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Low-Frequency Learning and Fast Adaptation
in Model Reference Adaptive Control

Tansel Yucelen and Wassim M. Haddad

Abstract—While adaptive control has been used in numerous appli-
cations to achieve system performance without excessive reliance on
dynamical system models, the necessity of high-gain learning rates to
achieve fast adaptation can be a serious limitation of adaptive controllers.
This is due to the fact that fast adaptation using high-gain learning rates
can cause high-frequency oscillations in the control response resulting in
system instability. In this note, we present a new adaptive control archi-
tecture for nonlinear uncertain dynamical systems to address the problem
of achieving fast adaptation using high-gain learning rates. The proposed
framework involves a new and novel controller architecture involving a
modification term in the update law. Specifically, this modification term
filters out the high-frequency content contained in the update law while
preserving asymptotic stability of the system error dynamics. This key
feature of our framework allows for robust, fast adaptation in the face
of high-gain learning rates. Furthermore, we show that transient and
steady-state system performance is guaranteed with the proposed archi-
tecture. Two illustrative numerical examples are provided to demonstrate
the efficacy of the proposed approach.

Index Terms—Adaptive control, command following, fast adaptation,
high-gain learning rate, low-frequency learning, nonlinear uncertain
dynamical systems, stabilization, transient and steady state performance.

I. INTRODUCTION

While adaptive control has been used in numerous applications to
achieve system performance without excessive reliance on system
models, the necessity of high-gain learning rates for achieving fast
adaptation can be a serious limitation of adaptive controllers [1].
Specifically, in certain applications fast adaptation is required to
achieve stringent tracking performance specifications in the face of
large system uncertainties and abrupt changes in system dynamics.
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This, for example, is the case for high performance aircraft systems
that are subjected to system faults or structural damage which can
result in major changes in aerodynamic system parameters. In such
situations, adaptive control with high-gain learning rates is neces-
sary in order to rapidly reduce and maintain system tracking errors.
However, fast adaptation using high-gain learning rates can cause
high-frequency oscillations in the control response resulting in system
instability [2]–[4]. Hence, there exists a critical trade-off between
system stability and adaptation learning rate (i.e., adaptation gain).
In this note, we present a new adaptive control architecture for non-

linear uncertain dynamical systems to address the problem of achieving
fast adaptation using high-gain learning rates. The proposed framework
involves a new and novel controller architecture involving a modifica-
tion term in the update law. Specifically, this modification term filters
out the high-frequency content contained in the update law while pre-
serving asymptotic stability of the system error dynamics. This key fea-
ture of our framework allows for robust, fast adaptation in the face of
high-gain learning rates.We further show that transient and steady-state
system performance is guaranteed with the proposed architecture. Two
illustrative numerical examples are provided to demonstrate the effi-
cacy of the proposed approach.
The notation used in this technical note is fairly standard. Specifi-

cally, denotes the set of real numbers, denotes the set of
real column vectors, denotes the set of real matrices,
denotes transpose, denotes inverse, denotes the Euclidian
norm, and denotes the Frobenius matrix norm. Furthermore, we
write (resp., ) for the minimum (resp., maximum)
eigenvalue of the Hermitian matrix and for the trace operator.

II. MODEL REFERENCE ADAPTIVE CONTROL

We begin by presenting a brief review of the model reference adap-
tive control problem. Specifically, consider the nonlinear uncertain dy-
namical system given by

(1)

where , , is the state vector, , , is the
control input, and are knownmatrices such that
the pair is controllable, and is a matched system
uncertainty. We assume that the full state is available for feedback and
the control input is restricted to the class of admissible controls
consisting of measurable functions such that , . In
addition, we consider the reference system given by

(2)

where , , is the reference state vector, ,
, is a bounded piecewise continuous reference input,

is Hurwitz, and .
Assumption 2.1: The matched uncertainty in (1) is linearly param-

eterized as

(3)

where is an unknown constant weighting matrix
and is a basis function of the form

.
Here, the aim is to construct a feedback control law , ,

such that the state of the nonlinear uncertain dynamical system given
by (1) asymptotically tracks the state of the reference model given by
(2) in the presence of matched uncertainty satisfying (3).
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Next, consider the feedback control law given by

(4)

where the nominal control law , , is given by

(5)

and the adaptive control law , , is given by

(6)

where and are nominal control gains
chosen such that and hold, and

, , is an estimate of satisfying the standard update law

(7)

where is a positive-definite learning rate matrix,
, , is the system error state, and is a

positive-definite solution of the Lyapunov equation

(8)

where is a given positive-definite matrix. Since is
Hurwitz, it follows from converse Lyapunov theory [5], [6] that there
exists a unique positive-definite satisfying (8) for a given
positive definite matrix .
Remark 2.1: The feedback control law given by (4)–(6), along with

the standard update law given by (7) ensures that as

and remains bounded [7]–[9] for all .
However, if a high-gain learning rate is used to achieve fast adaptation
in the face of large system uncertainty and abrupt changes in the system
dynamics, then high-frequency oscillations in the control response can
lead to system instability [2]–[4].

