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SUMMARY

In this paper, we develop a unified framework to address the problem of optimal nonlinear analysis and feed-
back control for nonlinear stochastic dynamical systems. Specifically, we provide a simplified and tutorial
framework for stochastic optimal control and focus on connections between stochastic Lyapunov theory and
stochastic Hamilton–Jacobi–Bellman theory. In particular, we show that asymptotic stability in probability
of the closed-loop nonlinear system is guaranteed by means of a Lyapunov function that can clearly be seen
to be the solution to the steady-state form of the stochastic Hamilton–Jacobi–Bellman equation and, hence,
guaranteeing both stochastic stability and optimality. In addition, we develop optimal feedback controllers
for affine nonlinear systems using an inverse optimality framework tailored to the stochastic stabilization
problem. These results are then used to provide extensions of the nonlinear feedback controllers obtained
in the literature that minimize general polynomial and multilinear performance criteria. Copyright © 2017
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Under certain conditions, nonlinear controllers offer significant advantages over linear con-
trollers. In particular, if the plant dynamics and/or system measurements are nonlinear [1, 2], the
plant/measurement disturbances are either nonadditive or non-Gaussian, the performance measure
considered is nonquadratic [3–7], the plant model is uncertain [8–10], or the control signals/state
amplitudes are constrained [11, 12], then nonlinear controllers yield better performance than the
best linear controllers. In [13], the current status of deterministic continuous-time, nonlinear–
nonquadratic optimal control problems was presented in a simplified and tutorial manner. The
basic underlying ideas of the results in [13] are based on the fact that the steady-state solution of
the Hamilton–Jacobi–Bellman equation is a Lyapunov function for the nonlinear system and thus
guaranteeing both stability and optimality [13, 14].

Building on the results of [13, 14], in this paper, we present a framework for analyzing and design-
ing feedback controllers for nonlinear stochastic dynamical systems. Specifically, we consider
a feedback stochastic optimal control problem over an infinite horizon involving a nonlinear–
nonquadratic performance measure. The performance measure can be evaluated in closed form as
long as the nonlinear–nonquadratic cost functional considered is related in a specific way to an
underlying Lyapunov function that guarantees asymptotic stability in probability of the nonlinear
closed-loop system. This Lyapunov function is shown to be the solution of the steady-state stochastic
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Hamilton–Jacobi–Bellman equation. The overall framework provides the foundation for extending
linear–quadratic control for stochastic dynamical systems to nonlinear–nonquadratic problems with
polynomial and multilinear cost functionals.

Our approach focuses on the role of the Lyapunov function guaranteeing stochastic stability of
the closed-loop system and its seamless connection to the steady-state solution of the stochas-
tic Hamilton–Jacobi–Bellman equation characterizing the optimal nonlinear feedback controller.
In order to avoid the complexity in solving the stochastic steady state, Hamilton–Jacobi–Bellman
equation, we do not attempt to minimize a given cost functional, but rather, we parameterize a fam-
ily of stochastically stabilizing controllers that minimizes a derived cost functional that provides the
flexibility in specifying the control law. This corresponds to addressing an inverse optimal stochastic
control problem [15–21].

The inverse optimal control design approach provides a framework for constructing the Lya-
punov function for the closed-loop system that serves as an optimal value function and, as shown in
[19, 20], achieves desired stability margins. Specifically, nonlinear inverse optimal controllers that
minimize a meaningful (in the terminology of [19, 20]) nonlinear–nonquadratic performance crite-
rion involving a nonlinear–nonquadratic, nonnegative-definite function of the state and a quadratic
positive-definite function of the feedback control are shown to possess sector margin guarantees to
component decoupled input nonlinearities in the conic sector .1

2
;1/.

The contents of this paper are as follows. In Section 2, we establish notation and definitions and
recall some basic results on stability of nonlinear stochastic dynamical systems. In Section 3, we
consider a nonlinear stochastic system with a performance measure evaluated over the infinite hori-
zon. The performance measure is then evaluated in terms of a Lyapunov function that guarantees
local and global asymptotic stability in probability. This result is then specialized to general poly-
nomial and multilinear cost functionals. In Section 4, we state a nonlinear–nonquadratic stochastic
optimal control problem and provide sufficient conditions for characterizing an optimal nonlinear
feedback controller guaranteeing local and global asymptotic stability in probability of the closed-
loop system. In Section 5, we develop optimal feedback controllers for affine nonlinear systems
using an inverse optimality framework tailored to the stochastic stabilization problem. This result is
then used to derive extensions of the results in [4, 5] involving nonlinear feedback controllers min-
imizing polynomial and multilinear performance criteria. In Section 6, we provide two illustrative
numerical examples that highlight the stochastic optimal stabilization framework. Finally, in Section
7, we present conclusions and highlight some future research directions.

2. NOTATION, DEFINITIONS, AND MATHEMATICAL PRELIMINARIES

In this section, we establish notation and definitions and review some basic results on stability of
nonlinear stochastic dynamical systems [22–26]. