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A B S T R A C T

In this paper, a reinforcement learning (RL)-based optimal adaptive control approach is proposed for the con-
tinuous infusion of a sedative drug to maintain a required level of sedation. To illustrate the proposed method,
we use the common anesthetic drug propofol used in intensive care units (ICUs). The proposed online integral
reinforcement learning (IRL) algorithm is designed to provide optimal drug dosing for a given performance
measure that iteratively updates the control solution with respect to the pharmacology of the patient while
guaranteeing convergence to the optimal solution. Numerical results are presented using 10 simulated patients
that demonstrate the efficacy of the proposed IRL-based controller.

1. Introduction

Personalized medicine and precision medicine are two emerging
initiatives in modern health care that focus on creating awareness in
these interdisciplinary areas [1]. The necessity for patient-specific drug
administration in these areas has led to new research vistas [2–4]. The
primary motivation that has fostered such initiatives is the fact that
different patients respond differently to the same drug and its dosage
due to genetic and molecular variabilities between patients and within
the same patient. Personalized medicine aims to deliver personalized
drug doses and drug types for each patient according to current and
predicted responses of the patient collected from experimental data and
statistical analysis [4]. In this paper, we focus on developing an online
controller design method that can deliver an optimal and patient-spe-
cific drug dose based on the patient’s current response state to the drug.
Specifically, we address the ”right dose” problem of personalized
medicine.

Critically ill patients in intensive care units often require sedation to
facilitate various clinical procedures and to comfort patients during
treatment [5,6]. The task of anesthesia administration for patients in
intensive care units is quite challenging as oversedation or under-
sedation can result in detrimental physiological, psychological, and
economical impacts to patients. Several clinical and in silico trials
carried out in this area have recommended closed-loop control of an-
esthesia administration to enhance the safety of patients and to facil-
itate the effective use of clinician expertise [5,7,8].

Any drug that is introduced intravenously to the human body is
dispersed to various internal organs by the blood, which is then me-
tabolized in the liver and later eliminated through the kidneys. The
mechanism involved in drug dispersal can be captured using mathe-
matical models that are generally based on clinical trials conducted
using healthy volunteers or patient data available on drug response to
certain diseases [9–11]. However, given that the internal organs, such
as the heart, liver, and kidneys, play a key role in distributing and
eliminating any drug induced into the human body, there are sig-
nificant differences in the drug pharmacology between the healthy
volunteers and patients with respiratory, cardiac, hepatic, or renal ill-
ness. Thus, it is difficult to account for all such variabilities in a
mathematical model, calling into question the reliability of model-
based optimal controllers and leading to the necessity for developing
controller design strategies that provide optimal and adaptive control
solutions.

Several closed-loop control strategies, such as model predictive
control, optimal control, and adaptive disturbance rejection control,
have been suggested for the control of anesthesia administration
[11–16]. The control strategies that are currently in use for regulating
patient drug dosing have focused on optimal drug infusion with respect
to given performance measures or adaptive drug infusion that addresses
patient parameter uncertainty. The main advantage of adaptive con-
trollers is that they can derive patient-specific infusion profiles even in
the absence of an accurate patient model. However, such controllers
may not account for certain desired performance constraints. On the
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other hand, optimal controllers are predicated on nominal patient
models leading to suboptimal performance or even instability of the
closed-loop system in the face of drug titration for actual patients.

The challenge here is to design an optimal drug infusion profile that
accounts for gender, age, weight, pharmacokinetic and pharmacody-
namic intrapatient and interpatient variability, as well as health con-
ditions of the patient under treatment. In contrast to standard controller
design methods, reinforcement learning (RL)-based approaches allow
the development of control algorithms that can be used in real-time to
affect optimal and adaptive drug dosing in the presence of pharmaco-
kinetic and pharmacodynamic patient variability. The method pre-
sented in this paper can be used to derive patient-specific drug infusion
profiles for generating a desired drug response of a patient without
requiring an accurate patient model. Specifically, we use a learning-
based controller design strategy that can be used to facilitate patient-
specific and optimal drug titration.

Learning-based control strategies have been used in drug dosing
control to optimize the dosing of erythropoietin during hemodialysis
[17], develop dynamic treatment regimens for patients with lung
cancer [18], assist insulin regulation in diabetic patients [19], infuse
cytotoxins during chemotherapy [20], and administer anesthetic drugs
to maintain required levels of sedation [21]. Both clinical and in silico
trials using reinforcement learning methods for improving control ac-
curacy of anesthetic drug infusion have been recently reported in
[21,22]. Compared to [17–22], the advantage of the proposed method
is that apart from being optimal as well as adaptive, the controller
design is presented in the continuous-time domain using integral re-
inforcement learning [23]. Moreover, while Q-learning-based ap-
proaches involve an off-line training phase to train the controller, the
proposed IRL-based approach employs an online algorithm, and hence,
the controller can adapt its gains with respect to the actual patient
parameters.