III. LOW-FREQUENCY LEARNING IN ADAPTIVE CONTROL

To address the high-frequency oscillations prevalent in standard
adaptive control with high-gain feedback, let , ,
be a low-pass filter weight estimate of , , given by

(9)

where is a positive-definite filter gain matrix. Note that
since , , is a low-pass filter weight estimate of , ,
the filter gain matrix is chosen such that , where

is a design parameter.
Remark 3.1: Let , , , and .

In this case, (9) can be equivalently written as

(10)

where is the Laplace variable and is the filter time con-
stant. Hence, since choosing a large time constant leads to a low-pass
filter, this implies that needs to be small enough to cut off the
high-frequency content of , .
Next, we add a modification term to the standard update law given

by (7) in order to enforce a distance condition between the trajectories
of the weight estimate , , and the trajectories of its low-pass
filtered version , . This leads to a minimization problem

involving an error criterion capturing the distance between ,
, and , . Specifically, consider the cost function given by

(11)

and note that the negative gradient of (11) with respect to is given
by

(12)

which gives the structure of the proposed modification term. Using the
idea presented in [3], [10]–[12], we now construct the proposed update
law by adding (12) to (7) to obtain the modified update law

(13)

where is a modification gain.
Many modification terms to the standard update law given by (7)

are reported in the literature; for example, see [12]–[16] and references
therein. These modification terms include the —modification, which
has the form , where and is an approxi-
mation of the ideal weight. If is not a good approximation of the
ideal weight, then the system error can increase [12]. Since is un-
known for many practical applications, it is common practice to choose

. However, a key shortcoming of the —modification term
with is that it adds pure damping to the update law turning
it into a lag filter, which can inhibit the adaptation process. The mod-
ification term given by (12) resembles the —modification architec-
ture with replaced by , . However, this new modifica-
tion architecture allows the update law to learn using its low-frequency
content, and hence, suppress the undesired high-frequency oscillations
possibly contained in the control response. The proposed update law
given by (13) significantly differs from the standard update law with a
—modification. Furthermore, as we see in the next section, the pro-
posed update law does not effect the asymptotic stability of the system
error dynamics. A block diagram showing the proposed adaptive con-
trol architecture is given in Fig. 1.
Remark 3.2: To further elucidate the mechanism behind the pro-

posed adaptive control architecture given by (9) and (13), let
and with , , ,

, and . In this case,
, whereas for the standard model reference adaptive

controller (7) we obtain . For the proposed adaptive
control architecture, since is multiplied by a lead compensator,
it can improve the phase margin of the closed-loop system. Further-
more, for a high-gain adaptation rate, that is, , it follows that

, and hence, the addition of the filter
modifies the integral-type standard model reference adaptive controller
into a proportional-integral-type model reference adaptive controller.
In the case where , the nonlinearity in the adaptation law (13)
can be isolated by defining as above. In this case, the adaptation
law is linear with respect to and a similar analysis as above holds.
As shown in Section VI, this modified architecture can improve robust-
ness as compared to a pure integral-type controller.

IV. TRANSIENT AND STEADY-STATE PERFORMANCE GUARANTEES

In this section, we establish transient and steady-state performance
properties for the proposed adaptive control architecture. Define

, , , , and
, . Then, the system error, weight update error, and
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Fig. 1. Visualization of proposed adaptive control architecture.

filtered weight update error dynamics are, respectively, given by

(14)

(15)

(16)

The next theorem presents the main result of this note.
Theorem 4.1: Consider the nonlinear uncertain dynamical system

given by (1), the reference system given by (2), and the feedback
control law given by (4)–(6), and assume that Assumption 2.1 holds.
Furthermore, let the update law be given by (13). Then, the solution

of the closed-loop system given by (14)–(16) is
Lyapunov stable for all and

, and as . In addition, for all , the
system error, weight update error, and filtered weight update error
satisfy the transient performance bounds given by

(17)

(18)

(19)

Proof: To show Lyapunov stability of the closed-loop system
(14)–(16), consider the Lyapunov function candidate

(20)

where satisfies (8), and note that . Since
are positive-definite, for all .
In addition, is radially unbounded. Differentiating (20)
along the closed-loop system trajectories of (14)–(16) yields

(21)

Hence, the closed-loop system given by (14)–(16) is Lyapunov stable
for all and . Now, by
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the LaSalle-Yoshizawa theorem [6], , and hence,
as .

Finally, since , , it follows that:

(22)

Now, using

, with the inequalities
, ,

and , (22) gives (17)–(19),
respectively. This completes the proof.
Remark 4.1: Theorem 4.1 highlights the stability as well as the

transient and steady-state performance guarantees of the closed-loop
system given by (14)–(16). In particular, it follows from Theorem 4.1
that , , and , as well as

as .

V. OBSERVATIONS AND DISCUSSION

The proposed update law given by (13) along with (9) can be ex-
tended to include multiple low-pass filters in order to shape (i.e., de-
crease) the negative slope of the filter after the cut off frequency. This
can be done by considering the update law given by

(23)

(24)

(25)

...

(26)

In this case, identical results to Theorem 4.1 hold with
as by considering the Lyapunov function candidate

,

where .
Next, consider a case involving uncertainty in the control effective-

ness. Specifically, replace in (1) with , where
is a knownmatrix and is an unknown diagonal matrix with
diagonal entires , . Let the nominal control
gains and be such that
and hold. Furthermore, let the adaptive control law

, , be given by

(27)

where is a known basis function of the form
and , , is an

estimate of satisfying the up-
date law

(28)

(29)

Then, using similar arguments as in the proof of Theorem 4.1 and as-
suming that is uniformly continuous, it can be shown that identical

results to Theorem 4.1 hold with as by con-
sidering the Lyapunov function candidate given by

.
Finally, consider the case where the nonlinear uncertain dynamical

system given by (1) includes bounded exogenous disturbances and/or
thematched uncertainty in (1) cannot be perfectly parameterized. Then,
Assumption 2.1 can be relaxed by considering

(30)

where , , is an unknown time-varying ma-
trix satisfying , , and ,

, is a known basis function of the form
, is the system

modeling error satisfying , , and is a
compact subset of . In this case, the proposed update law given by
(13) along with (9) can be replaced by

(31)

(32)

with , , and , , where
denotes the projection operator [17], to guarantee

uniform boundedness of the system error , , weight update
error , , and the filtered weight update error , .

VI. ILLUSTRATIVE NUMERICAL EXAMPLES

In this section, we present two numerical examples to demonstrate
the utility and efficacy of the proposed adaptive control architecture.

A. Disturbance Rejection

To illustrate the key ideas of the proposed adaptive control archi-
tecture, we first consider a linear dynamical system with an external
disturbance. Since for this problem the system loop transfer function
(broken at the control input) can be equivalently written as a linear
time-invariant dynamical system, we resort to classical control theory
tools to analyze the closed-loop system and compare the proposed ar-
chitecture with the standard adaptive controller architecture. Specif-
ically, consider the linear dynamical system representing a disturbed
aircraft rolling dynamics model given by

(33)
, , where represents the roll angle in radians,

represents the roll rate in radians per second, and ,
is an external disturbance. In this case, the basis function can be
chosen as .
For our simulations, we choose and ,

a second-order reference system corresponding to a natural frequency
and a damping ratio , and we let .

Figs. 2 and 3 compare the standard adaptive control architecture given
by (7) and the proposed adaptive control architecture given by (13) for
different learning rates. Note that for higher learning rates, both adap-
tive control architectures achieve a desired level of disturbance rejec-
tion. However, as is well known, the system phase margin diminishes
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Fig. 2. Bode plots of the loop gain transfer function for the disturbed aircraft
rolling dynamics model with the standard adaptive controller (7) and the pro-
posed adaptive controller (13) for different adaptation gains.

Fig. 3. Nyquist plots of the loop gain transfer function for the disturbed air-
craft rolling dynamics model with the standard adaptive controller (7) and the
proposed adaptive controller (13) for different adaptation gains.

as the learning rate is increased with the standard adaptive control ar-
chitecture. In contrast, the phase margin increases as the learning rate is
increased with the proposed adaptive control architecture. This demon-
strates the fast and robust adaptation property of the proposed architec-
ture in the face of high-gain learning rates. For additional insights, see
Remark 3.2.

