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Abstract. In this paper we develop explicit formulas for induced convolution
operator norms and their bounds. These results generalize established induced
operator norms for linear dynamical systems with various classes of input—output
signal pairs.

Key words. Convolution operators, Hankel operators, Induced norms, Mixed-
induced norms, Bounded energy signals, Bounded amplitude signals, H,, norm,
L, norm.

1. Introduction

In this paper we consider the dynamical system
x(t) = Ax(t) + Bu(1), x(0)=0, >0, (1)
y(1) = Cx(1), (2)

where x(f) e R", u(t) e R™, y(f)e R/, t€[0,00), 4eR™" is asymptotically
stable, Be R and C e R, Here, u(-) is an input signal belonging to the
class L, of input signals and y(-) is an output signal belonging to the class L, of
output signals, where the notation L, denotes the set of functions in L,. In appli-
cations, (1) and (2) may denote a control system in closed-loop configuration
where the objective is to determine the “size’ of the output y(-) for a disturbance
u(+). In this paper we develop explicit formulas for convolution operator norms
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and their bounds induced by various norms on several classes of input—output
signal pairs. These results generalize established induced convolution operator
norms for linear dynamical systems.

If the input—output signals are constrained to be finite energy signals so that
u, y € Ly, then the equi-induced (that is, the domain and range spaces of the con-
volution operator are assigned the same temporal and spatial norms) signal norm
is the H,, system norm [F], [Z] given by

1600 2 sup 2122 up gy [H ()] 3)
u(-) e Ly |||u|||22 weR

where the notation || - ||, , denotes a signal norm with p temporal norm and ¢
spatial norm, omax(+) denotes the maximum singular value, G denotes the convo-
lution operator of (1), (2), and H(s) = C(sI — A)~' B is the corresponding transfer
function. Hence, the H,, system norm captures the supremum system energy gain.
Alternatively, if the input—output signals are constrained to be bounded ampli-

tude signals so that u, y € L, then the equi-induced signal norm

s g Il “

g o0, 0), (00, 00
Il |H(oo, 0), (00, 0) (el H|u|‘|mOC

is the L; system norm! [DD], [V]. Thus, the L; system norm captures the worst-
case amplification from input disturbance signals to output signals, where the
signal size is taken to be the supremum over time of the signal’s peak value
pointwise in time [DD], [V].

Mixed input—output signals have also been considered. For example, if u € L,
and y € L, then the resulting induced operator norm is [W2]

Uyl
(02,22 2 SUP T = A (COCT), (5)
u(-)eLy |H”|||2,2

gl

where Amax(-) denotes the maximum eigenvalue and Q is the unique n x n
nonnegative-definite solution to the Lyapunov equation

0=A4Q0+ 04" + BB". (6)

Hence, [|(G]||(s; 2),(2,2) Provides a worst-case measure of amplitude errors due to
finite energy input signals. Alternatively, if the input and output signal norms are
chosen as ||| - |||, , and ||| - ||| respectively, then the resulting induced operator
norm is [W2]

00, 002

Do
NG (o 0y, 2.2) 2 SUP — = = dinax (CQCT), (7)
u(-)eLy H|“|Hz,2

where dmax(-) denotes the maximum diagonal element. Hence, [[|G][(. . (2,2

provides a worst-case peak excursion response due to finite energy disturbances.

!In the single-input/single-output case, it is well known that the induced norm (4) corresponds to
the L} norm of the impulse response matrix function [DD], [V].
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It is clear from the above discussion that operator norms induced by classes of
input—output signal pairs can be used to capture disturbance rejection perfor-
mance objectives for controlled dynamical systems. In particular, H,, control
theory [F], [Z] has been developed to address the problem of disturbance rejection
for systems with bounded energy L, signal norms on the disturbance and perfor-
mance variables. Since the induced H,, transfer function norm (3) corresponds to
the worst-case disturbance attenuation, for systems with L, disturbances which
possess significant power within arbitrarily small bandwidths, H,, theory is
clearly appropriate. Alternatively, to address pointwise in time worst-case peak
amplitude response due to bounded amplitude persistent L, disturbances, L;
theory is appropriate [DD], [V]. The problem of finding a stabilizing controller
such that the closed-loop system gain from ||| - |||, to ||| - [[|., ,, where ¢ =2 or
o0, is below a specified level is solved in [R] and [ WNH]. In addition to the dis-
turbance rejection problem, another application of induced operator norms is the
problem of actuator amplitude and rate saturation [DEBW], [CH2]. In particular,
since the convolution operator norm |[||G]||(, ) (2.2 given by (7) captures the
worst-case peak amplitude response due to finite energy disturbances, defining the
output (performance) variables y to correspond to the actuator amplitude and
actuator rate signals, it follows that [[|Gl[|, .. (2, bounds actuator amplitude
and actuator rate excursion. Furthermore, since uncertain signals can also be used
to model uncertainty in a system, the treatment of certain classes of uncertain dis-
turbances also enable the development of controllers that are robust with respect
to input—output uncertainty blocks [DD], [DV].

In the recent papers [W2] and [W3], Wilson developed explicit formulas for
convolution operator norms induced by several classes of input—output signal
pairs. In this paper we extend the results of [W2] and [W3] to a larger class of in-
put—output signal pairs and provide explicit formulas for induced convolution
operator norms and operator norm bounds for linear dynamical systems. These
results generalize several well-known induced convolution operator norm results
in the literature including results on L, equi-induced norms (L; operator norms)
and L; equi-induced norms (resource norms). In cases where the induced convo-
lution operator norm expressions are not finitely computable, we provide finitely
computable norm bounds. Finally, since a single performance objective is seldom
adequate for capturing multiple and often conflicting design objectives [BH],
[ZGBD], [SHB], induced convolution operator norms for mixed-norm linear
dynamical systems are also developed.