Integral reinforcement learning is a RL-based method in which the
controller (RL agent) can learn the unknown and time-varying dy-
namics of the system by interacting with the system [23]. The actor-
critic structure of the algorithm evaluates the current control policy and
iteratively updates it to meet a given performance measure. The control
policy update is carried out by observing the response of the system
predicated on the current control policy. Therefore, the IRL-based
controller can learn optimal actions in the presence of system para-
meter uncertainty and in the absence of the complete knowledge of the
system dynamics. Thus, when the IRL-based controller is used for real-
time drug administration, iterative tuning of the infusion profile is
executed with respect to the drug pharmacology of the patient in order
to derive the optimal control policy.

In [24], an online integral reinforcement learning-based algorithm
is developed for the tracking control of partially unknown linear sys-
tems. Specifically, the solution to an algebraic Riccati equation asso-
ciated with the linear-quadratic tracking (LQT) problem for partially
unknown continuous-time systems with the knowledge of an initial
stabilizing control policy is derived online. The convergence and sta-
bility properties of the IRL algorithm are also addressed in [24]. In this
paper, we use the IRL approach to develop a reliable closed-loop con-
troller to maintain the required level of sedation quantified in terms of
the well-known bispectral (BIS) index [16].

The remainder of the paper is organized as follows. Section 2 pre-
sents an overview to the pharmacokinetics and pharmacodynamics of
the drug propofol and the design of the proposed IRL-based controller
for the closed-loop control of anesthesia administration. Simulation
results for two different patient age groups are given in Section 3, fol-
lowed by a detailed discussion of these results in Section 4. Finally, in
Section 5, we present conclusions and future research directions.

2. Methods

In this section, we first introduce the mathematical formulation of

the pharmacokinetics and pharmacodynamics of propofol, and then
present the IRL-based controller design in conjunction with a hybrid
extended Kalman filter (EKF) used to reconstruct the system states.

2.1. Drug disposition model

Even though the IRL algorithm implementation does not require
complete system knowledge, in this subsection we introduce a mathe-
matical model of the pharmacokinetics and pharmacodynamics of the
drug propofol in the human body for the following reasons. First, the
model is used for the in silico simulations provided in the paper.
Second, the proposed IRL-based iterative algorithm requires an initial
stabilizing control policy to generate the patient response so that the
controller can observe the response of the patient and learn the phar-
macological characteristics of the patient. Furthermore, instead of using
an arbitrary initial control policy, we use a feasible (i.e., stabilizing)
control policy predicated on a nominal patient model for addressing
patient safety. And finally, a nominal patient model is required to
construct a state estimator.

As shown in Fig. 1, we use a four-compartment model to represent
the pharmacokinetics and pharamcodynamics of propofol in the human
body. Specifically, Compartment 1 models the intravascular blood to
which the drug is administrated through one of the veins, Compartment
2 models muscle tissue, Compartment 3 models fat, and the effect-site
compartment models the time-lag in the drug dynamics at the locus of
the drug effect [25].

Drug types, such as anesthetics, analgesics, and neuromuscular
blockades, hormones, such as insulin, and chemical agents, such as
cytotoxin, colloids, and crystalloids, are some of the substances that are
infused intravenously into the human body. In this paper, we use the
common anesthetic drug propofol to illustrate the design of the pro-
posed IRL-based controller. The drug dynamics of a patient varies ac-
cording to the physiology of the patient. Hence, we use the following
drug disposition model that is dependent on the patient parameters
such as age, weight, etc., [26–29]
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= =c t k x t k c t c c( ) ( ) ( ), (0) ,eff e0 1 e0 eff eff eff0 (4)

where xi(t), t ≥ 0, =i 1, 2, and 3, denotes the mass of the drug in the
first, second, and third compartments, respectively, ceff(t), t ≥ 0, is the
effect-site concentration of the drug, kji, i ≠ j, represents the rate of
mass transfer between the jth and ith compartments, vi, =i 1, 2, and 3,
denotes the volumes of the three compartments, and u(t), t ≥ 0, is the
infusion rate of the drug. For our model, the state vector is given by

=x t x t x t x t c t( ) [ ( ), ( ), ( ), ( )]1 2 3 eff
T.

The values of kji, =i j, 1, 2, and 3, in the pharmacokinetic and
pharmacodynamic model given by (1)–(4) depend on the patient fea-
tures such as age, weight, height, and gender, and are given in Table 1.
In Table 1, lbm denotes the lean body mass of the patient and is given by

=lbm weight weight height1.07 148( / ),2 2 C1 is the rate at which the drug
is removed by excretion, C2 and C3 are the rates of drug clearances
between the central compartment and Compartments 2 and 3, respec-
tively, and ke0 represents the effect-site elimination rate constant.

