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Asymptotic and Finite-Time Semistability for
Nonlinear Discrete-Time Systems With

Application to Network Consensus
Wassim M. Haddad , Fellow, IEEE, Junsoo Lee , and Sanjay P. Bhat

Abstract—This article focuses on semistability and finite-
time semistability analysis and synthesis of discrete-
time dynamical systems having a continuum of equilibria.
Semistability is the property whereby the solutions of a
dynamical system converge to Lyapunov stable equilibrium
points determined by the system initial conditions. In this
article, we build on the theories of semistability and finite-
time semistability for continuous-time dynamical systems
to develop a rigorous framework for discrete semistabil-
ity and discrete finite-time semistability. Specifically, Lya-
punov and converse Lyapunov theorems for semistability
and finite-time semistability are developed, and the reg-
ularity properties of the Lyapunov function establishing
finite-time semistability are shown to be related to the set-
tling time function capturing the finite settling time behav-
ior of the dynamical system. These results are then used
to develop a general framework for designing semistable
and finite-time semistable consensus protocols for discrete
dynamical networks for achieving multiagent coordination
tasks asymptotically and in finite time. The proposed con-
troller architectures involve the exchange of generalized
energy state information between agents guaranteeing that
the closed-loop dynamical network is semistable to an
equipartitioned equilibrium representing a state of consen-
sus consistent with basic thermodynamic principles.

Index Terms—Consensus control, discrete systems,
finite-time semistability, Lyapunov theorems, nonlinear net-
works, semistability, thermodynamic protocols.

I. INTRODUCTION

FOR continuous-time dynamical systems, the authors in
[1]–[4] developed a unified stability analysis framework for

systems having a continuum of equilibria. Since every neighbor-
hood of a nonisolated equilibrium contains another equilibrium,
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a nonisolated equilibrium cannot be asymptotically stable nor
finite-time stable. Hence, asymptotic and finite-time stability
are not the appropriate notions of stability for systems having
a continuum of equilibria. Two notions that are of particular
relevance to such systems are convergence and semistability.
Convergence is the property whereby every system solution
converges (asymptotically or in finite time) to a limit point
that may depend on the system initial conditions. Semistability
(resp., finite-time semistability) is the additional requirement
that all solutions converge asymptotically (resp., in finite time)
to limit points that are Lyapunov stable. Semistability (resp.,
finite-time semistability) for an equilibrium, thus, implies Lya-
punov stability, and is implied by asymptotic (resp., finite time)
stability.

It is important to note that semistability and set stability of
an equilibrium set are independent notions. Indeed, as shown
in [1], it is possible for a trajectory to converge to the set of
equilibria without converging to any one equilibrium point.
Conversely, semistability does not imply that the equilibrium
set is asymptotically stable in any accepted sense [3]. For
continuous-time systems, this is further discussed in [1]–[3]
and [5], with [5] characterizing limit sets within curves where
trajectories converge to a continuum of not necessarily Lyapunov
stable fixed points.

In this article, we build on the theories of semistability and
finite-time semistability for continuous-time dynamical sys-
tems developed in [1]–[4] to develop a rigorous framework for
semistability and finite-time semistability for discrete-time sys-
tems. First, in Section III, we develop the notion of semistability
for discrete-time systems and give several alternative equiv-
alent characterizations for semistability. Then, in Section IV,
we develop the theory of discrete semistability by presenting
Lyapunov theorems as well as converse Lyapunov theorems
for discrete semistability, which hold with continuous Lya-
punov functions whose Lyapunov difference decreases along
the dynamical system trajectories and is such that the Lyapunov
function satisfies inequalities involving the distance to the set of
equilibria.

Next, in Sections V and VI, we develop the notion of
finite-time semistability and establish finite-time semistability
theory for discrete-time nonlinear dynamical systems.
Specifically, using existence and uniqueness of solutions, we
define a settling-time function for a finite-time semistable system
and establish a lower semicontinuity property of this function.
Then, we develop sufficient Lyapunov stability theorems for
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finite-time semistability and establish a relationship between
finite-time convergence and finite-time semistability. In
addition, we present the first converse Lyapunov theorems for
discrete finite-time semistability, which are shown to hold for
lower semicontinuous Lyapunov functions.

A sizable body of work has emerged in recent years that
addresses the distributed consensus problem using the tools of al-
gebraic graph theory (see, for example, [6]–[16] for continuous-
time networks and [17]–[23] for discrete-time networks). In [4]
and [24]–[26], the authors present an alternative perspective to
the distributed consensus problem based on dynamical thermo-
dynamics [27], [28]; a framework that unifies the foundational
disciplines of thermodynamics and dynamical systems theory.
Dynamical thermodynamics was developed in [27] and [28]
to address the formulation of equilibrium and nonequilibrium
thermodynamics in a dynamical systems setting. Dynamical
thermodynamics has also been used to apply thermodynamic
principles to the analysis and control design of dynamical sys-
tems using an energy- and entropy-based hybrid stabilization
framework [29]–[31].

By generalizing the notions of temperature, energy, and en-
tropy, dynamical thermodynamics is used in [4] and [24]–[26] to
develop a design procedure for distributed consensus controllers
that induce networked dynamical systems that emulate a ther-
modynamic behavior. In particular, for network systems with an
undirected communication graph topology, system thermody-
namic notions are used to show that every control law protocol of
a symmetric Fourier type, with information (or communication)
transfer playing the role of energy flow, achieves information
consensus [4], [24]–[26].

Unlike most of the distributed nonlinear consensus proto-
cols presented in the literature that merely guarantee system
convergence, the thermodynamics-based control framework for
network systems [4], [24]–[26] addresses both convergence and
Lyapunov stability. From a practical viewpoint, it is not sufficient
for a nonlinear control protocol to only guarantee that a network
converges to a state of consensus since steady-state convergence
is not sufficient to guarantee that small perturbations from the
limiting state will lead to only small transient excursions from
a state of consensus. It is also necessary to guarantee that the
equilibrium states representing consensus are Lyapunov stable,
and consequently, semistable [1], [3], [24].

In Section VII, we use the results of Sections IV and VI to
develop consensus protocols for multiagent systems with non-
linear discrete dynamics. Specifically, we use our discrete-time
semistability and discrete-time finite-time semistability frame-
works to design distributed asymptotic and finite-time consensus
control protocols for nonlinear dynamical networks with bidirec-
tional communication graph topologies. The proposed controller
architectures are predicated on the recently developed notion of
discrete dynamical thermodynamics [28] resulting in controller
architectures involving the exchange of generalized energy state
information between agents that guarantee that the closed-loop
dynamical network is consistent with basic thermodynamic
principles. Finally, we note that even though some of the proofs
of the results in this article are similar to their continuous-time
counterparts given in [28], for completeness of exposition we
provide self-contained proofs here.

We begin by establishing notation, definitions, and mathemat-
ical preliminaries in Section II.

II. MATHEMATICAL PRELIMINARIES

In this section, we establish notation, definitions, and present
some key results needed for developing the main results of this
article. Let R denote the set of real numbers, R+ denote the
set of positive real numbers, R+ denote the set of nonnegative
numbers, Rn denote the set of n× 1 real column vectors, Rn×m

denote the set of n×m real matrices, Z denote the set of
integers, Z+ denote the set of positive integers, Z+ denote the
set of nonnegative integers, and (·)T denote transpose. We write
Bε(x) for the open ball centered at x with radius ε and ‖ · ‖
and ‖ · ‖∞ for the Euclidean and infinity vector norms in Rn,
respectively.

Consider the discrete-time nonlinear dynamical system

x(k + 1) = f(x(k)), x(0) = x0, k ∈ Z+ (1)

where x(k) ∈ D ⊆ Rn, k ∈ Z+, is the system state vector, D
is an open set, 0 ∈ D, f : D → D is continuous on D, and
Δf−1(0) � {x ∈ D : f(x) = x} is nonempty. We denote the
solution to (1) with initial condition x(0) = x0 by s(·, x0)
so that the map of the dynamical system given by s : Z+ ×
D → D is continuous on D and satisfies the consistency prop-
erty s(0, x0) = x0 and the semigroup property s(κ, s(k, x0)) =
s(k + κ, x0) for all x0 ∈ D and k, κ ∈ Z+. We use the notation
s(k, x0), k ∈ Z+, and x(k), k ∈ Z+, interchangeably as the
solution of the nonlinear discrete-time dynamical system (1)
with initial condition x(0) = x0. By a solution to (1) with
initial condition x(0) = x0, we mean a function x : Z+ → D
that satisfies (1). Given k ∈ Z+ and x ∈ D, we denote the map
s(k, ·) : D → D by sk and the map s(·, x) : Z+ → D by sx.

If f(·) is continuous, then it follows that f(s(k − 1, ·)) is
also continuous since it is constructed as a composition of
continuous functions. Hence, s(k, ·) is continuous on D. If f(·)
is such that f : Rn → Rn, then we can construct the solution
sequence or discrete trajectoryx(k) = s(k, x0) to (1) iteratively
by setting x(0) = x0 and using f(·) to define x(k) recursively
by x(k + 1) = f(x(k)). This iterative process can be continued
indefinitely, and hence, a solution to (1) exists for all k ≥ 0.

Alternatively, if f(·) is such that f : D → Rn, then the so-
lution may cease to exist at some point if f(·) maps x(k) into
some point x(k + 1) outside the domain of f(·). In this case,
the solution sequence x(k) = s(k, x0) will be defined on the
maximal interval of existencex(k),k ∈ I+

x0
⊂ Z+. Note that the

solution sequence x(k), k ∈ I+
x0

, is uniquely defined for every
initial condition x0 ∈ D irrespective of whether or not f(·) is a
continuous function. That is, any other solution sequence y(k)
starting from x0 at k = 0 will take exactly the same values as
x(k) and can be continued to the same interval as x(k). It is
important to note that if k ∈ Z+, then uniqueness of solutions
backward in time need not necessarily hold. This is due to the
fact that s(k, x0) = f−1(s(k + 1, x0)), k ∈ Z+, and there is
no guarantee that f(·) is invertible for all k ∈ Z+. However,
if f : D → D is a homeomorphism for all k ∈ Z+, then the
solution sequence is unique for all k ∈ Z.

In light of the abovementioned, the following theorem is
immediate.