Notation
R, R™*" real numbers, m x n real matrices
Xi ith entry of vector x
x| vector whose ith element is |x;|
e vector with unity in ith position and zeros elsewhere
A jy (7, j)th element of matrix A
A<<B A(i,j) < By, for all i and j, where 4 and B are real matrices

with identical dimensions
row;(A4),col;(A4) ith row of 4, ith column of 4
AT transpose of 4
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detA,tr 4 determinant of A4, trace of 4
ai(A4) ith singular value of 4
Omax(A4) maximum singular value of 4
dmax(A) max;—i,..n A(i,i)
Jmax (A4) maximum eigenvalue of symmetric matrix 4
4l g Frobenius norm of A(= (tr 447)"? = || 4||,)
4], o S P17 1< p < oo
Il MaX ..., n 4]
Jj=l,..., m
11, U @I dy'r, 1 < p < o0
|||f|||%q €SS sup,>o Hf(l)H(]
9 I 1T 0g(0) dr
L, {f:10,00) — R": f is measurable and ||| f1]|,,, < o0, ¢ € [, ]}
RH, real-rational subspace of H,
p p/(p=1), pell, o]

2. Mathematical Preliminaries

Let ||-|" and | -|” denote vector norms on R" and RR™, respectively, where
m,n > 1. Then || - || : R™" — R defined by
4]l & max [ Ax]|"
[lx]l"=1
is the matrix norm induced by || - ||" and || - |". If || - || = || - |, and || - 1" =" s
where p, g € [1, o], then the matrix norm on R"™*" induced by || - ||, and || - ||, is
denoted by || - ||, ,- Let || - || denote a vector norm on R™. Then the dual norm

|- llp of || - || is defined by
I7/lp & max [yTx],
[Ix]=1

where y € R™ [SS]. Note that || - |lpp = || - || [SS]. Furthermore, if p,q € [1, ]
satisfy 1/p+1/qg =1, then || - || ,p, = || - [|,, [SS]. For p € [1, co] we denote the con-
jugate variable ¢ € [1, oo] satisfying 1 /p+ 1/g=1byp=p/(p —1).

Let || - || denote a vector norm on IR". Then || - || is absolute if ||x|| = || |x| || for
all x e R". Furthermore, || - || is monotone if ||x|| < ||y|| for all x, y € R” such that
|x| << |y|. Note that || - || is absolute if and only if || - || is monotone [HJ, p. 285].

Lemma 2.1. Let p € [1, 0] and let A € R™". Then

45,2 = omax(4), (8)
41,1 = max flcoli(4)]], o)

and
14l..., = max [[rowi(4)] (10)

Proof. Expression (8) is standard; see [SS] for a proof. To show (9), note that,
for all x e IR”,

x|, = ‘

i x;col;(A4)
i=1

n
< Y lullleoli(A)ll, < max [lcoli(A)], I+l
P i=1 o
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""" I,- Now, since fle|l; = 1, it follows that || e[|, =
[[col;(4)]], which implies ||4||, ; = max;—i, . [lcol;(4)]|, and hence (9) holds.

Finally, to show (10) note that, for all x € R", it follows from Holder’s inequal-
ity that

[Ax|[,, = max [rowi(4)x| < max |lrow;(4)[|5|[x[],,
i=1,...m i=1,...m

which implies that [|4]|,, , < max;—i . [[row;(4)

.....

’ ll;- Next, let je{l,...,n} be
such that [[row;(4)||; = max;—i . [[row;(4)||; and let x be such that [row;(4)x]|

= Hrowj(A)||[-,||pr. Hence |4x||,, = max;—,__m|row;(A4)x| = |row;(4)x| =
|(|ro)wj(A)||ﬁHpr which implies that [|4[|,, , > max,—__n [[row;(4)||; and hence
10) holds.

Remark 2.1. Note that (9) and (10) generalize the well-known expressions
[A[},1 = maxi—y__n [[coli(A)[l, [HI], (4], ., = maxi—

”A”oo,l = | max

and max;_i__ |row;(4)|, = d,lnfx(AAT), it follows from (9) with p =2 that
A5,y = difa (AT A) and from (10) with p = 2 that || ]|, , = d}/> (447).

max max

|4||., [K]. Furthermore, since maxi:h_wnV||col,'(A)||2:dl/z(ATA)

yeeey

Lemma 2.2. Let | -||" and | -||" denote absolute vector norms on R" and R™, re-
spectively, and let || - || : R™" — IR be the matrix norm induced by || - ||" and || - ||”.
Then the following statements hold:

(i) Let AeR™" be such that A >> 0. Then there exists x € R" such that
x=>0, |x]|'=1, and || A| = ||Ax]".
(i) Let A,B e R™" be such that 0 << A << B. Then || 4|| < ||B|-

Proof. To prove (i) let y € R” be such that |||’ =1 and ||4| = ||4y||". Now,
since || - || and || - || are absolute (and hence monotone) vector norms it follows
that

1Al = A" < A" < 1AL = 4l = 4],

which implies that ||4|| = ||4]y|||” and hence (i) follows with x = |y]|.

Next, to prove (ii) let x € R” be such that x >> 0, ||x||" = 1, and ||4]| = ||4x|"
(the existence of such an x follows from (i)). Hence, since || - ||” is an absolute
vector norm and Ax << Bx it follows that

4]l = [l 4x]|" < || Bx]|" < || B],

which implies (ii). |
The following result generalizes Holder’s inequality to mixed-signal norms.

Lemma 2.3. Let p,re(l, o], andlet f €L, and g € L;. Then
<90 < Mgl 5,5 (11)

Finally, the following two results are needed for the results given in Section 3.
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Lemma 2.4 [W2]. Let pe([l,o0) andre|l, ], andlet f € L,. Then
IHfﬂbJ:=jgg<flg>, (12)

where 4 2 {g e L; : |||gll|; - < 1}. |

Lemma 2.5 [W2]. Let pell,©), rell,w], and f:[0,00) x [0,00) — R" be

such that f(t,-) is integrable for almost all te |0, oo) f(,7) e L, for almost all
t€0,), and g € Ly, where g(z) £ [[” |1£(¢,7)||7 di] P Then

iyl < J 9(1) dr, (13)

where

y(t) = ro f(t,7)dr, t>0. (14)

0

3. Induced Convolution Operator Norms for Linear Systems

In this section we develop induced convolution operator norms. For the system
1), 2), let G : R — R”" denote the impulse response function
p p

0 t<0
COERTN ’ 15
() {CEAtB, [20 ( )

Next, let G : L, — L, denote the convolution operator

(1) = (G*u)(t) & J G(t — t)u(z) dr, (16)
0
and define the induced norm |[|g]|[(, ) (,.») @S
mgm@&wﬁ sup WQ*MMY (17)

[l =1

The following lemma provides an explicit expression for [[|G]|[ . ..) . for the
case in which G is a single-input/single-output operator.