The drug effect in terms of the BIS is linear for lower drug doses;
however, higher drug dosing and prolonged drug titration result in a
nonlinear saturation (i.e., sigmoidal) effect described by the Hill
equation given by ([25])
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=
+

c t c t
c t

BIS( ( )) BIS 1 ( ( ))
( ( )) (C )

,eff 0
eff

eff 50 (5)

where BIS0 is the base line value that represents an awake state, C50 is
the drug concentration that causes 50% drug effect, and γ denotes the
steepness of the drug concentration versus drug response relation. BIS
(ceff(t)) is the measured value of the BIS index with a value in the range

0 to 100, where and =BIS 100 indicate an isoelectric electro-
encephalogram (EEG) signal and an EEG signal of a fully conscious
patient, respectively. Note that (1)–(5) can be written as

= + =x t Ax t Bu t x x t( ) ( ) ( ), (0) , 0,0 (6)

=y t h x t( ) ( ( )), (7)

Table 1
Patient model parameters and parameter relations for the drug propofol [27,29].

Parameter Model Unit

v1 4.27 l
v2 age18.9 0.391( 53) l
v3 2.38 l
C1 + +weight lbm height1.89 0.0456( 77) 0.681( 59) 0.0264( 177) l min 1

C2 age1.29 0.024( 53) l min 1

C3 0.836 l min 1

ke0 0.456 min 1

k10 C1/v1 min 1

k12 C2/v1 min 1

k13 C3/v1 min 1

k21 C2/v2 min 1

k31 C3/v3 min 1

Fig. 1. IRL-based closed-loop control of drug administration.
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where ×A 4 4 is the system matrix, ×B 4 1 is an input matrix, x(t),
t ≥ 0, is the state vector, =y t t( ) BIS( ), t ≥ 0, is the system measure-
ment, and u(t), t ≥ 0, is the control input. Here, we assume that the pair
(A, B) is stabilizable.

The system measurement as given by (5) is a nonlinear function of
ceff(t), t ≥ 0. However, a linear approximation of the system measure-
ment is required to design an IRL-based tracking controller. Hence,
using a linear regression model in the region of the required target
value of BIS(t), t ≥ 0, the nonlinear measurement (5) can be approxi-
mated as [30]

= +y t mc t d( ) ( ) ,eff (8)

where the constants m and d can be determined by multiple linear re-
gression using a least-squares method on randomly selected patient
data relating the patients pharmacokinetic and pharmacodynamic
parameters and measured responses. Thus, using (8), (6) and (7) can be
written as

= + =x t Ax t Bu t x x t( ) ( ) ( ), (0) , 0,0 (9)

= +y t Cx t d( ) ( ) , (10)

where, for t ≥ 0, x t( ) ,n u t( ) , and y t( ) .

2.2. Integral reinforcement learning-based controller design

In this subsection, we develop an integral reinforcement learning-
based controller design method for the control of anesthesia adminis-
tration. The objective is to design an online optimal adaptive tracking
controller using an integral control action to account for system para-
meter uncertainties. Specifically, the integral tracking error is given by

=e t y y( ) [ ( )]d ,
t

0 d (11)

where y(t), t ≥ 0, and yd are the measured response and the desired
constant reference signal, respectively. Using (11), we obtain

= = =e t y y t y Cx t e t( ) ( ) ˜ ( ), (0) 0, 0,d d (12)

where y y dd̃ d .
Using (9), (10), and (12) the augmented system (9) and (12) can be

written as

= + + =x t A x t B u t Gy x x t( ) ( ) ( ) ˜ , (0) , 0,a a a a d a a0 (13)

where =x t x t e t( ) [ ( ), ( )] ,n
a

T T ^ = +n n^ 1,

= = =A A
C B B G0

0 , 0 , 0
1 .a a

Now, using the feedback control law

= +u t k x t k y( ) ( ) ˜ ,1 a 2 d (14)

where ×k n
1

1 ^ and k ,2 the closed-loop system is given by

= + =x t A x t B y x x t( ) ˜ ( ) ˜ ˜ , (0) , 0,a a a a d a a0 (15)

where = +A A B k˜a a a 1 and = +B B k G˜ ,a a 2 and Ãa is Hurwitz.
Next, in order to track a desired constant reference signal, we

consider the discounted cost function

= +V x t u t e x Qx u Ru( ( ), ( )) 1
2

[ ( ) ( ) ( ) ( )]d ,
t

t
a

( )
a
T

a
Td

(16)

where γd is the discount factor, Q ≥ 0, and R > 0. Here, we assume that
the pair (Aa, Q) is observable. Note that since we are tracking a constant
reference signal, the discount factor γd is introduced in the cost function
to ensure (16) is finite over the infinite horizon. See Remarks 1 and 2 in
[24] for further details.

