t)]dt. (181)

Now, it follows from Theorem 6.2 that the discontinuous nonlinear dynamical system

G is strongly dissipative with respect to the supply rate s(u, y) = y2 + 2uy, where

y = −φ(x) = x. To show this, consider the storage function Vs(x) = V (x) = x2.

Next, with J(x) ≡ 0, Q = 1, R = 0, S = 1, and ε = 0, the extended Kalman-

Yakubovich-Popov conditions given in Theorem 6.1 become

0 = minLfVs(x) − h2(x) + �T(x)�(x), (182)

0 =
1

2
LGVs(x) − h(x) + �T(x)W(x), (183)

0 = −WT(x)W(x), (184)

�T(x)�(x) ≥ [maxLfVs(x) − minLfVs(x)] . (185)

Now, with h(x) = −φ(x) = x, W(x) = 0, and L1(x) = �T(x)�(x), conditions

(182)–(184) are satisfied. Furthermore, (185) is equivalent to (175) which is satisfied

since φ(x) = −x is optimal. Hence, it follows from Theorem 6.1 that G is strongly

dissipative with respect to the supply rate s(u, y) = y2 + 2uy. �

Example 11.2. Consider the discontinuous nonlinear dynamical system G given in

Example 10.1. Note that with R2(x) ≡ 1 and L2(x) ≡ 0 it follows from the analysis

given in Example 10.1 that the optimal control law φ(x) = −1
2
sign(x2) minimizes the

cost functional

J(x0, u(·)) =

∫ ∞

0

[
1

2
+

1

4
sign2(x2(t)) + u2(t)]dt.

Now, it follows from Theorem 11.2 that the discontinuous nonlinear dynamical system

G is strongly dissipative with respect to the supply rate s(u, y) = y2 + 2uy, where

y = −φ(x) = 1
2
sign(x2). To show this, consider the storage function Vs(x) = V (x) =
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|x1| + |x2|. Next, with J(x) ≡ 0, Q = 1, R = 0, and S = 1, the extended Kalman-

Yakubovich-Popov conditions given in Theorem 6.1 become

0 = minLfVs(x) − hT(x)h(x) + �T(x)�(x), (186)

0 =
1

2
LGVs(x) − hT(x) + �T(x)W(x), (187)

0 = −WT(x)W(x), (188)

�T(x)�(x) ≥ [maxLfVs(x) − minLfVs(x)] , a.e. x ∈ R
2. (189)

Next, it was shown in Example 10.1 that maxLfVs(x) = 0, minLfVs(x) = −1
2
,

and LGVs(x) = {sign(x2)}. Now, with h(x) = −φ(x) = 1
2
sign(x2), W(x) = 0,

and L1(x) = �T(x)�(x), conditions (186)–(188) are satisfied. Furthermore, (189) is

equivalent to (175) which is satisfied since φ(x) = −1
2
sign(x2) is optimal. Hence, it

follows from Theorem 6.1 that G is strongly dissipative with respect to the supply

rate s(u, y) = y2 + 2uy. �

Next, we present disk margins for the nonlinear-nonquadratic optimal regulator

given by Theorem 11.1. First, we consider the case in which R2(x), x ∈ R
n, is a

constant diagonal matrix.

Theorem 11.3. Consider the discontinuous nonlinear dynamical system G given by

(161) and (162) where φ(x) is a strongly stabilizing feedback control law given by (171)

and where V (x), x ∈ R
n, satisfies (174) and (175) with θ ∈ R such that 0 < θ < 1. If

R2(x) ≡ diag[r1, . . . , rm], where ri > 0, i = 1, . . . , m, then the discontinuous nonlinear

system G has a strong structured disk margin ( 1
1+θ

, 1
1−θ

). If, in addition, R2(x) ≡ Im,

then the discontinuous nonlinear system G has a strong disk margin ( 1
1+θ

, 1
1−θ

).