Lemma 3.1. Letre[l,o0]andlet!=m=1.Then G:L, — L., and
G111, = llGIIl7 (18)

Proof. Forr=1 and r = oo, (18) is standard; see [W2] and [DV, pp. 23-24], re-
spectively. Next, let r € (1, 00) and note, for all ¢ > 0, it follows from Lemma 2.3

with p = r that
w i
s“ G(z—r>|'dr] el

()] =
‘ i 1/r
- U |G<r>|"dr] el < 1G5 Al
0

(00, 00), (r,r)

J: Gt — yu(r) de
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which implies
1G5, 0), 1) < IG5, 7- (19)
Next, let T > 0 and let u(-) be such that u() = sgn(G(T — 1))|G(T — )]/,
t >0, where sgn(-) denotes the signum function. Now, since |||ul|, , =
Uy 1G(T — )" ", it follows that '

|y(T)| = J G(T — t)u(r)dr :J |G(T —7)|"dt
0 0
0 ) 1/7 T ) 1/r
=[] 16— arad] i, = || i6@ra] ..
Hence,
1M, = Jim [2(T)] = [[|GI[[; flllulll,..»
which, with (19), implies (18). |

Remark 3.1. Note that it follows from Lemma 3.1 that there exists u € L, such
that lim,—.o (G * u) (1) = [[|G][|;, 5[ [u]l],,,-

Remark 3.2. Lemma 3.1 can also be derived using the concept of interpolation
spaces [BL]. Specifically, it follows from the Riesz—Thorin interpolation theorem
[BL, p. 2] that if G: L, - L, and G:L; — L, then G: L, — L., for all re
(1, 00).

Next define P € R™" and Q € R/ by

pa Jw G'()G(r)dr, Q2 JT G(0G' (1) dr. (20)
0 0

Note that P = BTPB and Q = CQCT, where the observability and controllability
Gramians P and Q, respectively, are the unique n X n nonnegative-definite solu-
tions to the Lyapunov equations

0=A"P+PA+C'C, 0=A40+ 04" + BB (21)
Furthermore, let G
NGanllp.p). .00

pq denote the /xm matrix whose (i,j)th element is

Theorem 3.1.  The following statements hold:
(i) G:Ly— Ly, and
|||Q|H<2,2),(2,2) = SUp Omax(H (Jo)). (22)
welR

(i) Letre(l,o]. ThenG:L; — Ly, and

G112, 1.0 = P, (23)
(iti) Let pe[l,®]. Then G: L, — L, and

G0, 22 = 12212, 5- (24)
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(iv) Let p,re|l,o]. Then G:L; — L, and

Gl ). 1.5y = SUPIIGD)]l,, - (25)
t>0
(v) Letrell,]. ThenG:L, — Ly, and
|||g|||(w,oo),(r,r) = max, [[row; (G, )| ;- (26)

(vi) Letpe[l,w]. ThenG:L; — L,, and
1600,y 1.1y = T8 [le0] (Gl 27)

Proof. (i) is standard; see [Z] and [F] for a proof.
(i) It follows from Lemma 2.5 that

0

1IXlll,2 < L 116G = DJu(D)|ll,,» d7

0 0

_ r {J” Wt ()G (1 — )Gt — Du(r) dt}l/z dr

:JO 1P 2u(z)|l, dr < JO P21 (@), de = P2, Ml

which implies that [[|G]||5,2) (1, < |\P1/2||2,,..

Next, let wu(-) = awi(-), k=1,2,..., where @te R? is such that |i, =1,
| P2, = |PY?||, ,|lit]],, and measurable vy : [0, 00) — R is such that |||vz][|
=1 and, as k — oo, vx(-) — J(-), where J(-) is the Dirac delta function. Note that
uellly, =1, k=1,2,..., and y; (1) = G(2)ir, t > 0, as k — oo, where y, (1) &
(G % u)(£). Hence,

o0 1/2 0 1/2
191,00 > fim sl ={ [ 16l ar} = { "™ oci o

\

— 00 0
= @"Pa)': = | Pll, = [PV,

which implies that [[|G]]5.5) 1., = IP"],,,-
(i) With p = r =2 it follows from Lemma 2.3 that, for all z > 0,
o0

N
= max u G(t —7)u(r)dr
p {ieR™ ﬁ,;l}J ( Jul®)

JOO G(t — t)u(r)dr .

Iyl =1/

o ,
= max G(t—7)u||5dr u
o | TR T R

, 12
= max [i{TJ G(t)G'(z) dffl} [[ull]5,2

{aeR": ||af;=1} 0

AT ey 1/2 1Al
< max u'on u =9 51| |u
e 700 il = 10l
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which implies that ||[y[l[.. , < |\Ql/2||2’ﬁ|\|u|||2_2 for all ye L., and ue€L,, and

hence |[|G][|(0, ). 2,2) SHQI/ZHM-
Next, let e R be such that la[; =1 and 102, = ||Q1/2||2.ﬁ, and let

T > 0and
1

12215

so that ||[ull], , < 1. Now, since || - ||, = || - [|, it follows that

u(t) = G'(T - b,

IYlll.e = sup [y,
t>0

T
=sup max (1)
>0 {FeR™[|7[;=1}

> sup " y(1)

t>0

1 = .
= m ?EE Jo W"G(T — 1)G'(T — t)adr
B

1 T A
= m 31:%) Jo " G(7)G" ()i dr,
B

which implies that, for every 7' > 0, there exists u € L, such that ||[ul|], , < 1 and