An integral reinforcement learning algorithm is an iteration-based
policy wherein the iteration starts with an initial arbitrary control
policy that is stabilizing. Then, the control policy is progressively

updated based on certain design criteria and until it achieves certain
prespecified performance requirements. When we adopt any control
algorithm for drug dosing, it is imperative to ensure patient safety.
Hence, instead of initializing our algorithm with an arbitrary initial
control policy, we assume that a nominal model of the patient is
available and design an initial control policy based on the nominal
model. This is a pragmatic assumption as there exist several models that
depict the drug disposition mechanism in the human body and it is
common to use such models to facilitate anesthesia administration
[8,10,31,32]. However, it should be noted that the IRL algorithm does
not use the knowledge of the system dynamics in designing an optimal
control solution, rather it uses the input-output data of the system for
tuning the controller.

Next, to derive an optimal control input using the IRL method, we
show that the cost (16) can be written in terms of a LQT Bellman
equation [24]. First, however, the following proposition is needed.

Proposition 1. Consider the dynamical system (9) and (10) with reference
dynamics (12) and stabilizing feedback control law (14). Then, the value
function (16) can be written in a quadratic form

=V X t X t PX t( ( )) 1
2

( ) ( ),T
(17)

where =X t x t y( ) [ ( ) ˜ ]a
T

d
T and some = >P P 0T .

Proof. Substituting (14) into (16) and rearranging terms yields
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Next, setting = in (19) and using
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and L e B̃ d ,A
0

˜
a

a which proves (17). Finally, = >P P 0T follows
from the observability of (Aa, Q) and (22)–(25). □

Next, we obtain the Bellman equation for the closed-loop system
(15) and the quadratic cost function (17). Specifically, consider the cost
function (16), which can be equivalently written as
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Next, differentiating (17), we obtain
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Here, we assume that the pair (A1, B1) is stabilizable and the pair (A1,
STQS) is observable. Now, equating (27) and (28) yields the LQT
Bellman equation

= + + +

+ +

A X t B u t PX t X t P A X t B u t
X t PX t

X t S QSX t u t Ru t

0 [ ( ) ( )] ( ) ( ) [ ( ) ( )]
( ) ( )

( ) ( ) ( ) ( ).

1 1
T T

1 1

d
T

T T T (30)

Finally, to derive the optimal control for the infinite horizon LQT
problem, define the Hamiltonian

= + + +

+ +

H X u P A X B u PX X P A X B u X PX

X S QSX u Ru

( , , ) ( ) ( )

,
1 1

T T
1 1 d

T

T T T (31)

where PX is the Fréchet derivative of the value function (17). Now, the
necessary conditions for optimality yield

= + =H
u

B PX Ru 0,1
T

(32)

and hence,

=u K X* * , (33)

where =K R B P* 1
1
T . Next, substituting (17) and (33) into (30) yields

the algebraic Riccati equation

+ + =A P PA S QS P PB R B P 0.1
T

1
T

d 1
1

1
T (34)

Stabilizability of the pair (A1, B1) and observability of the pair (A1,
STQS) ensures that there exists a unique positive-definite solution P
satisfying (34).

In order to compute the optimal gain K*, one needs to solve (34),
which depends on the system matrix A. Next, we show how one can
iteratively find the solution of the algebraic Riccati Eq. (34) using the
IRL Bellman equation when the system dynamics are unknown. Note
that integrating (27) over the time interval +t t T[ , ] we obtain

= +

+ +

+
V X t e X S QSX u Ru

e V X t T

( ( )) 1
2
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( ( )).
t

t T t
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Now, using (17), (35) becomes
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+
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In order to implement a data-based integral reinforcement learning
policy converging to the optimal control policy, we solve (36) by con-
structing two approximators consisting of a critic and an actor as out-
lined in Algorithm 1.

Algorithm 1. Online integral reinforcement learning policy iteration
algorithm for solving the linear-quadratic tracking problem [24].

• Initialization: Initialize the control input =u t K X t( ) ( )0 0 .
• Policy evaluation: Using uk(t), = …k 0, 1, , +t kT k T[ , ( 1) ], find

Pk by solving

=

+
+ +
+

+
X kT P X kT e X S QSX

u Ru
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[ ( ) ( )

( ) ( )]d
(( 1) ) ((

1) ).

k kT
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k

T ( 1) ( ) T T

T

T

d

d

(37)

• Policy improvement: Iteratively update the control input +u t( )k 1
using

=+K R B P ,k k1
1 T (38)

until +K Kk k1 F ≤ ϵ, where ∥ · ∥F denotes the Frobenius matrix
norm and ϵ is a preassigned tolerance.

The iterative IRL algorithm is similar to the IRL algorithms dis-
cussed in [23] and [24], which is shown to be equivalent to the New-
ton’s method discussed in [33] and is quadratically convergent to the
solution of an associated algebraic Riccati equation. Assuming the
stabilizability of the pair (A1, B1) and the observability of the pair (A1,
STQS), and using a stabilizing initial controller K0, the policy iteration
given by Algorithm 1 converges to the optimal solution given by (33),
where P satisfies the algebraic Ricatti equation (34) [23]. For the proof
of asymptotic stability of LQT ARE solution see Theorem 2 in [24].