Proof. Note that for all u(t) ∈ U and almost all t1, t2 ≥ 0, t1 < t2, it follows from

Lemma 11.1 that the solution x(t), t ≥ 0, to (161) satisfies

V (x(t2)) − V (x(t1))≤
∫ t2

t1

{
[u(t) + y(t)]TR2[u(t) + y(t)] − θ2uT(t)R2u(t)

}
dt.

Hence, with the storage function Vs(x) = 1
2
V (x), G is strongly dissipative with respect

to the supply rate s(u, y) = uTR2y + 1−θ2

2
uTR2u + 1

2
yTR2y. Now, the result is a

direct consequence of Corollary 7.1 and Definitions 9.4 and 9.3 with α = 1
1+θ

and

β = 1
1−θ

.

Next, we consider the case in which R2(x), x ∈ R
n, is not a diagonal constant

matrix. For the following result define

γ̄
�

= ess sup
x∈Rn

σmax(R2(x)), γ
�

= ess inf
x∈Rn

σmin(R2(x)), (190)

where R2(x) is such that γ̄ <∞ and γ > 0.
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Theorem 11.4. Consider the discontinuous nonlinear dynamical system G given by

(161) and (162) where φ(x) is a strongly stabilizing feedback control law given by (171)

and suppose V (x), x ∈ R
n, satisfies (174) and (175) with θ ∈ R such that 0 < θ < 1.

Then the discontinuous nonlinear system G has a strong disk margin ( 1
1+ηθ

, 1
1−ηθ

),

where η
�

=
√
γ/γ̄.

Proof. Note that for almost all u(t) ∈ U and t1, t2 ≥ 0, t1 < t2, it follows from

Lemma 11.1 that the solution x(t), t ≥ 0, to (161) satisfies

V (x(t2)) − V (x(t1)) ≤
∫ t2

t1

{
[u(t) + y(t)]TR2(x(t))[u(t) + y(t)]

− θ2uT(t)R2(x(t))u(t)
}
dt,

which implies that

V (x(t2)) − V (x(t1)) ≤
∫ t2

t1

{
γ̄[u(t) + y(t)]T[u(t) + y(t)] − γθ2uT(t)u(t)

}
dt.

Hence, with the storage function Vs(x) = 1
2γ
V (x), G is strongly dissipative with

respect to the supply rate s(u, y) = uTy+ 1−η2θ2

2
uTu+ 1

2
yTy. Now, the result is a direct

consequence of Corollary 7.1 and Definition 9.3 with α = 1
1+ηθ

and β = 1
1−ηθ

.

Next, using Theorem 3.2 we provide an alternative result that guarantees sector

and gain margins for the case in which R2(x), x ∈ R
n, is diagonal.

Theorem 11.5. Consider the discontinuous nonlinear dynamical system G given by

(161) and (162) where φ(x) is a strongly stabilizing feedback control law given by

(171) and suppose V (x), x ∈ R
n, satisfies (174) and (175) with θ ∈ R such that

0 < θ < 1. Furthermore, let R2(x) = diag [r1(x), . . . , rm(x)], where ri : R
n → R,

ri(x) > 0, i = 1, . . . , m. If G is strongly zero-state observable, then the discontinuous

nonlinear system G has a strong sector (and, hence, gain) margin ( 1
1+θ

, 1
1−θ

).

Proof. Let Δ(−y) = σ(−y), where σ : R
m → R

m is a static nonlinearity such that

σ(0) = 0, σ(v) = [σ1(v1), . . . , σm(vm)]T, and αv2
i < σi(vi)vi < βv2

i , for all vi �= 0, i =

1, . . . , m, where α = 1
1+θ

and β = 1
1−θ

; or, equivalently, (σi(vi)−αvi)(σi(vi)−βvi) < 0,

for all vi �= 0, i = 1, . . . , m. In this case, the closed-loop discontinuous system (161)

and (162) with u = σ(−y) is given by

ẋ(t) = f(x(t)) +G(x(t))σ(φ(x(t))), x(0) = x0, a.e. t ≥ 0. (191)