1 r )
51l 2 g sup | # GG @
72
or, equivalently,
1 T )
Gy 2 = SUD 73— j i G(x) G (2)inde
HQ 25 1=
1 * T T
=———3su w G(r)G (t)udr
1975, o Jo G
1 AT n
=——1
19,5
= 11Q"2], 5.

which further implies that ||G]|| ., ). 2.2) = 12"2 -
(iv) Note that, for all z > 0, '

[o0]

ly@ll, < J:O 1G(2 = Du(7)|], dr < JO 1G(t = D)l M)l dz

< sup[|G())], JO lu(@)llde < sup [[GD)ll,[lll].
=

t>0

(1,9 < SUPo |G, -
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Next, let ¢ > 0 and 7 € [0, c0) be such that ||G(1)|, , > sup,>, [|G(1)]], , — . In
addition, let wu(-) = ve(-)it, k=1,2,..., where &#eR" is such that |i]|, =1,
G (t0)all, = [|G(2)ll,,,/|é]l,, and measurable vx : [0, 00) — R is such that |[[ve]|];
=1 and, as k — o0, vx(-) — d(-), where J(-) is the Dirac delta function. In this
case note that [|ucll[; , =1, k=1,2,..., and y, (1) — G()it, t > 0, as k — o,
where (1) £ (G * u;)(¢). Hence,

162, 1.0 = Jim suplye(D)l, = sup[|G(1)al,

k=0 >0

Y

|G (zo)idl, = GGy, > sup |Gl =2,
which implies that

sup [|G(0)ll,., = & < [[1Gllo.p), 1,y < sUP IGO0 &>0,
t>0 t>0

and hence (25) holds.

(v) Note that for all ueL, and yeL. it follows that ||[u[|. = |,
and |||y|l|. . = lI7]l.., where @& e R™ and 7 € R’ with & = el i=1,...,m,
and ;= ||[ylll, ., i=1,...,1. Next, it follows from Lemma 3.1 that
1196 .0y .y = 1 Giepll. and henee

> Gup *u
=

i

m
< Z |||g(l,]) *u]mocoo
w =

cc‘oc_'
0,

IA

m
> MGl sl < llrowi(Giz, o)1l 1al,
J=1

< max [[rowi(Gis )|l
which implies that [[|y[|[., ,, = I7ll,, < maxi—i_;[[row:(G(z 7)ll7[|ull],, and
hence,

NG,y < X lrowi( G 1)l 8)
Next, let 7 € {1,...,/} be such that |[row;(G[z 7)|; = max;= ./ |[row;(Gii, o) || -
Now, let it € R™ be such that [|it||, = 1, let row;(G;, 7)it = |[row; (G )|l and let
uel,, j=1,....,m, be such that |[|[ul|l,, =i and lim, . (Gy ) *w)(t) =
G plllz illwlll,. - Note that the existence of such a u;(-) follows from Lemma
3.1 and Remark 3.1. Now,

m
e, o0 = Myrllle, oo = lim [y (7)] = lim ;(gu./) * 1) (1)
= > _Guplllz illwlll,., = rowi (G, )it = [[row (G, i)l 7,
=

which, with (28), implies (26).
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(vi) For p = oo, (27) is a direct consequence of (iv) or (v). Now, let p € [1, c0)
and note that it follows from Lemma 2.4 that ||| y|l|, , = supy; e il =1y <V I
Hence, with p = r =1 it follows from Lemma 2.3 that

il = s | 20300 de

WIllly =10

= sup (J uT(T)GT(t—r)dr)j/(t) dr
Wwllly =140 \JO

= sup uT(r)<J G'(t—1)p(1) dt) dz
7l ;=1 Jo 0

— sup Cwd
131115, 5=1

<Ilfullli,r sup lfalll

13Mll5. =1
where () £ [[° GT(t — 1)p(z) dr. Now, with r = p, it follows from (v) that
||\g|||<p,p),<1,1) < sup |llill]l, .o = max flcoli(Gip,p))ll,- (29)
1171115, =1 J=hem

Next, let J € {1,...,m} be such that ||col; (G}, )|, = mMax;_j__ l[coli (G ),
and let u;(+) £ vi(- )eJ, k=1,2,..., where v : [0,00) > R is a measurable func-
tion such that |[|[og[[|, ; =1 and as k — o0, () — J(-), where 5() is the Dirac
delta function. In this case note that H|uk|\|1 =1, k=1,2,..., and y. (1) —
coly(G(2)), t = 0, as k — oo, where y,(¢) £ (G * uy)(t ) Hence

NG ppy. 11y = Jim (1Lyelll,,, = Hlicols (G,
= lleols(Gippll, = max [lcol;(Gipp)lly,
which, with (29), implies (27). |

The following corollary specializes Theorem 3.1 to the results given in [W2],
[W3], and [DV, p. 26].

Corollary 3.1. The following statements hold.
(i) G:Li— Ly, |||g|||(2,2)7(1,2) = Urln/gx( P), and |||g||\(27z),(1 1) drln/azx(P)

(i) G:La— Lo, [11911]0.), (2) = Oniax(Q), and [[|G]ll o o) 2.2 = AN ().

(i) G:Li — Lo, [Gll.c00,1,1) = SUPi=0 G|, and |||g||| (0,2),(1,2) =
SUP; > o Tmax (G (1))

(iv) G: Lo — Lo, and [[|G]]] ., oo) (o0, 0) = MaXi=1 .1 [rowi(G1 )|

(v) ¢: L1—>L1,andlllg\l|u = maxj—i__m [[coli (G )l;-

Remark 3.3.  Recall that the H, norm of the system (1), (2) is given by [[|G|||y,
= |PV?||p = ||Q"?||p. Hence, using the fact that || - || = omax(-) for rank-one



Induced Convolution Operator Norms 227

matrices, it follows from (i) of Corollary 3.1 that if B (and hence P) is a rank-one
matrix, then [[|G|[|y, = [||9]l](2,2),(1,2)- Similarly, it follows from (iii) of Corollary
3.1 that if C (and hence Q) is a rank-one matrix, then [[|G|[|y, = [||9]l](,2), 2,2)-
Hence, in the single-input/multi-output and multi-output/single-input cases the
H; norm of a dynamical system is induced. In the multi-input/multi-output case,
however, the H; norm does not appear to be induced. For related details see [CH1].