Theorem 2.1 (see [3]): Consider the nonlinear dynamical
system (1) and assume that f : D → D. Then, for every x0 ∈ D,
there exists I+

x0
⊆ Z+ such that (1) has a unique solution

x : I+
x0

→ Rn. Moreover, if f(·) is continuous, then the solution
s(k, ·) is continuous for each k ∈ I+

x0
. If, in addition, f(·) is a
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homeomorphism of D onto Rn, then the solution x : I+
x0

→ Rn

is unique in all Ix0
⊆ Z and s(k, ·) is continuous for all k ∈ Ix0

.
Finally, if D = Rn, then Ix0

= Z.
The following definition introduces the notion of class Wd

functions involving nondecreasing functions.
Definition 2.1: A function w : R → R is of class Wd if

w(z′) ≤ w(z′′) for all z′, z′′ ∈ R such that z′ ≤ z′′.
To develop the theory for finite-time semistability of discrete

autonomous systems, we will require several key results on dif-
ference inequalities and the discrete-time comparison principle.
Consider the scalar discrete-time nonlinear dynamical system
given by

z(k + 1) = w(z(k))), z(k0) = z0, k ∈ Iz0 (2)

where z(k) ∈ Q ⊆ R, k ∈ Iz0 , is the system state vector, Iz0 ⊆
Z is the maximal interval of existence of a solution z(k) to (2),Q
is an open set, 0 ∈ Q, and w : Q → R is a continuous function
on Q.

Theorem 2.2 (see [32]): Consider the discrete-time nonlinear
dynamical system (2). Assume that the function w : Q ⊆ R →
R is continuous and w(·) is of class Wd. If there exists a
continuous function V : Iz0 → Q such that

V (k + 1) ≤ w(V (k)), k ∈ Iz0 (3)

then

V (k0) ≤ z0, z0 ∈ Q (4)

implies

V (k) ≤ z(k), k ∈ Iz0 (5)

where z(k), k ∈ Iz0 , is the solution to (2).
The following result is a direct corollary of Theorem 2.2.
Corollary 2.1 (see [32]): Consider the discrete-time nonlin-

ear dynamical system (1). Assume there exists a continuous
function V : D ⊆ Rn → Q such that

V (f(x)) ≤ w(V (x)), x ∈ D (6)

where w : Q ⊆ R → R is a continuous, w(·) ∈ Wd, and

z(k + 1) = w(z(k)), z(k0) = z0, k ∈ Iz0 . (7)

If {k0, . . . , k0 + τ} ⊆ Ix0
∩ Iz0 , then

V (x0) ≤ z0, z0 ∈ Q (8)

implies

V (x(k)) ≤ z(k), k ∈ {k0, . . . , k0 + τ}. (9)

Note that if the solutions to (1) and (7) are globally defined
for all x0 ∈ Rn and z0 ∈ R, then Corollary 2.1 holds for all
k ≥ k0. For the remainder of this article, we assume, without
loss of generality that k0 = 0.

III. SEMISTABILITY OF DISCRETE AUTONOMOUS SYSTEMS

In this section and in the following section, we develop a
stability analysis framework for discrete-time systems having
a continuum of equilibria and present necessary and sufficient
conditions for discrete-time semistability. To develop semista-
bility theory for discrete-time systems, we need some additional
notation and definitions.

Fig. 1. (a) Lyapunov stable nonisolated equilibrium point. The per-
turbed trajectory need not converge to a new equilibrium. (b) Semistable
nonisolated equilibrium point. Semistability guarantees convergence of
the perturbed trajectory to a nearby Lyapunov stable equilibrium point,
and is a stronger property than Lyapunov stability.

A set M ⊂ D ⊆ Rn is a positively invariant set with respect
to the nonlinear dynamical system (1) if sk(M) ⊆ M, for all
k ∈ Z+, where sk(M) � {sk(x) : x ∈ M}. A set M ⊆ D ⊆
Rn is an invariant set with respect to the dynamical system (1)
if sk(M) = M for all k ∈ Z+. A point p ∈ D is a limit point of
the trajectory or solution sequence s(·, x) of (1) if there exists a
monotonic sequence {kn}∞n=0 of positive integers, with kn →
∞ as n→ ∞, such that s(kn, x) → p as n→ ∞. The set of all
limit points of s(k, x), k ∈ Z+, is the limit set ω(x) of s(·, x)
of (1). Finally, for k ≥ 0, we define the positive orbit through
the point x0 ∈ D as the motion along the solution sequence
O+

x0
� {x ∈ D : x = s(k, x0), k ≥ 0}.

The following definition introduces the notion of semistability
for discrete-time systems (see Fig. 1).

Definition 3.1: An equilibrium point xe ∈ D ⊆ Rn of (1) is
Lyapunov stable if, for all ε > 0, there exists δ = δ(xe) > 0
such that if x0 ∈ Bδ(xe), then x(k) ∈ Bε(xe), k ∈ Z+. An
equilibrium point xe ∈ D ⊆ Rn of (1) is semistable if it is
Lyapunov stable and there exists δ > 0 such that if x0 ∈ Bδ(xe),
then limk→∞ s(k, x) = y, where y ∈ D is a Lyapunov stable
equilibrium point of (1). An equilibrium point xe ∈ Rn is glob-
ally semistable if it is Lyapunov stable and, for every x0 ∈ Rn,
limk→∞ x(k) = y, where y ∈ Rn is Lyapunov stable equilib-
rium point of (1). System (1) is semistable if every equilibrium
point of (1) is semistable. Finally, (1) is globally semistable if
every equilibrium point of (1) is globally semistable.

The following proposition gives a sufficient condition for a
trajectory or solution sequence of (1) to converge to a limit.
For this result, Dc ⊆ D ⊆ Rn denotes a positively invariant
set with respect to (1) and sk(Dc) denotes the image of Dc ⊂
D under the map sk : Dc → D; that is, sk(Dc) � {y : y =
sk(x0) for some x(0) = x0 ∈ Dc}.
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Proposition 3.1: Consider the nonlinear discrete-time dy-
namical system (1) and let x ∈ Dc. If the limit set ω(x) of
(1) contains a Lyapunov stable equilibrium point y, then y =
limk→∞ s(k, x), that is, ω(x) = {y}.

Proof: Suppose y ∈ ω(x) is Lyapunov stable and let Nε ⊆
Dc be an open neighborhood of y. Since y is Lyapunov stable,
there exists an open neighborhood Nδ ⊂ Dc of y such that
sk(Nδ) ⊆ Nε for everyk ∈ Z+. Now, sincey ∈ ω(x), it follows
that there exists κ ∈ Z+ such that s(κ, x) ∈ Nδ . Hence, s(k +
κ, x) = sk(s(κ, x)) ∈ sk(Nδ) ⊆ Nε for every k > 0. Since
Nε ⊆ Dc is arbitrary, it follows that y = limk→∞ s(k, x). Thus,
limn→∞ s(kn, x) = y for every increasing sequence {kn}∞n=1,
and hence, ω(x) = {y}.

Next, we present alternative equivalent characterizations of
semistability of (1). For this result, the following definition is
required.

Definition 3.2: The domain of semistability is the set of points
x0 ∈ D such that if x(k) is a solution to (1) with x(0) = x0,
k ∈ Z+, then x(k) converges to a Lyapunov stable equilibrium
point in D.

Note that if (1) is semistable, then its domain of semistability
contains the set of equilibria in its interior. For the next result
recall the definitions of class K and class L functions (see[28,
p. 162]), and recall Δf−1(0) = {x ∈ D : f(x) = x}.

Proposition 3.2: Consider the nonlinear discrete-time dy-
namical system G given by (1). Then, the following statements
are equivalent.

i) G is semistable.
ii) For each xe ∈ Δf−1(0), there exist class K and L

functions α(·) and β(·), respectively, and δ = δ(xe) >
0, such that if ‖x0 − xe‖ < δ, then ‖x(k)− xe‖ ≤
α(‖x0 − xe‖), k ∈ Z+, and dist(x(k),Δf−1(0)) ≤
β(k), k ∈ Z+.

iii) For each xe ∈ Δf−1(0), there exist class K func-
tions α1(·) and α2(·), a class L function β(·),
and δ = δ(xe) > 0, such that if ‖x0 − xe‖ < δ,
then dist(x(k),Δf−1(0)) ≤ α1(‖x(k)− xe‖)β(k) ≤
α2(‖x0 − xe‖)β(k), k ∈ Z+.

Proof: See Appendix A. �

IV. LYAPUNOV AND CONVERSE LYAPUNOV

THEOREMS FOR SEMISTABILITY

In this section, we present Lyapunov and converse Lyapunov
theorems for discrete-time semistability. For the results in this
section, define ΔV (x) � V (f(x))− V (x) for a given continu-
ous function V : D → R and dist(p,M) � infx∈M ‖p− x‖.

Theorem 4.1: Consider the nonlinear discrete-time dynam-
ical system (1). Let Q ⊆ Rn be an open neighborhood of
Δf−1(0) and assume that there exists a continuous function
V : Q → R such that

ΔV (x) < 0, x ∈ Q \Δf−1(0). (10)

If every equilibrium point of (1) is Lyapunov stable, then (1) is
semistable. Moreover, ifQ = Rn andV (x) → ∞ as ‖x‖ → ∞,
then (1) is globally semistable.

Proof: Since every equilibrium point of (1) is Lyapunov
stable by assumption, for every z ∈ Δf−1(0), there exists an
open neighborhoodVz of z such that s(Z+ × Vz) is bounded and

contained inQ. The setV �
⋃

z∈Δf−1(0) Vz is an open neighbor-
hood of Δf−1(0) contained in Q. Consider x ∈ V so that there
exists z ∈ Δf−1(0) such thatx ∈ Vz and s(k, x) ∈ Vz ,k ∈ Z+.
Since Vz is bounded it follows that the positive limit set of x is
nonempty and invariant. Furthermore, it follows from (10) that
ΔV (x) ≤ 0, k ∈ Z+, and hence, it follows from [28, Th. 13.3]
that s(k, x) → M as k → ∞, where M is the largest invariant
set contained in the set R = {y ∈ Vz : ΔV (x) = 0}. Note that
R = Δf−1(0) is invariant, and hence, M = R, which implies
that limk→∞ dist(s(k, x),Δf−1(0)) = 0. Finally, since every
point in Δf−1(0) is Lyapunov stable, it follows from Propo-
sition 3.1 that limk→∞ s(k, x) = x∗, where x∗ ∈ Δf−1(0) is
Lyapunov stable. Hence, by definition, (1) is semistable.