Next, consider the locally Lipschitz continuous and regular Lyapunov function can-

didate V (x), x ∈ R
n. Now, it follows from (174), (175), and (178) that

d

dt
V (x) ≤ maxLf+GσV (x)

≤ max [LfV (x) + LGσV (x)]
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= maxLfV (x) + LGV (x)σ(φ(x))

≤ minLfV (x) + LGV (x)σ(φ(x)) + L1(x) − 1
4(1−θ2)

L2(x)R
−1
2 (x)LT

2 (x)

+ (1 − θ2)
[
σ(φ(x)) + 1

2(1−θ2)
R−1

2 (x)LT
2 (x)

]T

R2(x)

×
[
σ(φ(x)) + 1

2(1−θ2)
R−1

2 (x)LT
2 (x)

]
= minLfV (x) + L1(x) + LGV (x)σ(φ(x)) + (1 − θ2)σT(φ(x))R2(x)σ(φ(x))

+ L2(x)σ(φ(x))

= φT(x)R2(x)φ(x) − 2φT(x)R2(x)σ(φ(x)) + (1 − θ2)σT(φ(x))R2(x)σ(φ(x))

=

m∑
i=1

ri(x)(
1
β
σi(−yi) + yi)(

1
α
σi(−yi) + yi)

= 1
αβ

m∑
i=1

ri(x) (σi(−yi) + αyi) (σi(−yi) + βyi)

≤ 0, a.e. x ∈ R
n,

which implies that the closed-loop discontinuous system (191) is strongly Lyapunov

stable.

Next, let R �

= {x ∈ R
n : d

dt
V (x) = 0 ∈ Lf+GσV (x)} and note that d

dt
V (x) = 0

if and only if y = 0. Now, since G is strongly zero-state observable it follows that

M �

= {x ∈ R
n : x = 0} is the largest weakly positively invariant set contained in

R. Hence, it follows from Theorem 3.2 that x(t) → M = {0} as t → ∞. Thus, the

closed-loop discontinuous system (191) is globally strongly asymptotically stable for

all σ(·) such that αv2
i < σi(vi)vi < βv2

i , vi �= 0, i = 1, . . . , m, which implies that the

discontinuous nonlinear system G given by (161) and (162) has strong sector (and,

hence, gain) margin (α, β).

Note that in the case where R2(x), x ∈ R
n, is diagonal, Theorem 11.5 guarantees

larger strong gain and sector margins to the strong gain and sector margin guarantees

provided by Theorem 11.4. However, Theorem 11.5 does not provide strong disk

margin guarantees.

12. CONCLUSION

In this paper, we extended the notions of stability theory and dissipativity theory

for continuous dynamical systems with continuously differentiable flows to discontin-

uous dynamical systems whose solutions are characterized by Filippov set-valued

maps. Furthermore, extended Kalman-Yakubovich-Popov conditions in terms of the

discontinuous system dynamics for characterizing dissipativity via generalized Clarke

gradients of locally Lipschitz continuous storage functions were developed. In ad-

dition, using the concepts of dissipativity for discontinuous dynamical systems with
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appropriate storage functions and supply rates, general stability criteria for feed-

back interconnections of discontinuous dynamical systems were given. The notion

of optimality for time-invariant discontinuous control systems on the infinite interval

utilizing a steady-state Hamilton-Jacobi-Bellman approach for characterizing optimal

discontinuous nonlinear feedback controllers was also considered. Moreover, sufficient

conditions for gain, sector, and disk margin guarantees for discontinuous nonlinear

systems controlled by nonlinear optimal and inverse optimal regulators that minimize

a nonlinear-nonquadratic performance criterion were derived. Using these results,

connections between dissipativity and optimality of discontinuous nonlinear systems

were established. These results provide a generalization of the meaningful inverse

optimal nonlinear regulator stability margins as well as the classical linear-quadratic

optimal regulator gain and phase margins to discontinuous nonlinear regulators.
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