Remark 3.4. Theorem 3.1 also applies to the more general case where G is a
noncausal, time-invariant operator. In this case, the input—output spaces L, and
L, are defined for t € (—o0, o0), H(jw) is the Fourier transform of G(z), and the
lower limit in the integrals defining P and Q is replaced by —oco.

Remark 3.5. Theorem 3.1 along with the Riesz—Thorin interpolation theorem
[BL, p. 2] can be used to obtain a whole class of induced operator norm bounds.
To see this, let py, qo,p1,¢1 € [1, 0], let 8 € (0, 1), and define p and ¢ by

1 1-6 0

[ 4+ —

p Do D1
and

1 1-0 ¢6

R 4+ —.

q q0 q1

Furthermore, let |||G|||, denote an induced norm of G: L,  — L, and let |||G]||,
denote an induced norm of G : L, — L,,. Now, it follows from the Riesz—Thorin
interpolation theorem [BL, p. 2] that if G: L, — L, and G:L, — L,, then
G:L, — L,. In addition, if |||G||| denotes an induced norm of G : L, — L,, then

NGl < glle=mein’-

Using this result and Theorem 3.1, a wide class of induced operator norm bounds
can be derived. For example, if G: L, — Ly and G: L, — L, with py =p; =2,
g0 =2, and ¢q; = oo, it follows that G : L, — L, for all ¢ € (2, 0). In addition,

2 -2
11611120, 2.2) < GG, 21161175 2.2
= sup Timax (H ()00)) 9 (0max (Q)) 4. (30)
weE

Remark 3.6. An analogous theorem to Theorem 3.1 can also be derived for dis-
crete-time linear systems. Specifically, if the input—output spaces are replaced by
the sequence spaces ¢, and /., respectively, H(jw), w € R, and G(¢), t = 0, are
replaced by H(e’?), w € [0,2x], and G(k), k =0,1,..., respectively, and P and Q
are replaced by

0 o0

P=> G'kGK), Q=3 GKk)G k),

where
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then an analogous theorem to Theorem 3.1 holds for discrete-time systems. For
specific details of this fact see [CHBW].

It is important to note that even though Theorem 3.1 is derived for linear,
finite-dimensional dynamical systems, infinite-dimensional generalizations of this
theorem can be readily developed. Specifically, let x(#) in (1) be an element of a
real separable Hilbert space H and assume that the state differential equation (1)
is interpreted in the weak sense (see, e.g., p. 229 of [B]). Furthermore, assume the
closed, densely defined operator 4 : D(A) = ‘H — H generates a strongly continu-
ous semigroup e?’, 1>0, on H and A is exponentially stable. Finally, let
B(IR™, H) denote the space of bounded linear operators from R"” into  and let
C(H,R’) denote the space of bounded linear operators from # into IR’ so that
Be B(R™,H) and C € C(H,R'). Now, if H is such that G : [0, 00) — R”" and P
and Q are well defined, then Theorem 3.1 is still valid. In this case, P = B*PB
and Q = CQC*, where ()" denotes the adjoint operator, and P and Q are
the unique solutions to the infinite-dimensional observability and controllability
Gramians satisfying

0=A"Px+ PAx + C*Cx, xeD(A), (31)
0=A0x+ QA*x+ BB"x, xeD(A4"). (32)

The infinite-dimensional system description discussed above includes several
classes of systems; namely, functional differential systems, delay systems, and sys-
tems described by irrational transfer functions. For an excellent textbook treat-
ment of these systems the reader is referred to [CZ]. Related works can also be
found in [M], [W1], and [PU].

An alternative characterization of input—output properties is the Hankel norm
which provides a mapping from past inputs u(¢), ¢ € (—o0, 0], to future outputs
(1), te[0,00) [G], [W2]. For causal dynamical systems the Hankel operator
I':L,(—0,0] — L, is defined by

y(t) = (T xu)(t) & J G(t+ t)u(—7) dr, te|0,0), (33)
0
where L,(—o0,0] denotes the set of functions in L, on the time interval (—oo, 0],
and the induced Hankel norm |[[T'[|[, ;) (., is defined by

1T g.s).(pr) & i 1H|1ﬂ>'<u|||q,s- (34)
ulll,, =

Proposition 3.1. The following statements hold:
(i) T:Ly(—00,0] — Ly, and
1Tl 2.2). 2.2 = s (PQ)- (35)
(i) Letre(l,]. ThenT : Lj(—00,0] — Ly, and
|||F|||(2,2).(1,r) = ||771/2||2,r- (36)
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(iif) Let pe(l,0]. ThenT : Ly(—00,0] — Ly, and

|||F|‘|(oo,p),(2‘2) = ||Ql/2||2,,7' (37)
(iv) Let p,re|l,]. ThenT : Li(—00,0] — L, and
WM, p), 1,9 = sup 1G], (38)
t=>0

(v) Letrel[l,o]. ThenT : L,(—00,0] — L, and

|Hr|||(oo ©), (r,r) — lil}axl ||I’OW,(G[, r])”r (39)
(vi) Letpe[l,o]. ThenT : Li(—0,0] — L,, and
1T py, 0,0y = max [leoli(Gip,p))l,- (40)

Proof. (i) is standard; see [G] for a proof. The proof of (ii)—(vi) is similar to that
of (ii)—(vi) of Theorem 3.1 with appropriate modifications to the time interval for
the input space. |