Finally, if Q = Rn and V (·) is radially unbounded, then
global semistability follows using standard arguments. �

Next, we present a slightly more general theorem for semista-
bility wherein we do not assume that all points in ΔV −1(0) �
{x ∈ Q : V (f(x)) = V (x)} are Lyapunov stable but rather we
assume that all points in the largest invariant subset of ΔV −1(0)
are Lyapunov stable.

Theorem 4.2: Consider the nonlinear discrete-time dynami-
cal system (1) and let Q be an open neighborhood of Δf−1(0).
Suppose the positive orbitOx of (1) is bounded for allx ∈ Q and
assume that there exists a continuously differentiable function
V : Q → R such that

ΔV (x) ≤ 0, x ∈ Q. (11)

If every point in the largest invariant subset M of {x ∈ Q :
ΔV (x) = 0} is Lyapunov stable, then (1) is semistable. More-
over, if Q = Rn and V (x) → ∞ as ‖x‖ → ∞, then (1) is
globally semistable.

Proof: Since every solution of (1) is bounded, it follows from
the hypotheses on V (·) that, for every x ∈ Q, the positive limit
setω(x) of (1) is nonempty and contained in the largest invariant
subsetM of {x ∈ Q : ΔV (x) = 0}. Since every point inM is a
Lyapunov stable equilibrium, it follows from Proposition 3.1 that
ω(x) contains a single point for everyx ∈ Q and limk→∞ s(k, x)
exists for every x ∈ Q. Now, since limk→∞ s(k, x) ∈ M is
Lyapunov stable for every x ∈ Q, it follows from the definition
of semistability that every equilibrium point in M is semistable.

Finally, ifQ = Rn and V (·) is radially unbounded, the global
semistability follows using standard arguments. �

Finally, we provide a converse Lyapunov theorem for semista-
bility.

Theorem 4.3: Consider the nonlinear discrete-time dynam-
ical system (1). Suppose (1) is discrete-time semistable with
the domain of semistability D0. Then, there exist a continuous
nonnegative function V : D0 → R+ and a class K function α(·)
such that:

i) V (x) = 0, x ∈ Δf−1(0);
ii) V (x) ≥ α(dist(x,Δf−1(0))), x ∈ D0; and

iii) ΔV (x) < 0, x ∈ D0\Δf−1(0).
Proof: See Appendix B. �

V. FINITE-TIME SEMISTABILITY OF DISCRETE

AUTONOMOUS SYSTEMS

In this section and in the following section, we extend the
results of Sections III and IV to address finite-time semistability
of discrete-time nonlinear dynamical systems. The notion of
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finite-time semistability involves finite-time convergence along
with Lyapunov stability as detailed in the following definition.

Definition 5.1: Consider the nonlinear dynamical system
(1). An equilibrium point xe ∈ Δf−1(0) of (1) is finite-time
semistable if there exist an open neighborhood N ⊆ D of xe
and a functionK : N\Δf−1(0) → Z+, called the settling-time
function, such that the following statements hold.

i) Finite-time convergence. For every x ∈ N\Δf−1(0),
sx(k) ∈ N\Δf−1(0) is defined on k ∈ {0, . . . ,K(x)− 1} and
sx(k), k ≥ K(x), is contained in N ∩Δf−1(0).

ii) Semistability. xe ∈ Δf−1(0) is semistable.
An equilibrium pointxe ∈ Δf−1(0) of (1) is globally finite-time
semistable if it is finite-time semistable withN = D = Rn. Sys-
tem (1) is said to be finite-time semistable if every equilibrium
point in Δf−1(0) is finite-time semistable. Finally, (1) is said to
be globally finite-time semistable if every equilibrium point in
Δf−1(0) is globally finite-time semistable.

Note that the definition of finite-time convergence in Defini-
tion 5.1 is simpler than the corresponding definition in the case
of continuous-time systems [33]. In the case of continuous-time
systems, the usual sufficient conditions for existence and unique-
ness of solutions necessarily fail to hold at a finite-time stable
equlibrium. Since discrete-time systems possess existence and
uniqueness of solutions without any additional assumptions on
f(·), the definition of finite-time convergence can be stated in a
manner simpler than in the case of continuous-time systems.

It is easy to see from Definition 5.1 that

K(x) = min{k ∈ Z+ : f(s(k, x)) = s(k, x)}, x ∈ N .
(12)

In particular, K(xe) = 0 for any equilibrium point xe ∈
Δf−1(0) of (1).

The following definition is needed for the following result.
Definition 5.2: Let D ⊆ Rn, g : D → R, and x ∈ D. The

function g is lower semicontinuous at x ∈ D if for every
sequence {xn}∞n=0 ⊂ D such that limn→∞ xn = x, g(x) ≤
lim infn→∞ g(xn). The function g is lower semicontinuous on
D if g is lower semicontinuous at every point x ∈ D.

The next proposition shows that if the settling-time function
of a finite-time semistable system is lower semicontinuous at
each xe ∈ N ∩Δf−1(0), then it is lower semicontinuous on
N .

Proposition 5.1: Consider the nonlinear dynamical system
(1). Assume that every equilibrium point xe ∈ Δf−1(0) of (1)
is finite-time semistable, let N ⊆ D be as in Definition 5.1, and
let K : N → Z+ be the settling-time function. Then, K(·) is
lower semicontinuous on N .

Proof: Let y ∈ N , consider the sequence {yn}∞n=0 inN con-
verging to y, and let τ− = lim infn→∞K(yn). Let {y−m}∞m=0 be
a subsequence of {yn}∞n=0 such thatK(y−m) → τ− asm→ ∞.
Since K only takes integer values, it follows that there exists
M > 0 such that K(y−m) = τ− for all m > M . Since s(k, ·) is
continuous for each k, and since K(y−m) = τ−1 for m > M ,
it follows that s(K(y−m), y−m) → s(τ−, y) as m→ ∞. Now, it
follows from (12) that s(K(y−m), y−m) ∈ Δf−1(0) for each m.
Since the set Δf−1(0) is closed, we conclude that s(τ−, y) ∈
Δf−1(0). Equation (12) now implies that

K(y) ≤ τ− = lim inf
n→∞ K(yn) (13)

which implies that K(·) is lower semicontinuous at y. Since
y ∈ N was chosen arbitrarily, the assertion follows. �

Remark 5.1: In the case of continuous-time systems, it is
known that the settling-time functionK(·) of a finite-time stable
equilibrium is continuous in the domain of convergence if and
only if it is continuous at the equilibrium (see [33, Prop. 2.4]
and [4, Lemma 4.1]). In the case of discrete-time systems, the
integer-valued functionK(·) is continuous at a point only if it is
locally constant. Thus, if K(·) is continuous at an equilibrium
pointxe, thenxe necessarily has to lie in the interior ofΔf−1(0).
On the other hand, the set of equilibrium points is closed. Hence,
K(·) can be continuous at all equilibrium points only in the
uninteresting case where the set of equilibria is either empty or
the whole state space.

VI. LYAPUNOV AND CONVERSE LYAPUNOV THEOREMS FOR

FINITE-TIME SEMISTABILITY

In this section, we present necessary and sufficient conditions
for finite-time semistability. For these results, we assume f :
D → D and, for everyx0 ∈ D, (1) is forward complete. The first
result establishes a relationship between finite-time convergence
and finite-time semistability.

Theorem 6.1: Consider the nonlinear discrete-time dynami-
cal system (1). Assume that there exist a continuous nonnegative
functionV : D → R+ such thatΔV −1(0) = Δf−1(0), an open
neighborhood Q ⊆ D such that Q ∩Δf−1(0) is nonempty, and

V (f(x)) ≤ w(V (x)), x ∈ Q \Δf−1(0) (14)

where w : R → R is continuous, w(0) = 0, and

z(k + 1) = w(z(k)), z(0) = z0, k ≥ 0. (15)

If (15) is finite-time convergent to the origin for R+ and every
point in Q ∩Δf−1(0) is a Lyapunov stable equilibrium point
of (1), then every equilibrium point xe ∈ Q ∩Δf−1(0) of (1)
is finite-time semistable. Moreover, the settling-time function
of (1) is lower semicontinuous on an open neighborhood of
Q ∩Δf−1(0). If, in addition, Q = D, then (1) is finite-time
semistable. Finally, if D = Rn, V (·) is radially unbounded, and
(14) holds on Rn, then every equilibrium point xe ∈ Δf−1(0)
of (1) is globally finite-time semistable.

Proof: Consider xe ∈ Q ∩Δf−1(0). Since x(k) ≡ xe is
Lyapunov stable, it follows that there exists an open positively
invariant set V ⊆ Q such that xe ∈ V . Next, it follows from (14)
that

V (s(k + 1, x)) ≤ w(V (s(k, x))), x ∈ V, k ∈ Z+. (16)

Now, it follows from Corollary 2.1 that

V (s(k, x)) ≤ ψ(k, V (x0)), x ∈ V, k ∈ Z+ (17)

where ψ : Z+ × R → R is the global semiflow of (15). Since
(15) is finite-time convergent to the origin for R+, it follows
from (17) and the nonnegativity of V (·) that

V (s(k, x)) = 0, k ≥ K̂(V (x)), x ∈ V (18)

where K̂(·) denotes the settling-time function of (15).
Next, since s(0, x) = x, s(k, ·) is continuous, and

ΔV (s(k, x)) = 0 is equivalent to f(s(k, x)) = s(k, x) on
V , it follows that min{k ∈ Z+ : f(s(k, x)) = s(k, x)} > 0,
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x ∈ V \Δf−1(0). Furthermore, it follows from (18) that
min{k ∈ Z+ : f(s(k, x)) = s(k, x)} <∞, x ∈ V . Now,
define K : V\Δf−1(0) → Z+ by using (12). Then, it follows
that every point in V ∩Δf−1(0) is finite-time semistable
and, by Proposition 5.1, K is a lower semicontinuous
settling-time function on V . Furthermore, it follows from
(18) that K(x) ≤ K̂(V (x)), x ∈ V .

Moreover, if Q = D, then Q is positively invariant by the
fact that (1) with f : D → D is forward complete with unique
solutions, and hence, the preceeding arguments hold with V =
Q = D. Finally, if D = Rn and V (·) is radially unbounded,
then global finite-time semistability follows using identical
arguments. �

The following definition and lemma are needed for the fol-
lowing results of this article.

Definition 6.1: A continuous functionw : R → R is a gener-
alized deadzone function if i) |w(z)| < |z|, z ∈ R, and ii) there
exists ε > 0 such that w(z) = 0 for all z ∈ Bε(0).

Lemma 6.1: Consider the scalar nonlinear discrete-time dy-
namical system (2) with Q = R, k0 = 0, and Iz0 = Z. Then,
the zero solution z(k) ≡ 0 to (2) is a globally finite-time stable
equilibrium point of (2) if and only ifw : R → R is a generalized
deadzone function.

Proof: To show sufficiency, suppose w : R → R is a gener-
alized deadzone function. Then, the zero solution z(k) ≡ 0 to
(2) is an equilibrium point of (2). Let |z(0)| > 0 and consider
the solution sequence {z(k)}∞k=0 generated by (2). Suppose, ad
absurdum that |z(k)| ≥ ε, k ∈ Z. Since |w(z)| < |z|, z ∈ R, it
follows that |z(k + 1)| < |z(k)|. Thus, since |z(k)|, k ∈ Z+, is
a decreasing sequence that is bounded from below, there exists
z∗ > 0 such that |z(k)| → z∗ ≥ ε > 0 as k → ∞. Now, since
w is continuous, it follows that

w(z∗) = w

(
min
k→∞

|z(k)|
)

= lim
k→∞

w(|z(k)|) = z∗

which is a contradiction. Hence, there exists k such that |z(k)| <
ε, and hence, z(k + 1) = 0. Thus, the zero solution z(k) ≡ 0 to
(2) is globally finite-time convergent. Lyapunov stability now
follows trivially since w(z) = 0, z ∈ Bε(0).

Conversely, to show necessity suppose that the zero solution
z(k) ≡ 0 to (2) is a globally finite-time stable equilibrium point
of (2). Let z(0) ∈ R, consider the solution sequence {z(k)}∞k=0
generated by (2), and let κ = min{k : z(k) = 0} − 1. It follows
from finite-time stability that κ <∞. By the definition of κ, it
follows that z(κ+ 1) = 0, while z(κ) �= 0. Now, since |w(z)| <
|z|, z ∈ R, it also follows that w(z) = 0 for all z ∈ B|z(κ)|(0).
Hence, there exists ε = |z(κ)| > 0 such that w(z) = 0, z ∈
Bε(0). �

Next, using Lemma 6.1, we present two concrete forms for
w(·) in Theorem 6.1 for establishing finite-time semistability.
For the statement of the following results, we write �α� for the
ceiling function denoting the smallest integer greater than or
equal to α.

Corollary 6.1: Consider the nonlinear discrete-time dynami-
cal system (1). Assume that there exist a continuous nonnegative
function V : D → R+ such that ΔV −1(0) = Δf−1(0), real
numbers α ∈ (0, 1) and c > 0, an open neighborhood Q ⊆ D

such that Q ∩Δf−1(0) is nonempty, and

ΔV (x) ≤ −cmin

{
V (x)

c
, V (x)α

}
, x ∈ Q \Δf−1(0).

(19)

If every equilibrium point xe ∈ Q ∩Δf−1(0) is a Lyapunov
stable equilibrium point of (1), then every equilibrium point
xe ∈ Q ∩Δf−1(0) of (1) is finite-time semistable. Moreover,
there exist an open neighborhood N of Q ∩Δf−1(0) and a
settling-time function K : N → Z+ such that either

K(x0) ≤
⌈
log[1−cV (x0)α−1]

c
1

1−α

V (x0)

⌉
+ 1, x0 ∈ N

V (x0) > c
1

1−α (20)

or

K(x0) = 1, x0 ∈ N \Δf−1(0), V (x0) ≤ c
1

1−α (21)

where K(·) is lower semicontinuous on N . If, in addition,
Q = D, then (1) is finite-time semistable. Finally, if D = Rn,
V (·) is radially unbounded, and (19) holds on Rn, then every
equilibrium point xe ∈ Δf−1(0) of (1) is globally finite-time
semistable.

Proof: Consider the scalar discrete-time nonlinear dynamical
system given by

z(k + 1) = z(k)− c sign(z(k))min

{ |z(k)|
c

, |z(k)|α
}

z(0) = z0, k ≥ 0 (22)

where z(k) ∈ R, k ∈ Z+, sign(z) � z/|z|, z �= 0, sign(0) � 0,
α ∈ (0, 1), and c > 0. Note that the right-hand side of (22) is
a generalized deadzone function, and hence, by Lemma 6.1,
the zero solution z(k) ≡ 0 to (22) is globally finite-time stable.
Furthermore, note that if |z(k)| ≤ c

1
1−α , k ∈ Z+, then z(k +

1) = 0, and if |z(k)| > c
1

1−α , k ∈ Z+, then

|z(k)| = ∣∣z(k − 1)
(
1− c|z(k − 1)|α−1

)∣∣ < |z(k − 1)|
k ∈ Z+. (23)

Since α ∈ (0, 1), |z(k)|α−1 > |z(k − 1)|α−1, k ∈ Z+, and

1− c |z(k)|α−1 < 1− c |z(k − 1)|α−1 , k ∈ Z+. (24)

Next, it follows from (23), (24), and |z(k)| > c
1

1−α , k ∈ Z+

that

|z(k)| = |z(k − 1)|
(
1− c |z(k − 1)|α−1

)
...

= |z0|
(
1− c |z0|α−1

)
· · ·

(
1− c |z(k − 1)|α−1

)

< |z0|
(
1− c |z0|α−1

)k
, k ∈ Z+. (25)

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 31,2023 at 17:10:40 UTC from IEEE Xplore.  Restrictions apply. 



772 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 2, FEBRUARY 2023

Now, if |z0(1− c|z0|α−1)k| ≤ c
1

1−α , k ∈ Z+, then |z(k)| <
c

1
1−α , k ∈ Z+, which implies z(k + 1) = 0 for

k ≥ log[1−c|z0|α−1]
c

1
1−α

|z0| , |z0| > c
1

1−α

and hence, i) of Definition 5.1 is satisfied with N = D = R and
with the settling-time function K̂(z0) given by either

K̂(z0) ≤
⌈
log[1−c|z0|α−1]

c
1

1−α

|z0|

⌉
+ 1, |z0| > c

1
1−α (26)

or

K̂(z0) = 1, |z0| ≤ c
1

1−α , z0 �= 0. (27)

Next, with z = V (x) and w(z) = w(V (x)) = V (x)−
cmin{V (x)

c , V (x)α}, it follows from Corollary 2.1 and (26) that

K̂(V (x0)) ≤
⌈
log[1−cV (x0)α−1]

c
1

1−α

V (x0)

⌉
+ 1

x0 ∈ Bδ(xe), V (x0) > c
1

1−α . (28)

Hence, it follows from (18) that K(x) ≤ K̂(V (x)), and hence

x(k) ∈ Q ∩Δf−1(0), k ≥
⌈
log[1−cV (x0)α−1]

c
1

1−α

V (x0)

⌉
+ 1

x0 ∈ Bδ(xe), V (x0) > c
1

1−α (29)

which implies finite-time convergence of the trajectories of (1)
for all x0 ∈ Bδ(xe) such that V (x0) > c

1
1−α . Alternatively, if

V (x0) ≤ c
1

1−α , then it follows from (27) that the equilibrium
point x(k) ≡ xe is finite-time convergent with the settling-time
function K(x0) = 1.

Now, since every point in Q ∩Δf−1(0) is a Lyapunov stable
equilibrium point of (1) it follows from Theorem 6.1 that every
equilibrium point xe ∈ Q ∩Δf−1(0) of (1) with N � Bδ(xe)
is finite-time semistable. The remainder of the proof now follows
as in the proof of Theorem 6.1. �

Example 6.1: Consider the discrete-time collective dynamics
of two agents on R2 described by

xi(k + 1) = xi(k) + ui(k), xi(0) = xi0, k ∈ Z+, i = 1, 2
(30)

where for k ∈ Z+, x1(k), x2(k) ∈ R, and u1(k) and u2(k) are
given by

u1(k) = − c sign (x1(k)− x2(k))

·min

{ |x1(k)− x2(k)|
2c

,

[ |x1(k)− x2(k)|
2

]α}
(31)

u2(k) = − c sign (x2(k)− x1(k))

·min

{ |x2(k)− x1(k)|
2c

,

[ |x2(k)− x1(k)|
2

]α}
(32)

where α ∈ (0, 1) and c ∈ R+.

First, note that M = {x ∈ R2 : x = βe2, β ∈ R}, where
e2 � [1 1]T, is the set of equilibria for (30) with (31) and
(32), u1(k) = −u2(k), and x1(k) + x2(k) = 2β, k ∈ Z+.
Now, consider the Lyapunov function candidate V (x) = (x−
βe2)

T(x− βe2). Note that V (x) > 0, x ∈ R2, x �= βe2, and
V (x) = 0 if and only if x1 = x2 = β. Furthermore, note that
V (·) is radially unbounded and since x1(k) + x2(k) = 2β,
k ∈ Z+, it follows that |x1 − x2|2 = 2V (x).

Next, note that

ΔV (x) = (x1 + u1 − β)2 + (x2 + u2 − β)2

− (x1 − β)2 + (x2 − β)2

= u1(2x1 + u1 − 2β) + u2(2x2 + u2 − 2β)

= 2u1[x1 − x2 + u1]

= −2cmin

{ |x1 − x2|
2c

,

[ |x1 − x2|
2

]α}

·
[
|x1 − x2| − cmin

{ |x1 − x2|
2c

,

[ |x1 − x2|
2

]α}]

≤ −2c2
[
min

{ |x1 − x2|
2c

,

[ |x1 − x2|
2

]α}]2

= −2c2min

{
|x1 − x2|2

4c2
,

[ |x1 − x2|
2

]2α}

= −2c2min

{
V (x)

2c2
,

[
V (x)

2

]α}

≤ 0, x ∈ R2 (33)

and hence, it follows from Corollary 6.1 that (30), with control
inputs (31) and (32), is finite-time semistable with the settling-
time function given by either

K(x0) ≤
⌈
log[1−2(1−α)c2V (x0)α−1]

2c
2

1−α

V (x0)

⌉
+ 1

V (x0) > 2c
1

1−α (34)

or

K(x0) = 1, V (x0) ≤ 2c
1

1−α . (35)

The system trajectory and control profile of (30), with control
inputs (31) and (32), for the initial condition x0 = [0 20]T, c =
2, andα = 0.5 are shown in Fig. 2 . The guaranteed settling-time
function is given by K(x0) = 5, whereas the achieved finite-
time convergence step is 4. �

Corollary 6.2: Consider the nonlinear discrete-time dynam-
ical system (1). Assume that there exist a continuous nonneg-
ative function V : D → R+ such that ΔV −1(0) = Δf−1(0),
a real number c > 0, an open neighborhood Q ⊆ D such that
Q ∩Δf−1(0) is nonempty, and

ΔV (x) ≤ −min {V (x), c} , x ∈ Q \Δf−1(0). (36)

If every equilibrium point xe ∈ Q ∩Δf−1(0) is a Lyapunov
stable equilibrium point of (1), then every equilibrium point
xe ∈ Q ∩Δf−1(0) of (1) is finite-time semistable. Moreover,
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Fig. 2. Information states and control inputs versus time of (30) with
control inputs (31) and (32). The two agents achieve finite-time consen-
sus in 4 s.

there exist an open neighborhood N of Q ∩Δf−1(0) and a
settling-time function K : N → Z+ such that

K(x0) ≤
⌈
V (x0)

c

⌉
, x0 ∈ N (37)

where K(·) is lower semicontinuous on N . If, in addition,
Q = D, then (1) is finite-time semistable. Finally, if D = Rn,
V (·) is radially unbounded, and (36) holds on Rn, then every
equilibrium point xe ∈ Δf−1(0) of (1) is globally finite-time
semistable.