Algorithm 1 has an actor-critic structure in which (38) and (37)
represent the actor and critic, respectively. Using Algorithm 1, the
controller (38) can evaluate how a patient responds to the drug infusion
uk(t), t ≥ 0, in order to calculate Pk at each iteration k, and thus, obtain

+u t( ),k 1 t ≥ 0, such that the cost (16) is minimized. The initial control
input u0(t) is calculated using the nominal model of a patient. Once the
IRL algorithm converges, the controller gives the optimal and patient-
specific drug input.

2.3. Adaptive online implementation of IRL algorithm

In order to implement the iterative algorithm given by Algorithm 1,
rewrite (37) as

+ +

=

+

+
X kT P X kT e X k T P X k T

e X S QSX

u Ru

( ) ( ) (( 1) ) (( 1) )
1
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k
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T T
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T

d

d

(39)

or, equivalently,

=p Z d ,k k k
T

(40)

where +d V k T V kT(( 1) ) ( )k is the integral reinforcement on the
time interval +kT k T[ , ( 1) ], +Z X kT e X k T( ) (( 1) ),k

Td and the
×n( ˜ 1), ×+( )1 ,n n˜ ( ˜ 1)

2 and ×+( )1n n˜ ( ˜ 1)
2 vectors
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= …i j n, 1 ˜, = +n n˜ ^ 1, are the vectors derived using the entries of Pk and
X(t). Here, k denotes the iteration number, i, j denote the matrix indices,
and p is obtained by stacking the diagonal entries followed by the
upper triangular part of Pk into a column vector, where the off-diagonal
entries are denoted as 2pij.

The desired value function dk can be computed by using

= +d V k T V kT(( 1) ) ( ),k (41)

where = +V X t u t e X t S QSX t u t Ru t( ( ), ( )) [ ( ) ( ) ( ) ( )].t
k k

( ) T T Td Using
(40) and (41) yields

=p Z Z Z d( ) .k k k k k
T 1 T (42)

During the time interval +kT k T[ , ( 1) ], the matrix Pk is calculated after
collecting a sufficient number of data points from the system trajectory,
which is generated by applying the current control policy uk(t),

+t kT k T[ , ( 1) ], to the system. The vector pk can be calculated by
minimizing, in the least squares sense, the error between the target
value function and the parameterized left-hand side of (42). The value
of the vector p ,k and thus the matrix Pk, is estimated by using N data
points of the variables X(t) and V(X(t), u(t)) collected during the time
interval +kT k T[ , ( 1) ] in the least squares Eq. (42).

Since the vector pk has +n n˜ ( ˜ 1)
2

independent components, at least
+N n n˜ ( ˜ 1)

2 data points must be used to compute pk [23]. Using the
calculated value of Pk, the actor (38) calculates +Kk 1 to obtain the
control policy =+ +u t K X t( ) ( ),k k1 1 +t kT k T[ , ( 1) ]. This is repeated
until the algorithm converges to the optimal control gain K*.

Note that Algorithm 1 requires the knowledge of the system state x

(t), t ≥ 0. However, in the case of anesthesia administration, it is im-
possible to measure the full state x(t), t ≥ 0. Hence, we use the mea-
surable output BIS(t), t ≥ 0, which is a nonlinear function of x(t), t ≥ 0,
in conjunction with a hybrid EKF to reconstruct the system states for
state feedback [34,35]. The discrete-time samples of the measured
outputs BIS(t), t ≥ 0, at the k′th time step are given by

= = = …y c t t k T kBIS( ( )), 1, 2, ,k eff s (43)

where Ts is the sampling time.

2.4. Hybrid extended Kalman filter [35]

Using the continuous-time dynamics (6) and discrete-time mea-
surement (43) we obtain

= + + =x t Ax t Bu t w t x x t( ) ( ) ( ) ( ), (0) , 0,0 (44)

= + = …y h x v k( ) , 1, 2, ,k k k (45)

where =x x k T( ),k s w(t), t ≥ 0, denotes a white process noise with in-
tensity Q(0, ),n and v ,k = …k 1, 2, , denotes discrete-time white ob-
servation noise with covariance R(0, )n . The hybrid extended Kalman
filter for (44) and (45) is given as follows:

(1) Initialize the filter so that

=+x x^ [ ],0 0 (46)

=+ + +Q x x x x[( ^ )( ^ ) ],e0 0 0 0 0
T (47)

where [ · ] denotes the expectation operator.
(2) For = …k 1, 2, , perform the following steps.