4. Finitely Computable Upper Bounds for [[|G][| ., ,) (1.,

In this section we obtain a finitely computable upper bound for (25). To do this
we assume that there exist H(s), Hr(s) € RHy such that H(s) = H.(s)Hg(s),
where H(s) e RH, denotes the Laplace transform of G(¢). Note that such a fac-
torization exists only if H(s) has relative degree two. Furthermore, note that the
above factorization exists if and only if there exist linear, time-invariant asymp-
totically stable dynamical systems with impulse response functions G : R —
R™™ and G : R — R™*™ such that G.(f) = 0 and Ggr(f) =0, ¢ < 0, and

G(1) = L Gelt — 1)Gr(t)de, 130, (41)

Next, let G- : L, — L., and G : L — L, denote the convolution operators of G,
and Gg, respectively, and define Pz € R”*” and Q, € R”/ by

Pr 2 J: Gr(Gr(n) dr, Oz & J:O Ge(t)GE(r) dr. (42)

Finally, let G.(f) = Cge?t'B;, t > 0, and Gg(f) = Cre?®'Br, t > 0, where A, €
R™M By e R"™™M Cpe RPM Ar € R"™™ Bp e R™" and Cr e R™" and
let Pr e R and Q, € R™*" be the unique, nonnegative definite solutions to
the Lyapunov equations

0= A} Pr + PrAr + CiCgr, 0=A;Qc+ QrA} + BB} (43)

Note that P = BLPrBr and Qp = C,Q,C].
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Proposition 4.1. Let p,re[l,]. If there exist Gy : IR — R™™ and Gr : R —
R™"™ such that (41) holds, then

1/2 1/2
G ety < 127 21 5 IPR - (44)

Proof. Note that y(7) = (G, * (Gr *u))(f). Now, since G, : L, — L., and Gy :
L; — L, it follows from Theorem 3.1 that

1/2 1/2 1/2
19l < 1972 1051119 * ullly. > < 127 1 I PR s Ml
which implies (44). |

The following corollary to Proposition 4.1 provides finitely computable bounds
for the mixed-induced signal norm (25).

Corollary 4.1. Let Pr and Q be given by (42). Then the following inequalities
hold:

@) MG (o ooy 1) < i (Qr) Al (Pr).
(i) 11911 (0.2 (1.2 <am<Q£>oéli< Pr)-
(ii1) (19111 (0,0, 1.2) < i (Qr) e (PR).
(1) 111l 11) < oWe(Qe) Y2 (Pr):
Proof. The results follow from Theorem 3.1 and Proposition 4.1. |

5. Upper Bounds for L; Operator Norms

In this section we provide upper bounds for the L; operator norm |||g]|| .,

(30,}')'
For o > 0, define the shifted impulse response function G, : R — R by
0 1<0
A b
600 { Qo 1m0, 3)
and let G, denote its convolution operator
0
W) = (G % 1)(1) 2 J Ga(t — Tu(7) dr. (46)
0

Furthermore, for some of the results in this section we assume there exist
H; (s),Hgr,(s) e RHy such that H,(s) = H., (s)Hg,(s), where H,(s) € RH;
denotes the Laplace transform of G,(¢). Note that the above factorization exists if
and only if there exist linear time-invariant asymptotically stable dynamical sys-
tems with impulse response functions G, : R — R”™ and Gg, : R — R™*"
such that G¢,(¢) = 0 and Gg, () =0, t < 0, and

Ga(t) = L Ge(t—1)Gr.(x)dr, 130, (47)

Next, let G¢, : L, — Ly, and Gg, : L} — L, denote the convolution operators of
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G, and Gg,, respectively, and define Pz, € R™" and Q,, € R by

PRaéJ GL (1) Gr, (1) dt, Qﬁxéj G, () GE (1) dv. (48)
0 0

Theorem 5.1. Let oo > 0 be such that A+ («/2)I is asymptotically stable and let
0, € R™" be the unique, nonnegative definite solution to the Lyapunov equation

0=A40,+ 0,4" + 00, + BB". (49)

Furthermore, let p,re[l,]. Then G: Ly, — Ly,

1 1
G (o0, p), (00,2) < ﬁ”lga\ll(%.p)ﬁ(z?z) :ﬁll(CQaCT)I/ZHz,,;, (50)
and
2 2
NG ce. . 0.0 < 5 NGalll oo,y 107 = &fglgl\Gm(f)llp,r- (51)

In addition, if there exist Gz, : IR — R™™ and G, : R — R™ ™ such that (47)
holds, then

2 2. 12 12
G 0., p), (0, < &|||gd|”(m,p),(l,r) < &”QLC ||2,ﬁ||7)72/1 5, - (52)

Proof. Let T >0, ue L., and define

A [e#PEDy(n,  0<t<T,
“r) =0 t>T

Now, note that
2 ” 2 r 2
-T
Wurlllz, = L [lur(2)]]; df = Jo D lu(n)|; d

T
1
2 — 2
< I\Iulllao,zj0 T dr = —|[Julll% 5,

or, equivalently, [|ur|l , < (1/v/a)|lull],.., Next, define yy(r) £ o267 y(1
and, since G(¢) =0, ¢t < 0, note that

o0 0
yr(t) = J NG — tyu(r) dr = J DG — 1) Dy(7) de
0

0

= JOO Gl(t — T)MT(‘L') dr = (gu * MT)([)‘

0

Next, it follows from (24) that

1
e, < [119:lll,p), @ Nz lllz2 < ﬁ||\Qal\|<oo,p>7<z,z>lllu\llm,z-
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Now, noting that y(T) = y,(7T) it follows that

1
(DI, < ﬁ\|Iga|||<w,p)7(z,z>|Hullloo,z, T=0,

which implies (50).
Let 7 > 0, u € L, and let uz(-) be given by (53). Then

['s) T
|||ur|\|1,,.=j0 Hurmn,dr:jo P (), de

T et 2
<l |00 ar =2 ull...