Proof: Consider the scalar discrete-time nonlinear dynamical
system given by

z(k + 1) = z(k)− sign(z(k))min{|z(k)| , c}
z(0) = z0, k ≥ 0 (38)

where z(k) ∈ R, k ∈ Z+, and c > 0. Note that the right-hand
side of (38) is a generalized deadzone function, and hence,
by Lemma 6.1 the zero solution z(k) ≡ 0 to (38) is globally
finite-time stable. Furthermore, note that if |z(k)| ≤ c, k ∈ Z+,
then z(k + 1) = z(k)− sign(z(k))|z(k)| = 0, and hence, i)
of Definition 5.1 is satisfied with N = D = R and with the
settling-time function K̂(z0) given by

K̂(z0) =

⌈ |z0|
c

⌉
. (39)

Next, using identical arguments as in the proof of Corol-
lary 6.1 with z = V (x) and w(z) = w(V (x)) = V (x)−
min{V (x), c}, it follows that the equilibrium point xe ∈ Q ∩
Δf−1(0) of (1) is finite-time semistable with settling-time func-
tion

K(x0) ≤
⌈
V (x0)

c

⌉
, x0 ∈ N . (40)

The remainder of the proof now follows as in the proof of
Theorem 6.1. �

Example 6.2: Consider the two agent system given by (30)
with control inputs u1(k) and u2(k) given by

u1(k) = −sign (x1(k)− x2(k)) min

{ |x1(k)− x2(k)|
2

, c

}
(41)

u2(k) = −sign (x2(k)− x1(k)) min

{ |x2(k)− x1(k)|
2

, c

}
(42)

where c ∈ R+. First, note that M = {x ∈ R2 : x = βe2, β ∈
R} is the set of equilibria for (30) with (31) and (32), u1(k) =
−u2(k), and x1(k) + x2(k) = 2β, k ∈ Z+. Now, consider the
Lyapunov function candidate V (x) = (x− βe2)

T(x− βe2).
Note that V (x) > 0, x ∈ R2, x �= βe2, and V (x) = 0 if and
only if x1 = x2. Furthermore, note that V (·) is radially un-
bounded and sincex1(k) + x2(k) = 2β, k ∈ Z+, it follows that
|x1 − x2|2 = 2V (x).

Next, note that

ΔV (x) = (x1 + u1 − α)2 + (x2 + u2 − α)2

− (x1 − α)2 + (x2 − α)2

= 2u1[x1 − x2 + u1]

= −2min

{ |x1 − x2|
2

, c

}

·
[
|x1 − x2| − min

{ |x1 − x2|
2

, c

}]

≤ −2

[
min

{ |x1 − x2|
2

, c

}]2

= −2min

{ |x1 − x2|2
4

, c2
}

= −2min

{
V (x)

2
, c2
}

≤ 0, x ∈ R2 (43)

and hence, it follows from Corollary 6.2 that (30), with control
inputs (41) and (42), is finite-time semistable with the settling-
time function

K(x0) ≤
⌈
V (x0)

2c2

⌉
. (44)

The system trajectory and control profile of (30) with control
inputs (41) and (42) for the initial condition x0 = [0 20]T and
c = 3 are shown in Fig. 3 . The guaranteed settling-time func-
tion is given by K(x0) = 12, whereas the achieved finite-time
convergence step is 4. �

Finally, we present partial converse theorems to Theorem 6.1
and Corollaries 6.1 and 6.2.

Theorem 6.2: Consider the nonlinear discrete-time dynami-
cal system (1) and let N be as in Definition 5.1. If every equilib-
rium point xe ∈ N ∩Δf−1(0) of (1) is finite-time semistable,
then there exist a nonnegative lower semicontinuous function
V : N → R+ and a continuous function w : R → R such that
V (f(x)) ≤ w(V (x)), x ∈ N , where w(·) is of class Wd, and
the zero solution z(k) ≡ 0 to (15) is finite-time convergent.
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Fig. 3. Information states and control inputs versus time of (30) with
control inputs (41) and (42). The two agents achieve finite-time consen-
sus in 4 s.

Proof: First, note that it follows from Proposition 5.1 that the
settling-time functionK : N → Z+ is lower semicontinuous on
N . Next, define V : N → R+ by

V (x) � sup
k≥0

1 + bk

1 + ak
[K(s(k, x))]β (45)

where β > 2, β ∈ Z+, and b > a > 0. Note that V (·) is lower
semicontinuous and nonnegative, and, by s(K(x) + k, x) ∈
N ∩Δf−1(0) for all x ∈ N and k ∈ Z+, ΔV (x) = 0, x ∈
N ∩Δf−1(0). Now, note that it follows from the definition
of K(·) that the supremum in the definition of V (s(1, x)) is
reached at some time k̂ such that 0 ≤ k̂ ≤ K(x). If k̂ < K(x),
then

V (s(1, x)) =
1 + bk̂

1 + ak̂

[
K(s(k̂ + 1, x))

]β

=

[
1− b− a

(1 + bk̂ + b)(1 + ak̂)

]

1 + bk̂ + b

1 + ak̂ + a

[
K(s(k̂ + 1, x))

]β

≤
[
1− a(b− a)

b [1 + aK(x)]2

]
V (x), K(x) > k̂.

(46)

Alternatively, if k̂ = K(x), then V (s(1, x)) = 0, which implies
x ∈ N ∩Δf−1(0).

Next, if x /∈ N ∩Δf−1(0), then

V (x) = sup
k≥0

1 + bk

1 + ak
[K(s(k, x))]β ≥ [K(x)]β ≥ 1 (47)

and hence, [1 + aK(x)]β ≤ (1 + a)βV (x). Now, (46) yields

V (f(x))− V (x)

≤ −a(b− a)

b
V (x) (1 +K(x))−2

≤ −a(b− a)

b
V (x)

[
(1 + a)βV (x)

]− 2
β

= − a(b− a)

b(1 + a)2
V (x)

β−2
β

≤ − a(b− a)

b(1 + a)2
min

{
b(1 + a)2

a(b− a)
V (x), V (x)

β−2
β

}
. (48)

Now, letting α = β−2
β ∈ (0, 1) and c = a(b−a)

b(1+a)2 > 0, (48) be-
comes

V (f(x)) ≤ V (x)− cmin

{
V (x)

c
, V (x)α

}
. (49)

Finally, using Lemma 6.1, it follows that the zero solu-
tion z(k) ≡ 0 to (15), with the class Wd function w(z) =

z − c sign(z)min{ |z|
c , |z|α}, is finite-time convergent. �

Theorem 6.3: Consider the nonlinear discrete-time dynami-
cal system (1), letα ∈ (0, 1), and letN be as in Definition 5.1. If
every equilibrium point xe ∈ N ∩Δf−1(0) of (1) is finite-time
semistable, then there exist a nonnegative lower semicontinuous
function V : N → R+ and real numbers α ∈ (0, 1) and c > 0
such that

V (f(x)) ≤ V (x)− cmin

{
V (x)

c
, V (x)α

}
, x ∈ N . (50)

Proof: The proof is identical to that of Theorem 6.2
with class Wd function w : R → R given by w(z) = z −
c sign(z)min{ |z|

c , |z|α}. �
Theorem 6.4: Consider the nonlinear discrete-time dynami-

cal system (1) and let N be as in Definition 5.1. If every equilib-
rium point xe ∈ N ∩Δf−1(0) of (1) is finite-time semistable,
then there exist a nonnegative lower semicontinuous function
V : N → R and a real number c > 0 such that

V (f(x)) ≤ V (x)− min {V (x), c} , x ∈ N . (51)

Proof: First, note that it follows from Proposition 5.1 that the
settling-time functionK : N → Z+ is lower semicontinuous on
N . Next, define V : N → R+ by V (x) � cK(x), where c > 0.
Note that V (·) is lower semicontinuous and nonnegative, and,
by s(K(x) + k, x) ∈ N ∩Δf−1(0) for all x ∈ N and k ∈ Z+,
ΔV (x) = 0, x ∈ N ∩Δf−1(0). Now, since every equilibrium
point xe ∈ N ∩Δf−1(0) of (1) is finite-time semistable and
K(s(1, x)) = K(x)− 1, it follows that

V (f(x)) = cK(s(1, x)) = c(K(x)− 1) = V (x)− c (52)

for x /∈ N ∩Δf−1(0), and hence

V (f(x))− V (x) = −c ≤ −min{V (x), c}. (53)

Finally, using Lemma 6.1, it follows that the zero solu-
tion z(k) ≡ 0 to (15) with the class Wd function w(z) = z −
sign(z)min{z, c}, is finite-time convergent. �

VII. THERMODYNAMIC-BASED ARCHITECTURE FOR

ASYMPTOTIC NETWORK CONSENSUS

In this section, we develop a thermodynamically motivated
information consensus framework for discrete-time nonlinear
network systems to achieve semistability and state equiparti-
tion. The consensus problem we address in this section appears
frequently in coordination of multiagent network systems and
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involves finding a dynamic algorithm that enables a group of
agents in a network to agree upon certain quantities of interest
with undirected and directed information flow. Here, we use
graph-theoretic notions to represent a dynamical network and
present solutions to the consensus problem for networks with
undirected communication graph topologies (or information
flows).