(a) Integrate the continuous-time model for the state estimate x t^ ( ),
t ≥ 0, and covariance Qe(t), t ≥ 0, as

= +
=

= + +
=

+

+

x t Ax t Bu t k T t k T
x k T x

Q t AQ t Q t A Q k T t k T
Q k T Q

^ ( ) ^ ( ) ( ), ( 1) ,
^ (( 1) ) ^ ,

( ) ( ) ( ) , ( 1) ,
(( 1) ) ( ) ,

k

k

s s

s 1

e e e
T

n s s

e s e 1

(48)

where +x̂ k( 1) and +Q( ) ke ( 1) are the initial conditions at the be-
ginning of the integration process, and at the end of the in-
tegration the terminal condition satisfies =x x k T^ ^ ( )k s and

=Q Q k T( ) ( )ke e s .
(b) At time instant k′, incorporate the measurement yk into the

state estimate and error covariance as

= +( )F Q J J Q J R( ) ( ) ,k k k k k ke
T

e
T

n
1

(49)

= ++x x F y h x^ ^ ( (^ )),k k k k k (50)

=+Q I F J Q( ) ( )( ) ,k k k ke e (51)

where Jk is the partial derivative of h x( )k with respect to xk
evaluated at x̂k .

3. Simulation results

In this section, we present simulation results to illustrate the effi-
cacy of the proposed IRL-based control approach for the closed-loop
optimal adaptive control of drug dosing. The simulations were carried
out using MATLAB®. In [9] and [36], it is shown that the value of C50,
which indicates the drug concentration that causes 50% drug effect, is
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different for different age groups and it decreases as age increases.
Given the significant effect of age on the pharmacodynamics of a pa-
tient, two different age groups are used in our simulations. Namely,
Group-I is composed of elderly patients and Group-II involves young
patients.

For both groups, a constant reference trajectory of =y t( ) 50,d t ≥ 0,
is used and the discount factor is selected at = 0.9d . Note that the IRL
algorithm does not use the system matrix A for learning the optimal P
matrix. Instead, we use input-output data to demonstrate the efficacy of
the proposed IRL-based controller design method. As discussed in
Section 2, we use a hybrid EKF to reconstruct an estimate of the system
states for feedback. At every k′th time step, the estimator gain F ,k

= …k 1, 2, , is updated using the measured value of BIS(t), =t k T ,s
where =T 0.2s min. As noted earlier, the condition on the number of
data points required for the least squares estimation problem is

+N n n˜ ( ˜ 1)
2 .

For X(t), t ≥ 0, we have =ñ 6, and hence, in each iteration we
collect =N 40 data points. The time duration of integration in (37) is
set to =T 0.2 min. Thus, the time duration of an iteration, denoted by

+T kT k T[ , ( 1) ],I is × =T N 8 min. Setting the time duration T to a
very small value results in redundant information in the matrix Zk.
Alternatively, if the time duration T is set to a large value, then the
controller may fail to detect certain drug response characteristics of the
patient. As noted earlier, the parameter value m and the constant d in
(8) can be determined by linear regression using the least-squares
method on randomly selected patient data relating the patient’s phar-
macokinetic and pharmacodynamic parameters and measured re-
sponse. For =BIS 50,target we set =c t C( ) ,eff 50 t ≥ 0, and write the lin-
earized form of (5) as

= + +c t C c t
c t

c t CBIS( ( )) BIS( ) BIS( ( ))
( )

( ( ) ) HOT.
C

eff 50
eff

eff
eff 50

50

(52)

Group-I: In this group, we consider elderly patients of = ±age 58 2
years, = ±height 156 6 cm, and = ±weight 82 8 kg. Table 2 shows the
pharmacological parameters of the 5 simulated patients in Group-I. For
the hybrid EKF, we set =R 100,n = ××Q I 0.1,n 4 4 and = ×Q Ie0 4 4. We use
the model of Patient 1 to derive the estimator gain F ,k = …k 1, 2, , for
all the 5 simulated patients in Group-I. It is a common practice among
clinicians to use a nominal model derived using averaged patient
parameters to facilitate target controlled infusion (TCI) [31,32]. To
derive the values of m and d, we use the pharmacodynamic values of
Patient 1 with =C 350 μg/ml and = 2 in (52) to obtain

×c t c tBIS( ( )) 99.78 1.6566 10 ( ).eff
4

eff (53)

We denote the optimal value of the state feedback gain obtained by
solving the Riccati equation (34) by K *R and that obtained using
Algorithm 1 by K *A. The value of K *R for each patient is calculated using
the respective pharmacokinetic model of the patient obtained using the
model (1)–(4) with pharmacokinetic parameters and patient features
given in Tables 1 and 2. Table 3 shows the initial feedback gain K0 and
the optimal feedback gains K *A and K *R for 3 out of the 5 patients in
Group-I. We use the same initial stabilizing gain K0 to derive the op-
timal value of the state feedback gain K *A for all of the 5 patients in
Group-I. Starting with the initial feedback gain K0, the algorithm

converges iteratively to the optimal gain K *A by learning from the in-
teractions with the patient and the response obtained. Note that K *R is
calculated using (34), which does not involve the knowledge of the
pharmacodynamic parameters of the patient. However, the algorithm
relies on the patient’s response to a drug to derive the optimal gain
required for maintaining a certain level of drug response in the patient’s
body. Hence, the value of K *A reflects both the pharmacokinetics and
pharmacodynamics of the patient.