0 o

Now, it follows from (25) that
2
12O, < NGalll oy, 1 Nz, < = Galll e ), 0,0 el
Hence, since y(T) = y(T),
2
1D, < ZNGalll o ), 1 llll,r - T 20,
which implies (51). Finally, (52) follows from (51) and Proposition 4.1. |
Next we specialize Theorem 5.1 to Euclidean and infinity spatial norms.

Corollary 5.1. Let o> 0 be such that A+ («/2)] is asymptotically stable, let

G,(+) be given by (45), and let Q, € R™" be the unique, nonnegative definite solu-
tion to (49). Then the following statements hold:

. 1

(1) G102, (0,2) < \/—|||ga||| 0,2),(2,2) = \/— oun (CO,CT).  (54)

Furthermore, if there exist G, : R — R™™ and Gg, : R — R™ ™ such
that (47) holds, then

2 2
G (00,2), (00,2) < —|||goc|||(oo.2),(1,z) < S0y (Qr,)oun (Pr,). (55)
o
(i) G111 o0, 0 \f|||g“||| )(2,2) = fdrln/fx(CQaCT)- (56)

Furthermore, if there exist Gz, : R — R™™ and Gg, : R — R™ ™ such
that (47) holds, then

NG (20, 00, (00.2) IIIQxHI (o0,0), (1,2) drln/azx(Q )oniax(Pr)- (57)
Proof. The proof is a direct consequence of Lemma 2.1 and Theorem 5.1. |

Remark 5.1. Using set theoretic arguments involving closed convex sets and
support functions the L; norm bound in (54) was given by Schweppe [S]. Within
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the context of L., equi-induced norms, this L; norm bound is referred to as the
star-norm in [NAP] and [SHB|. The expression given by (55) provides an alterna-
tive finitely computable bound for the L., equi-induced norm.

Next, we present an example to provide comparisons between the bounds (50)—
(52) given in Theorem 5.1 for [[|Gl[| s, ). (o0,r)» 27 € [1, 00].

Example 5.1. Consider the system (1), (2) with

A:{_ll _OJ, B:[H, c=[0 1],

so that G(¢) =te”", t > 0. Since G is a convolution operator for a single-input/
single-output  system it follows that [||G[l|(s o) (o0,c0) = 1G]ll(5,p), (c0,r)> P>
r € [1, oo]. Hence, it follows from Lemma 3.1 with r = oo that

o0

||\G|||<w7w>,<w,w>=J0 |G<r>|drzj e dr =1,

0

Now, with p=2, it follows from (50) that |[||G]
(1/V)Galll(,2), (2,2) for all 0 < & < 2. Noting that

(00, 0), (00, ) =<

2 “ “ o 2
1901 0= |, GE0 1= | ereorar= 2o
it follows that
[E Og;i;z\/m V2 s
Next, using (51) to bound [[|G][| (., o) (o0, ) Yields
UGl oy < 2SUPGalt) = ! 0 <0<,
o >0 a(2 — o)
which implies
NG (0,0, (o0, 0) < Inf L S I O I

O<a<2 OC(Z — oc)

Finally, we compare (52) with (50) and (51). Since H,(s) = 1/(s+1 —o/2)% it
follows from (52) with H. (s) = Hg,(s) = 1/(s+ 1 — a/2) that

2
ng|||(3o,oc),(3o ) =

(2,2),(1,2)

Hence,
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Table 1. Summary of induced operator norms for p,r € [1, o).

Input Output Induced norm Upper bound
1M1, -2, 2 SUP,, e R Tmax (H (30))
-1l -2, 2 I\Pll//zzl\z,
11122 11l 12", s
-1l -1l swpwawm( | 1QY2 15 B,

Ay Moo, o0 max;—1,...; [[row;(Gy7, 7)l;
11y -, » maxj—i__m [[coli(Gp,p)ll, .
-1z, 2 e (1/V)ICQCHy 5
-1, - - e (2/a) supyzo |G (2)]],.,

1/2 1/2
-1l 1Nl p /211> 51l
which implies
g ‘ < inf —=2.
||| |||(3o,oo),(ao 0) 0<a<? 06(2—06)

A summary of the results of Sections 3-5 is given in Table 1.

6. Induced Convolution Operator Norms for Mixed-Norm Control

In this section we apply the results of Section 3 to mixed-norm control problems.
Speciﬁcally, we consider the performance analysis problem shown in Fig. 1, where

uely,,i=1,....Ly;eL,,i=1,....kGj:L, =L, i=1,..k j=1,...1,
so that

!
Z G+ 1) ( (58)

where p;,q;€[l,0], i=1,...,1, and r;,s;€[l, 0], i=1,...,k, are given. Fur-
thermore, let Gj; : R — R™>™ j=1,...,k, j=1,...,1, denote the corresponding
impulse response matrix function with G;(t) =0, 1< 0,i=1,...,k, j=1,... 1
Next, define u(r) 2 [ul (¢),...,ul (£)]", y(t) & [yT(2),...,yF(2)]", and

Gu0) -+ Gult)
Go=| + |~ | (59)
G (1) | -+ | Gul)
U] ————————f ) — Y1
Gu -, Gu_
‘ék;ff‘*‘g;f
U] —> > Yk

Fig. 1. Partitioned convolution operator.
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so that y(¢) = (G*u)(r), where ueld 2L, x---xL, and ye Y2 L, x--- X
L,,. Furthermore, for all u €U, define the corresponding block-norm vector
e R of u(-) by u; = il 4o i=1,...,1, and, for all yey deﬁne the corre-
sponding block-norm vector y € IR of y( ) by 3, = l[l¥illl,, 5> i=1,..., k. Next,
we deﬁne an operator norm on U and Y. Specifically, Jet H | IR[ — R and
|-]”:R¥ - R be absolute vector norms and define the operator norms
1 [lly ¢ — Rand ||| - [l : ¥ — R by

lellly £ Nzll, — Hixllly £ 151" (60)
In this case, the induced convolution operator norm |[|G|[|y, ;, is defined as
Gy & sup G = ullly. (61)

ueld,|||ul|l,=1
The following result provides an upper bound to |[|Gl|],, ;- For the statement of

this result define the block-norm matrix G € R*/ by
| |

H|g”||‘(rl~,51)x(1717f11) [ |||g11|H(V1751)1(1)/,11/)

I ok -
G~ : e : . (62)
|||gkl|||(rk-,sk),(m-,q1) : : |||gk1|||(’17YA (p1saqr)
Theorem 6.1.  The following statements hold:
(i) Let G be given by (62) and let G € R**! be such that G << G. Then
119111y, < 1GI < Gl (63)
where || - || denotes the matrix norm induced by || - ||" and || - ||".
@) I =1l and [ 1" =11 |l.,. then
|||g|||yu—||G||m_imaX Gi,)- (64)

.....