Specifically, let G(C) = (V, E) be a directed graph (or di-
graph) denoting the dynamical network (or dynamic graph)
with the set of nodes (or vertices) V = {1, . . . , q} involving a
finite nonempty set denoting the agents, the set of edges E ⊆
V × V involving a set of ordered pairs denoting the direction
of information flow, and a connectivity matrix C ∈ Rq×q such
that C(i,j) = 1, i, j = 1, . . . , q, if (j, i) ∈ E , while C(i,j) = 0 if
(j, i) /∈ E . The edge (j, i) ∈ E denotes that agent j can receive
information from agent i, but not necessarily vice versa.

A graph or undirected graph G(C) associated with the con-
nectivity matrix C ∈ Rq×q is a directed graph for which the arc
set is symmetric, that is, C = CT. A graph is all-to-all connected
if every node of G(C) is connected to every other node of G(C).
Weighted graphs can also be considered here; however, since
this extension does not alter any of the conceptual results in this
article, we do not consider this extension for simplicity of expo-
sition. Finally, we denote the value of the node i ∈ {1, . . . , q}
at discrete-time instant k by xi(k) ∈ R. The consensus problem
involves the design of a dynamic algorithm that guarantees infor-
mation state equipartition, that is, limk→∞ xi(k) = α ∈ R for
i = 1, . . . , q, where α depends on the system initial conditions.

Consider the q discrete-time dynamical agents Gi with dy-
namics given by

xi(k + 1) = xi(k) + ui(k), xi(0) = xi0, k ∈ Z+ (54)

where for each agent i ∈ {1, . . . , q}, xi(k) ∈ R, k ∈ Z+, de-
notes the information state of agent Gi and ui(k) ∈ R, k ∈ Z+,
denotes the information control input of agent Gi. The nonlinear
consensus protocol is given by

ui(k) =

q∑
j=1,j �=i

φij (xi(k), xj(k)) , i = 1, . . . , q (55)

where φij(·, ·), i, j = 1, . . . , q, are continuous functions char-
acterizing the information exchange between agents Gj and Gi.

In this case, the closed-loop system (54) and (55) is given by

xi(k + 1) = xi(k) +

q∑
j=1,j �=i

φij (xi(k), xj(k)) , xi(0) = 0

k ∈ Z+, i = 1, . . . , q (56)

or, equivalently, in vector form

x(k + 1) = f(x(k)), x(0) = x0, k ∈ Z+ (57)

where x(k) � [x1(k), . . . , xq(k)]
T and f = [f1, . . . , fq]

T :
D ⊆ Rq → Rq is such that

fi(x(k)) = xi(k) +

q∑
j=1,j �=i

φij (xi(k), xj(k)) , i = 1, . . . , q.

(58)
Note that G given by (57) describes an interconnected net-
work where information states are updated using a distributed

controller involving neighbor-to-neighbor interaction between
agents.

Remark 7.1: Although our results can be directly extended
to the case where (54) and (55) describe the dynamics of an
aggregate multiagent system with an aggregate state vector
x(k) = [xT1 (k), . . . , x

T
q (k)]

T ∈ RNq , where xi(k) ∈ RN and
ui(k) ∈ RN , i = 1, . . . , q, by using Kronecker calculus, for
simplicity of exposition, we focus on individual agent states
evolving in R (i.e., N = 1).

The following definition and assumptions are needed for the
main result of this section.

Definition 7.1 (see [34]): A directed graph G(C) is strongly
connected if for any ordered pair of vertices (i, j), i �= j, there
exists a path (i.e., sequence of arcs) leading from i to j.

Recall thatC ∈ Rq×q is irreducible, that is, there does not exist
a permutation matrix such that C is cogredient to a lower block
triangular matrix, if and only if G(C) is strongly connected (see
[34, Th. 2.7]). Furthermore, note that for an undirected graph
C = CT, and hence, every undirected graph is balanced.

To ensure a thermodynamically consistent information flow
model, we make the following assumptions on the information
flow functions φij(·, ·), i = 1, . . . , q.

Assumption 7.1: The connectivity matrix C ∈ Rq×q associ-
ated with the multiagent dynamical system G given by (57) is
defined by

C(i,j) �
{
0, if φij(xi, xj) ≡ 0

1, otherwise
i �= j, i, j = 1, . . . , q

and C(i,i) � −∑q
m=1,m �=i C(i,m), i = 1, . . . , q, with rank C =

q − 1, and for C(i,j) = 1, i �= j, φij(xi, xj) = 0 if and only if
xi = xj .

Assumption 7.2: For i, j = 1, . . . , q, (xi − xj)φij(xi, xj) ≤
0, xi, xj ∈ R.

Assumption 7.3: For i, j = 1, . . . , q, Δxi−Δxj

xi−xj
≥ −1, xi �=

xj , where Δxm(k) � xm(k + 1)− xm(k).
The condition thatφ(xi, xj) = 0 if and only ifxi = xj , i �= j,

implies that agentsGi andGj are connected, and hence, can share
information; alternatively,φij(xi, xj) ≡ 0 implies that agentsGi

and Gj are disconnected, and hence, cannot share information.
Assumption 7.1 implies that if the energies or information

in the connected agents Gi and Gj are equal, then energy or
information exchange between these agents is not possible. This
statement is reminiscent of the zeroth law of thermodynamics,
which postulates that temperature equality is a necessary and
sufficient condition for thermal equilibrium. Furthermore, if
C = CT and rank C = q − 1, then it follows that the connectivity
matrix C is irreducible, which implies that for any pair of agents
Gi and Gj , i �= j, of G there exists a sequence of informa-
tion connectors (information arcs) of G that connect agents Gi

and Gj .
Assumption 7.2 implies that energy or information flows

from more energetic or information rich agents to less en-
ergetic or information poor agents and is reminiscent of the
second law of thermodynamics, which states that heat (i.e.,
energy in transition) must flow in the direction of lower tem-
peratures. Finally, Assumption 7.3 implies that the energy or
information difference between any consecutive time instants
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is monotonic for any pair of connected agents Gi and Gj ,
i �= j, that is, [xi(k + 1)− xj(k + 1)][xi(k)− xj(k)] ≥ 0 for
all xi(k) �= xj(k), k ≥ 0, i, j = 1, . . . , q. It is important to note
here that both finite-time consensus controllers in Examples 6.1
and 6.2 satisfy Assumptions 7.1–7.3, and hence, satisfy basic
thermodynamic principles. For further details on Assumptions
7.1–7.3, see [28].

For the next result, en or e ∈ Rn denote the ones vector of
order n, that is, en � [1, . . . , 1]T.

Theorem 7.1: Consider the discrete-time multiagent dy-
namical system (56) or, equivalently, (57). Assume that As-
sumptions 7.1–7.3 hold, and φij(xi, xj) = −φji(xj , xi) for all
i, j = 1, . . . , q, i �= j. Then, for every α ∈ R, αe is a glob-
ally semistable equilibrium state of (57). Furthermore, x(k) →
1
qee

Tx(0) as k → ∞ and 1
qee

Tx(0) is a globally semistable
equilibrium state.

Proof: See Appendix C. �
Note that in the special case of an all-to-all communication

graph topology Assumption 7.3 can always be satisfied. Specif-
ically, consider the consensus protocol given by

ui(k) =

q∑
j=1,j �=i

φij (xi(k), xj(k))

=

q∑
j=1,j �=i

C(i,j) [σ(xj(k))− σ(xi(k))]

i = 1, . . . , q (59)

where σ : R → R is such that σ(z) = βz, with β > 0, and
assume C(i,j) = 1 for all i, j = 1, . . . , q, i �= j. In this case, if
β ≤ 1/q, then Assumption 7.3 holds. To see this, first note that
if xi(k) > xj(k), i �= j, i, j = 1, . . . , q, k ≥ 0, then

Δxi(k)−Δxj(k)

= ui(x(k))− uj(x(k))

=

q∑
h=1

[σ(xh(k))− σ(xi(k))− σ(xh(k)) + σ(xj(k))]

= −qβ (xi(k)− xj(k))

≥ − (xi(k)− xj(k)) , i �= j, i, j = 1, . . . , q (60)

and hence, Assumption 7.3 holds. Alternatively, if xi(k)−
xj(k) < 0, i �= j, i = 1, . . . , q, k ≥ 0, then analogously it can
be shown that Assumption 7.3 holds.

Next, we provide explicit connections of the proposed
thermodynamic-based consensus control architecture developed
in this section to the recently developed notion of discrete ther-
modynamics [28]. To develop these connections the following
definition of entropy is needed.

Definition 7.2: For the distributed discrete-time consensus
protocol G given by (57), a function S : Rq → R satisfying

S(x(k2)) ≥ S(x(k1)), k2 ≥ k1 ≥ 0 (61)

is called an entropy of G.
The following theorem gives an explicit expression for the

entropy function of the closed-loop, discrete-time multiagent
dynamical system G given by (57).

Theorem 7.2: Consider the closed-loop, discrete-time mul-
tiagent dynamical system G given by (57) and assume that
Assumptions 7.2 and 7.3 hold. Then, the function S : Rq → R
given by

S(x) = eTloge(c e+ x)− q loge c, x ∈ Rq (62)

where loge(c e+ x) denotes the vector natural logarithm given
by [loge(c+ x), . . . , loge(c+ x)]T and c > ‖x‖∞, is an entropy
function of G.

Proof: Since φij(xi, xj) = −φji(xj , xi), i �= j, i, j =
1, . . . , q, and c > ‖x‖∞, it follows that

ΔS(x(k))

=

q∑
i=1

loge

[
1 +

Δxi(k)

c+ xi(k)

]

≥
q∑

i=1

[
Δxi(k)

c+ xi(k)

] [
1 +

Δxi(k)

c+ xi(k)

]−1

=

q∑
i=1

Δxi(k)

c+ xi(k) + Δxi(k)

=

q∑
i=1

Δxi(k)

c+ xi(k + 1)

=

q∑
i=1

q∑
j=1,j �=i

φij(xi(k), xj(k))

c+ xi(k + 1)

=

q−1∑
i=1

q∑
j=i+1

[
φij(xi(k), xj(k))

c+ xi(k + 1)
− φij(xi(k), xj(k))

c+ xj(k + 1)

]

=

q−1∑
i=1

q∑
j=1,j �=i

φij(xi(k), xj(k))[xj(k + 1)− xi(k + 1)]

[c+ xi(k + 1)] [c+ xj(k + 1)]

≥ 0, k ∈ Z+ (63)

where in (63), we use the fact that loge(1 + x) ≥ x
x+1 , x > −1.