B. Uncertainty Suppression

Next, consider the nonlinear dynamical system representing a con-
trolled wing rock aircraft dynamics model given by

(34)

, , with
, where , , are unknown parameters

that are derived from the aircraft aerodynamic coefficients. For our
simulation, we set , , ,

, and [18]. In this case, the basis func-
tion can be chosen as . We
use the same reference system as given in the previous example. Fur-
thermore, we set , , , and for
the proposed adaptive control architecture given by (13). Here, our aim
is to track a given filtered square-wave roll angle reference command

, .
Fig. 4 shows the closed-loop system performance of the standard

adaptive controller given by (7) with a learning rate of and
Fig. 5 shows the closed-loop system performance of the proposed adap-
tive controller. Note that the control response of the proposed adap-
tive controller is clearly superior as compared to the standard adap-

Fig. 4. Closed-loop system response of wing rock aircraft dynamics model
with the standard adaptive controller ((7) with ).

Fig. 5. Closed-loop system response of wing rock aircraft dynamics model
with the proposed adaptive controller ((13) with , ,

).

Fig. 6. Closed-loop system response of wing rock aircraft dynamics model
with the proposed adaptive controller ((13) with , ,

) under an input time-delay of 0.362 s.

tive controller. This is excepted since fast and robust adaptation can
be achieved with the proposed controller without incurring high-fre-
quency oscillations in the control response.
To illustrate the point that a high-gain learning rate within the pro-

posed adaptive controller architecture does not hinder system perfor-
mance, we inserted an input time-delay of 0.362 s to the wing rock dy-
namics model given by (34). Fig. 6 shows that the closed-loop system
performance of the proposed adaptive controller is oscillatory. Then,
we increased the learning rate of the proposed controller from

to . Note that with the standard adaptive controllers
(7), it is well known that increasing the learning rate decreases the
time-delay margin of the controlled system. In contrast, Fig. 7 shows
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Fig. 7. Closed-loop system response of wing rock aircraft dynamics model
with the proposed adaptive controller ((13) with , ,

) under an input time-delay of 0.362 s.

that the closed-loop system performance of the proposed adaptive con-
troller is improved as the learning rate is increased. In future research,
we will investigate the guaranteed robustness properties of the pro-
posed adaptive controller against input time-delays.

VII. CONCLUSION

It is well known that standard model reference adaptive control
methods employ high-gain learning rates to achieve fast adaptation
in order to rapidly reduce system tracking errors in the face of large
system uncertainties. High-gain learning rates, however, lead to
increased controller effort, reduced stability margins, and can cause
high-frequency oscillations in the control response resulting in system
instability. In this note, we presented a new robust adaptive control
architecture that allows for fast adaptation of nonlinear uncertain
dynamical systems while guaranteeing transient and steady-state per-
formance bounds. Specifically, the proposed architecture filters out the
high-frequency content contained in the update law without hindering
asymptotic stability of the system error dynamics. Future research
will include analyzing stability gain and time-delay margins of the
proposed framework as well as extending the proposed framework to
non-model reference adaptive control architectures.
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Continuous-Discrete Observer for State Affine Systems
With Sampled and Delayed Measurements

Tarek Ahmed-Ali, Vincent Van Assche, Jean-François Massieu, and
Philippe Dorléans

Abstract—The observation of a class of multi-input multi-output
(MIMO) state affine systems with both sampled and delayed output
measurements is addressed. These two constraints disturb simultaneously
the convergence of the observer. Assuming some persistent excitation
conditions to hold, and by using Lyapunov tools adapted to impulsive
systems, two classes of global exponential observers are proposed. Some
explicit relations between maximum allowable delay and maximum allow-
able sampling period are given. An extension to some classes of nonlinear
systems is also given.

Index Terms—Continuous-discrete observer, delayed measurements, im-
pulsive systems.

I. INTRODUCTION

This work is devoted to observer design for a class of uniformly ob-
servable systems with sampled and delayed measurements. In the last
decades, the design of nonlinear observers for continuous systems with
sampled measurements has received a great attention. This interest is
motivated by many engineering applications, such as network control
systems (NCSs) in which the output is transmitted over a shared dig-
ital communication network, and is only available at discrete-time in-
stants. For linear systems it is usually possible to design observers by
using the discrete time model of the continuous time system. This is
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