Figs. 2and 4 show the simulation results when the proposed IRL-
based controller is used for the tracking control of the target BIS value
in elderly patients. Note that the controller is able to achieve tracking
performance with a deviation of ± 5 units from the desired set point.
Fig. 3 shows the control input for the 5 elderly patients given in Table 2.
Fig. 4 shows the convergence of the gain matrix K. In this figure, we
have plotted K K* kR F versus the number of iterations for all the 5
patients in Group-I.

Group-II: In this group, we consider 5 young patients of
= ±age 23 2 years, = ±height 162 3 cm, and = ±weight 55 5 kg.

Table 4 shows the pharmacological parameters of the 5 simulated pa-
tients in Group-II. For the hybrid EKF, we set =R 100,n = ××Q I 0.1,n 4 4
and = ××Q I 10e0 4 4 . We use the model of Patient 6 to derive the esti-
mator gain F ,k = …k 1, 2, , for all of the 5 simulated patients in Group-
II. Since the patient’s sensitivity to the anesthetic drug propofol in-
creases with increase in age [9,36], younger patients require more drug
as compared to older patients to achieve the same level of sedation. We
use the pharmacodynamic parameter values of Patient 6 with =C 550
μg/ml and = 3 in (52) to obtain

×c t c tBIS( ( )) 124.75 1.4938 10 ( ).eff
4

eff (54)

For all of the 5 patients in Group-II, we use the same initial stabi-
lizing gain K0 in Algorithm 1 to derive the optimal value of the state
feedback gain K *A; see Table 5. For each patient, the algorithm itera-
tively converges to the optimal value of the feedback gain K *A by ac-
counting for the interactions with the patient and the response ob-
tained. See Table 5 for the initial feedback gain K0 and the optimal
feedback gains K *A and K *R for three patients in Group-II.

Figs. 5and 6 show the simulation results when the proposed IRL-
based controller is used for tracking control of the target BIS value in 5
young patients. Note that the controller is able to achieve tracking
performance with a deviation of ± 10 units from the desired set point.
Moreover, the value of u(t), t ≥ 0, as shown in Fig. 6 is within the ac-
ceptable clinical range of control inputs [6]. Fig. 7 shows the con-
vergence of the gain matrix K. In this figure, we have plotted
K K* kR F versus the number of iterations for all the 5 patients in

Group-II.

4. Discussion

In this section, we discuss the performance along with some of the
limitations of the proposed IRL-based controller design method based
on the simulation results presented in Section 3. Here, the patient
features of Patients 1 and 6 are obtained from [27] and [37], respec-
tively. In order to show the performance of the proposed IRL-based
controller when used for patients with varying patient features, we
choose random values in the range = ±age 58 2 years and = ±age 23 2
years for Patients 2 to 5 in Group-I, and = ±age 23 2 years,

= ±height 162 3 cm, and = ±weight 55 5 kg for Patients 7 to 10 in
Group-II. For Group-I, we used the pharmacodynamic parameter values
of Patient 1 to derive the regression model parameters in (53) and
obtain the initial stabilizing controller gain K0. However, in order to
show that the proposed controller can achieve robustness to system
parameter uncertainities, we use the nominal values of the initial sta-
bilizing controller gain and regression model parameters in Algorithm 1
to derive the optimal values of the state feedback gain K *A for all of the 5
patients in Group-I. Similarly, for Group-II, we used the

Table 2
Patient parameters used to generate simulated patients in age Group-I.

Patient no. Age [years] Height [cm] Weight [kg] C50 [μg/ml] γ

1 56 160 88 3.0 2.0
2 57 160 90 3.0 2.0
3 60 150 87 2.9 2.1
4 60 162 75 3.0 2.4
5 56 162 75 3.1 2.0
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Table 3
Optimal feedback gains for Group-I.

Patient no. Gain K11 K12 K13 K14 K15 K16

All K0 2.2499 0.1602 0.1573 0.0000 -0.0006 ×2.2440 10 05

K *A 1.7477 0.0000 0.0000 0.0000 0.0002 0.0001
K *R 1.7321 0.2156 0.1356 0.0000 0.0002 0.0001
K *A 1.7137 0.0000 0.0000 0.0000 0.0002 0.0001
K *R 1.7935 0.2019 0.1382 0.0000 0.0002 0.0001
K *A 1.6145 0.0000 0.0000 0.0000 0.0002 0.0001
K *R 1.7796 0.2184 0.1376 0.0000 0.0002 0.0001

Fig. 2. BIS(t) versus time for the 5 patients in Group-I with =BIS 50target .

Fig. 3. Control inputs versus time for the 5 patients in Group-I.
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pharmacodynamic parameter values of Patient 6 to derive the regres-
sion model parameters in (54) and to obtain the initial stabilizing
controller gain K0. However, we use the nominal values of the initial
stabilizing gain and regression model parameters in Algorithm 1 to
derive the optimal values of the state feedback gain K *A for all of the 5
patients in Group-II.