Now, summing (63) over {k1, . . . , k2 − 1} yields (61). �
Note that it follows from (63) that the entropy function

given by (62) satisfies (61) as an equality for an equilibrium
(equipartitioned) process and as a strict inequality for a nonequi-
librium (nonequipartitioned) process. The entropy expression
given by (62) is identical in form to the Boltzmann entropy
for statistical thermodynamics and the Shannon entropy char-
acterizing the amount of information [28]. In addition, note
that S(x) given by (62) achieves a maximum when all the
information states xi, i = 1, . . . , q, are equal [28]. Inequality
(61) is a generalization of Clausius’ inequality for equilibrium
and nonequilibrium thermodynamics as well as reversible and
irreversible thermodynamics as applied to adiabatically isolated
discrete-time thermodynamic systems. For details, see [28].

Example 7.1: Consider a network of six dynamical agents
G with a weakly connected, undirected communication graph
topology shown in Fig. 4 with dynamics given by (56). The
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Fig. 4. Communication graph topology for the six mobile agents.

Fig. 5. Information states and control inputs versus time for the linear
consensus protocol.

Fig. 6. Information states and control inputs versus time for the non-
linear consensus protocol. Note that the nonlinear consensus control
protocol achieves significantly improved convergence as compared to
the linear protocol.

Fig. 7. Total agent entropies versus time (with c = ‖x‖∞ + 1) for both
control protocols; linear on the top and nonlinear on the bottom.

corresponding connectivity matrix is given by

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0 0 0

1 −4 1 0 1 1

0 1 −2 1 0 0

0 0 1 −2 0 1

0 1 0 0 −1 0

0 1 0 1 0 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Note that rank C = 5.
Fig. 5 shows the information states and control inputs for

the six agents versus time with the linear consensus protocol
φij(xi, xj) = − 1

6 (xi − xj), i, j = 1, . . . , 6, and initial condi-
tion x0 = [0, 50, 40,−30,−20,−10]T. Fig. 6 shows the in-
formation states and control inputs for the six agents ver-
sus time with the nonlinear consensus protocol φij(xi, xj) =
− 1

2 (sign(xi)|xi|0.8 − sign(xj)|xj |0.8), i, j = 1, . . . , 6, and ini-
tial condition x0 = [0, 50, 40,−30,−20,−10]T. Note that for
both information flow functions φij(xi, xj), i, j = 1, . . . , 6, i �=
j, considered, Assumptions 7.1–7.3 hold and by Theorem 7.1 the
information states converge to xe =

1
6e6e

T
6x0 = 5e6. Finally,

Fig. 7 shows the total agent entropies versus time for both control
protocols with c = ‖x‖∞ + 1. �
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VIII. CONCLUSION

This article extends the notions semistability and finite-
time semistability to discrete-time nonlinear dynamical sys-
tems having a continuum of equilibria. In particular, Lyapunov
and converse Lyapunov theorems for semistability and finite-
time semistability are established. These results are then used
to develop a thermodynamic-based framework for addressing
consensus problems for multiagent dynamical systems with
discrete-time information transmission between agents in the
network. Specifically, nonlinear network protocols are designed
that guarantee asymptotic and finite-time convergence to Lya-
punov stable equilibria over a discrete network of dynamic
agents. Our analysis relies on several tools from algebraic graph
theory, semistability, finite-time semistability, and dynamical
thermodynamics [28]. Future research will explore extending the
proposed framework to include directed communication graph
topologies as well as developing hybrid information consensus
algorithms for achieving finite-time coordination tasks with
intermittent communication between agents.

APPENDIX A
PROOF OF PROPOSITION 3.2

The proof of this result is similar to its continuous-time coun-
terpart given in [28]. For completeness of exposition, however,
we provide a self-contained proof here.

To show that i) implies ii), suppose (1) is semistable and
let xe ∈ Δf−1(0). Since xe is Lyapunov stable, it follows
that there exists δ = δ(xe) > 0 and a class K function α(·)
such that if ‖x0 − xe‖ ≤ δ, then ‖x(k)− xe‖ ≤ α(‖x0 − xe‖),
k ∈ Z+. Without loss of generality, we may assume that
δ is such that Bδ(xe), where ( ) denotes closure, is con-
tained in the domain of semistability of (1). Hence, for ev-
ery x0 ∈ Bδ(xe), limk→∞ x(k) = x∗ ∈ Δf−1(0) and, conse-
quently, limk→∞ dist(x(k),Δf−1(0)) = 0.

For each ε > 0 and x0 ∈ Bδ(xe), defineKx0
(ε) to be the infi-

mum of K with the property that dist(x(k),Δf−1(0)) < ε for
all k ≥ K, that is, Kx0

(ε) � inf{K : dist(x(k),Δf−1(0)) <

ε, k ≥ K}. For each x0 ∈ Bδ(xe), the function Kx0
(ε) is non-

negative and nonincreasing in ε, andKx0
(ε) = 0 for sufficiently

large ε.
Next, let K(ε) � sup{Kx0

(ε) : x0 ∈ Bδ(xe)}. We claim
that K is well defined. To show this, consider ε > 0 and
x0 ∈ Bδ(xe). Since dist(s(k, x0),Δf−1(0)) < ε for every k >
Kx0

(xe), it follows from the continuity of s that, for ev-
ery ε > 0, there exists an open neighborhood U of x0 such
that dist(s(k, z),Δf−1(0)) < ε for every z ∈ U , k > Kx0

(ε).
Hence, lim supz→x0

Kz(ε) ≤ Kx0
(ε) implying that the func-

tion x0 �−→ Kx0
(ε) is upper semicontinuous at the arbitrar-

ily chosen point x0, and hence, on Bδ(xe). Since an upper
semicontinuous function defined on a compact set achieves its
supremum, it follows that K(ε) is well defined. The function
K(·) is the pointwise supremum of a collection of nonnegative
and nonincreasing functions, and hence, is nonnegative and non-
increasing. Moreover, K(ε) = 0 for every ε > max{α(‖x0 −
xe‖) : x0 ∈ Bδ(xe)}.

Letψ(ε) � 2
ε

∫ ε

ε/2K(σ)dσ + 1
ε ≥ K(ε) + 1

ε . Note thatK(·)
is measurable since it is upper semicontinuous, and hence,

integrable. The function ψ(ε) is positive, continuous, strictly
decreasing, and ψ(ε) → 0 as ε→ ∞. Choose β(·) = ψ−1(·).
Then, β(·) is positive, continuous, strictly decreasing, and
β(σ) → 0 as σ → ∞. Furthermore, K(β(σ)) < ψ(β(σ)) = σ.
Hence, dist(x(k),Δf−1(0)) ≤ β(k), k ∈ Z+.

Next, to show that ii) implies iii), suppose ii) holds and
let xe ∈ Δf−1(0). Then, xe is Lyapunov stable. Choosing
x0 sufficiently close to xe, it follows from the inequality
‖x(k)− xe‖ ≤ α(‖x0 − xe‖), k ≥ 0 that trajectories of
(1) starting sufficiently close to xe are bounded, and
hence, the positive limit set of (1) is nonempty. Since
limk→∞ dist(x(k),Δf−1(0)) = 0, it follows that the positive
limit set is contained in Δf−1(0). Now, since every point in
Δf−1(0) is Lyapunov stable, it follows from Proposition 3.1
that limk→∞ x(k) = x∗, where x∗ ∈ Δf−1(0) is Lyapunov
stable. If x∗ = xe, then it follows using similar arguments
as mentioned above that there exists a class L function
β̂(·) such that dist(x(k),Δf−1(0)) ≤ ‖x(k)− xe‖ ≤ β̂(k)
for every x0 satisfying ‖x0 − xe‖<δ and k ≥ 0. Hence,

dist(x(k),Δf−1(0))≤√‖x(k)−xe‖
√
β̂(k), k ≥ 0. Next, con-

sider the case wherex∗�=xe and letα1(·) be a classK function. In
this case, note that limk→∞ dist(x(k),Δf−1(0))/α1(‖x(k)−
xe‖) = 0, and hence, it follows using similar arguments as
mentioned above that there exists a class L function β(·) such
that dist(x(k),Δf−1(0)) ≤ α1(‖x(k)− xe‖)β(k), k ≥ 0.
Finally, note that α1 ◦ α is of class K, and hence, iii) follows
immediately.

Finally, to show that iii) implies i), suppose iii) holds and
let xe ∈ Δf−1(0). Then, it follows that α1(‖x(k)− xe‖) ≤
α2(‖x(0)− xe‖), k ≥ 0, that is, ‖x(k)− xe‖ ≤ α(‖x(0)−
xe‖), where k ≥ 0 and α = α−1

1 ◦ α2 is of class K. Then, xe
is Lyapunov stable. Since xe was chosen arbitrarily, it fol-
lows that every equilibrium point is Lyapunov stable. Further-
more, limk→∞ dist(x(k),Δf−1(0)) = 0. Choosing x0 suffi-
ciently close to xe, it follows from the inequality ‖x(k)− xe‖ ≤
α(‖x0 − xe‖), k ≥ 0 that trajectories of (1) starting sufficiently
close to xe are bounded, and hence, the positive limit set of (1)
is nonempty. Since every point in Δf−1(0) is Lyapunov stable,
it follows from Proposition 3.1 that limk→∞ x(k) = x∗, where
x∗ ∈ Δf−1(0) is Lyapunov stable. Hence, by definition, (1) is
semistable. �

APPENDIX B
PROOF OF THEOREM 4.3

Define the function V : D0 → R+ by

V (x) � sup
k≥0

{
1 + 2 k

1 + k
dist(s(k, x),Δf−1(0))

}
, x ∈ D0.

(64)

Note that V (·) is well defined since (1) is semistable. Clearly, i)
holds. Furthermore, since V (x) ≥ dist(x,Δf−1(0)), x ∈ D0,
it follows that ii) holds.