Proof. To prove (i), note that, foralli=1,... k,

/ /

!
Ml = ||| 3l S S G 1,
=1 ros, =] =1
which implies that j << G#. Hence, since || - || is an absolute vector norm it fol-
lows that

Iy = 171" < lGall” < 1GIHlal" = 1GIIllulll,

which implies that [[|G]||y,,, < [|G||. Next, since 0 << G << G it follows from
Lemma 2.2 that ||G|| < ||G|| which proves (63).
Next, if || - ||"= |- ||, and || - ||” = || - ||, it follows from (i) and Lemma 2.1 that

11911y, < 1G]l = [IGll.o. (65)
Now, let Ie{l,...,k} and Je{l,...,I} be such that G

- and
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let uyel, be such that ||ul,, =1 and Gy, = |||g,,\|| s (oar) =
G * uslll,, ,,- Next, lettlng ()eu be such that ir;(-) = uy(-), S ,]#J,
so that y;(¢) = (G xuy)(t), i = 1,...,k, it follows that

Ity =171, = max 13l = Wil = G * wsll, , = Gr,
which, noting ([l = [}, 4, = 1. vields [[Gllly, > |GI]... Now, (64) fol-
lows from (65). n

For a given dynamical system of the form (1), (2) with impulse response matrix
function G(-) given by (15) we write

A | B

clo

to denote the fact that the convolution operator G corresponds to the dynamical
system (1), (2). The following corollary specializes Theorem 6.1 to the results
given in [W3]. For the statement of this result let

_[9u() Gl
6t) = {921(') sz(')}

g~

where

G~ {A” B”], Gio ~ {Alz Blz],

Cu 0 Ci2 0

A B A B
g21 ~ |: 21 21:|7 g22~ l: 22 22:|.

Gy 0 Cy» 0

Furthermore, let P and Q satisfy (21) with (4, B, C) replaced by (A1, Ba1, Ca1)
and (A2, By, Ci2), respectively.

Corollary 6.1. The following statements hold.

(i) Let U=Ly x Ly, Y=Ly, y(t) = (Gar *w1)(t) + (Goa * wa)(2), [ullly, =
el + w2l 25 and || ¥[[ly = [[|¥lll5,2, where r =1 or 2. Then

weR

1G]y, —maX{H(B;Ple) 2l SUP Gmax (Coa (ool — Axn)” 1Bzz)}-
(66)
(i) Let U=1Lsy, ¥=Lo x Ly, y(t) =((G1, Goo]" *w)(), |llullly = ll[ull]5 2,
and ||| yllly = max{|||y1/ll . [l ¥2lll2,2}, where p =2 or o0. Then

1611y 20 = max{||<chc1T2>”2||27q, SUp s (Con (ol — Azz)_lez)}-

welR

(67)

(i) Let U=Lyx Lo, Y=La x Lo, 9(1) = (@ u)(®), [llullly = [l +
|H”2|||2,2: and |||y|||y:maX{H|yl|||w,p7|||y2||‘2.2}’ where r =1 or 2 and
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p=2or . Then

GIly,u = max{”(CleCsz)'/sz’q, Suﬁamax(cﬂ(jwl — Ax) ' By),
weE
I8 PB) 21 s |cneA“fBu||p,,}. (68)
>

Proof. The proof is a direct consequence of Theorem 6.1 using Theorem
3.1. [ |

Finally, the following corollary to Theorem 6.1 provides a generalization
of Corollary 6.1 to mixed-norm problems involving three-vector inputs and two-
vector outputs. For the statement of this result let

L [9u) Gi() g13(')]
o) = [gm Gn() 0 ]
where
Gt ~ {All Bn]’ Gy ~ {Alz Blz}’ Goy ~ {AZI 321]7
C11 0 C12 0 C21 0
Gy ~ {Azz Bzz]’ Gz ~ {AB 313}
Cy» 0 Cis 0

Furthermore, let P and Q satisfy (21) with (4, B, C) replaced by (A2, Ba1, Ca1)
and (4,2, B2, C12), respectively.

Corollary 6.2. Let o0 >0, U =L; x Ly x Ly, Y=Ly, x Ly, p(t) =(G*u)(t),

ealllyr = e 1y + o2l 2 + sl o and (1] ¥[]ly = max{[[|yi]llo s 1721122}
where r=1or 2 and p = 2 or co. Then

Gy, < maX{H(CleCsz)l/zb,qa sup Tmax(C2(JoI — A) ™' By),
we

|(BY, PBoy) |, sup || Crye ' Byy|
>0

p,r?

2
~sup [ C13e<A'3+(°‘/2>1)tB13||p’r}. (69)

t>0

Proof. The proof is a direct consequence of Theorem 6.1 using Theorems 3.1
and 5.1. |

Remark 6.1. Note that the norms || - ||" and || - ||” in Corollary 6.2 need not be
restricted to || - ||, and || - ||.,, respectively. In this case upper bounds to |||G|||y.u
can be obtained by computing ||G||, where G is given in Theorem 6.1 and || - | is
the matrix norm induced by || - ||" and || - ||”.
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7. Conclusion

Explicit formulas for convolution operator norms and norm bounds induced by
several classes of input—output signal pairs were derived. The results generalize
previous system-norm results and can be used to capture disturbance rejection
and robustness objectives for controlled dynamical systems.
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