During the 60 min drug infusion period presented in Section 3, the
range of values of the induction phase duration for all the 5 simulated
patients in Groups-I and -II are 3.95 ± 0.22 and 6.04 ± 0.24, re-
spectively. The induction phase duration is the initial time from when
the drug is administrated to the time when the drug effect reaches and
remains within the range of BIStarget ± 10 for 30 seconds [38]. The
minimum and maximum values of the BIS variable after reaching

=BIS 50target for the first time is in the range 44.81 51.42 and
40.27 51.40 for all the 5 simulated patients in Groups-I and -II, re-
spectively. All these performance metrics are within the acceptable
range given in [39].

However, it can be seen from Figs. 2 and 5 that there is a small
tracking error in the simulation results for both Groups-I and -II. The
offset in tracking in the steady state region of Figs. 2 and 5 for some
patients is due to the discrepancy between the linearized BIS model (8)
that is used for the controller design and the actual nonlinear BIS output
(5). In fact the tracking error is calculated using (8) instead of (5). In
order to show this, we plotted y(t), t ≥ 0, given by (8) for all of the 5
elderly patients in Group-I. It can be seen from Fig. 8 that, in contrast to
Fig. 2, the IRL-based controller is able to track =y t( ) 50, t ≥ 0, without
any offset for all of the 5 simulated patients in Group-I. Note that Fig. 2
shows the measured BIS value given by (5), which is nonlinear. Similar
comments hold for all of the 5 young patients in Group-II.

Another important point to note is the persistence of excitation (PE)
condition on the system input that is required for the convergence of
the IRL-algorithm [23,24]. In [23] and [24] persistence of excitation is
ensured by injecting a probing noise along with the control input. Since
we are dealing with patients, we do not add any probing noise during
our simulations. It has been shown in [40] that the classical persistency
of excitation-type conditions on the regression vectors of past inputs,
outputs, and noise terms can be translated into corresponding condi-
tions involving the inputs alone. Instead of using a probing noise, we
assume that the regular persistence of excitation condition is satisfied
with the feasible (i.e., stabilizing) initial control input that we used.
Since the proposed IRL algorithm converges to the optimal control
input, this assumption seems reasonable. However, we also note that
the algorithm diverges whenever the Zk matrix in (42) has an ill con-
dition number. To avoid this situation, we need to formulate sufficient

Fig. 4. Convergence of gain matrix K: K K* kR F versus the number of iterations for the 5 patients in Group-I.

Table 4
Patient parameters used to generate simulated patients in Group II.

Patient No. Age [years] Height [cm] Weight [kg] C50 [μg/ml] γ

6 22 164 50 5.0 3.0
7 25 160 60 5.0 3.2
8 24 159 59 5.1 3.0
9 23 162 50 5.0 3.0
10 25 159 60 5.1 3.2

Table 5
Optimal feedback gains for Group-II.

Patient no. Gain K11 K12 K13 K14 K15 K16

All K0 5.4593 0.0000 5.0191 0.2280 0.0008 ×1.3600 10 05

K *A 1.5487 0.0000 0.0000 0.0000 0.0002 0.0001
K *R 1.5581 0.3474 0.1297 0.0000 0.0002 0.0002
K *A 1.5609 0.0000 0.0000 0.2623 0.0002 0.0002
K *R 1.5656 0.3441 0.1300 0.0000 0.0002 0.0002
K *A 1.5245 0.0000 0.0000 0.0000 0.0002 0.0001
K *R 1.5669 0.3360 0.1301 0.0000 0.0002 0.0002
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conditions on the initial control input with regard to the PE conditions;
this will be considered in future research.

Finally, we note that even though the reinforcement learning fra-
mework requires the stabilizability and controllability of certain system
matrix pairs, these assumptions are only needed to make sure that the
Riccati equation (34) has a positive-definite solution. In the case of
linear compartmental systems characterizing pharmacokinetic and
pharmacodynamic drug dynamics with drug elimination, these systems
are asymptotically stable [25], and hence, these geometric properties
are automatically satisfied without requiring knowledge of the system
matrices. Alternatively, assuming the availability of a nominal model of
the patient along with a stabilizing nominal controller, it can be shown

that the required minimality properties for the reinforcement learning
framework are also satisfied.

5. Conclusions and future research directions

In this paper, an integral reinforcement learning-based controller
design for the continuous infusion of a sedative drug to maintain a
desired level of sedation in the human body is proposed. Simulation
results using 10 patients with different pharmacological parameters
show that the proposed IRL-based controller can achieve robustness to
system parameter uncertainties and provide an optimal control solu-
tion. Further investigation of the performance of such controllers in the

Fig. 5. BIS(t) versus time for the 5 patients in Group-II with =BIS 50target .

Fig. 6. Control inputs versus time for the 5 patients in group-II.
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face of time delays, nonlinearities, and nonnegative constraints on the
system inputs, states, and outputs will be considered in future research.
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