To show that V (·) is continuous on D0\Δf−1(0),
define K : D0\Δf−1(0) → Z+ by K(z) � inf{h :
dist(s(k, z),Δf−1(0)) < dist(z,Δf−1(0))/2 for all k ≥ h
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> 0}, and denote

Wε � {x ∈ D0 : dist(s(k, x),Δf−1(0)) < ε, k ∈ Z+}.
(65)

Note that Wε ⊃ Δf−1(0) is open and positively invariant,
and contains an open neighborhood of Δf−1(0). Consider
z ∈ D0\Δf−1(0) and define λ � dist(z,Δf−1(0)) > 0. Then,
it follows from semistability of (1) that there exists h > 0 such
that s(h, z) ∈ Wε/2. Consequently, s(h+ k, z) ∈ Wε/2 for all
k ∈ Z+, and hence, it follows that K(z) is well defined. Since
Wε/2 is open, there exists a neighborhood Bσ(s(K(z), z)) ⊂
Wε/2. Hence, N � s−K(z)(Bσ(s(K(z), z))) is a neighborhood
of z and N ⊂ D0.

Next, choose η > 0 such that η < λ/2 andDη(z) ⊂ N . Then,
for every k > K(z) and y ∈ Bη(z)

1 + 2 k

1 + k
dist(s(k, y),Δf−1(0)) ≤ 2dist(s(k, y),Δf−1(0))

≤ λ.

Therefore, for every y ∈ Bη(z)

V (z)− V (y)

= sup
k≥0

{
1 + 2 k

1 + k
dist(s(k, z),Δf−1(0))

}

− sup
k≥0

{
1 + 2 k

1 + k
dist(s(k, y),Δf−1(0))

}

= sup
0≤k≤K(z)

{
1 + 2 k

1 + k
dist(s(k, z),Δf−1(0))

}

− sup
0≤k≤K(z)

{
1 + 2 k

1 + k
dist(s(k, y),Δf−1(0))

}
. (66)

Hence,

|V (z)− V (y)| ≤ sup
0≤k≤K(z)

∣∣∣∣1 + 2 k

1 + k

(
dist(s(k, z),Δf−1(0))

−dist(s(k, y),Δf−1(0))
)∣∣

≤ 2 sup
0≤k≤K(z)

∣∣dist(s(k, z),Δf−1(0))

−dist(s(k, y),Δf−1(0))
∣∣

≤ 2 sup
0≤k≤K(z)

dist(s(k, z), s(k, y))

z ∈ D0\Δf−1(0), y ∈ Bη(z). (67)

Now, it follows from continuous dependence of solutions s(·, ·)
on system initial conditions and (67) that V (·) is continuous on
D0\Δf−1(0).

To show that V (·) is continuous on Δf−1(0), consider xe ∈
Δf−1(0) and let {xn}∞n=1 be a sequence in D0\Δf−1(0) that
converges to xe. Since xe is Lyapunov stable, it follows that
x(k) ≡ xe is the unique solution to (1) with x0 = xe. By contin-
uous dependence of solutions s(·, ·) on system initial conditions,
s(k, xn) → s(k, xe) = xe as n→ ∞, k ∈ Z+.

Let ε > 0 and note that it follows from ii) of Proposition 3.2
that there exists δ = δ(xe) > 0 such that for every solution
of (1) in Bδ(xe) there exists K̂ = K̂(xe, ε) > 0 such that
sk(Bδ(xe)) ⊂ Wε for all k ≥ K̂. Next, note that there exists
a positive integer N1 such that xn ∈ Bδ(xe) for all n ≥ N1.
Now, it follows from (64) that

V (xn) ≤ 2 sup
0≤k≤K̂

dist(s(k, xn),Δf
−1(0)) + 2ε, n ≥ N1.

(68)

Next, it follows from [35, Lemma 3.1 of Ch. I] that s(·, xn)
converges to s(·, xe) uniformly on [0, K̂]. Hence,

lim
n→∞ sup

0≤k≤K̂

dist
(
s(k, xn),Δf

−1(0)
)

= sup
0≤k≤K̂

dist
(
lim
n→∞ s(k, xn),Δf

−1(0)
)

= sup
0≤k≤K̂

dist(xe,Δf
−1(0))

= 0 (69)

which implies that there exists a positive integer N2 =
N2(xe, ε) ≥ N1 such that

sup
0≤k≤K̂

dist(s(k, xn),Δf
−1(0)) < ε, n ≥ N2. (70)

Combining (64) with (70) yields V (xn) < 4ε for all n ≥ N2,
which implies that limn→∞ V (xn) = 0 = V (xe).

Finally, we show that V (x(k)) is strictly decreasing along the
solution of (1) on D\Δf−1(0). Now, note that it follows from
the definition of K(·) that the supremum in the definition of
V (s(1, x)) is reached at some time k̂ such that 0 ≤ k̂ < K(x).
Hence

V (s(1, x)) = dist(s(k̂ + 1, x),Δf−1(0))
1 + 2k̂

1 + k̂

= dist(s(k̂ + 1, x),Δf−1(0))
1 + 2k̂ + 2

1 + k̂ + 1

·
[
1− 1

(1 + 2k̂ + 2)(1 + k̂)

]

≤ V (x)

[
1− 1

2(1 +K(x))2

]
(71)

which implies

ΔV (x) ≤ −1

2
V (x)(1 +K(x))−2 < 0, x ∈ D0\Δf−1(0)

(72)

and hence, iii) holds. �

APPENDIX C
PROOF OF THEOREM 7.1

For the proof of Theorem 7.1, we writex(k) → M as k → ∞
to denote that x(k) approaches the set M, that is, for every
ε > 0 there exists K > 0 such that dist(x(k),M) < ε for all
k > K. First, we show M = {x ∈ Rq : x = αe, α ∈ R} is the
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set of equilibria of (57). To see this, note that it follows from
Assumption 7.1 that for C(i,j) = 1, i �= j, φij(xi, xj) = 0 if and
only if xi = xj , and hence, αe is an equilibrium state of (57)
for every α ∈ R.

To show Lyapunov stability of the equilibrium state αe,
consider the Lyapunov function candidate V (x) = 1

2 (x−
αe)T(x− αe). Note that V (x) > 0, x ∈ Rq, x �= αe, and
V (x) = 0 if and only if x = αe. Furthermore, V (·) is radi-
ally unbounded. Now, since φij(xi, xj) = −φji(xj , xi) for all
i, j = 1, . . . , q, i �= j, and eTx(k + 1) = eTx(k), k ∈ Z+, it
follows from Assumptions 7.2 and 7.3 that

ΔV (x(k))

= V (x(k + 1))− V (x(k))

=
1

2
[x(k + 1)− αe]T[x(k + 1)− αe]

− 1

2
[x(k)− αe]T[x(k)− αe)]

=
1

2
xT(k + 1)f(x(k))− 1

2
xT(k)x(k)

=

q∑
i=1

q∑
j=1,j �=i

xi(k + 1)φij(xi(k), xj(k))

− 1

2

q∑
i=1

⎡
⎣ q∑
j=1,j �=i

φij(xi(k), xj(k))

⎤
⎦
2

=

q−1∑
i=1

q∑
j=i+1

[xi(k + 1)− xj(k + 1)]φij(xi(k), xj(k))

− 1

2

q∑
i=1

⎡
⎣ q∑
j=1,j �=i

φij(xi(k), xj(k))

⎤
⎦
2

≤ 0, x(k) ∈ Rq, k ∈ Z+ (73)

which, using [3, Th. 13.2], establishes Lyapunov stability of the
equilibrium state αe.

To show that αe is semistable, note that

ΔV (x(k)) =
1

2
xT(k + 1)x(k + 1)− 1

2
xT(k)x(k)

=

q∑
i=1

q∑
j=1,j �=i

xi(k)φij(xi(k), xj(k))

+
1

2

q∑
i=1

⎡
⎣ q∑
j=1,j �=i

φij(xi(k), xj(k))

⎤
⎦
2

≥
q−1∑
i=1

q∑
j=i+1

[xi(k)− xj(k)]φij(xi(k), xj(k))

=

q−1∑
i=1

∑
j∈Ki

[xi(k)− xj(k)]φij(xi(k), xj(k))

(74)

where Ki � Ni \ {1, . . . , i− 1} and Ni � {j ∈ {1, . . . , q} :
φij(xi, xj) = 0 if and only if xi = xj}, i = 1, . . . , q. Now,
note that ΔV (x) = 0 if and only if (xi − xj)φij(xi, xj) = 0,
i = 1, . . . , q, j ∈ Ki.

To see this, first assume that (xi − xj)φij(xi, xj) = 0, i =
1, . . . , q, j ∈ Ki. Then, it follows from (74) that ΔV (x) ≥
0, x ∈ Rq. However, it follows from (73) that ΔV (x) ≤
0, x ∈ Rq, and hence, ΔV (x) = 0. Conversely, assume
ΔV (x) = 0. In this case, it follows from Assumption 7.2 and
(73) that [xi(k + 1)− xj(k + 1)]φij(xi(k), xj(k)) = 0 and∑q

j=1,j �=i φij(xi(k), xj(k)) = 0, k ∈ Z+, i, j = 1, . . . , q, i �=
j. Now, since

[xi(k + 1)− xj(k + 1)]φij(xi(k), xj(k))

= [xi(k)− xj(k)]φij(xi(k), xj(k))

+

⎡
⎣ q∑
h=1,h �=i

φih(xi(k), xh(k))

−
q∑

l=1,l �=j

φjl(xj(k), xl(k))

⎤
⎦φij(xi(k), xj(k))

= [xi(k)− xj(k)]φij(xi(k), xj(k))

k ∈ Z+, i, j = 1, . . . , q, i �= j (75)

it follows that (xi − xj)φij(xi, xj) = 0, i = 1, . . . , q, j ∈ Ki.
Finally, to show x(k) → 1

qee
Tx(0) as k → ∞ and 1

qee
Tx(0)

is a globally semistable equilibrium state, let

R � {x ∈ Rq : ΔV (x) = 0}
= {x ∈ Rq : [xi(k)− xj(k)]φij(xi(k), xj(k)) = 0

i = 1, . . . , q, j ∈ Ki}.
Now, it follows from Assumption 7.1 that the communication
graph topology of G is strongly connected, which implies that
R = {x ∈ Rq : x1 = x2 = · · · = xq}. Since R consists of the
equilibrium states of (57), it follows that the largest invariant set
M contained in R is given by M = R. Hence, it follows from
Theorem 4.2 that for every initial condition x(0) ∈ Rq, x(k) →
M as k → ∞, and hence, αe is a semistable equilibrium state
of (57). Moreover, since eTx(k) = eTx(0) for all k ∈ Z+, it
follows that x(k) → 1

qee
Tx(0) as k → ∞. Hence, with α =

1
qe

Tx(0), αe = 1
qee

Tx(0) is a globally semistable equilibrium
state of (57). �
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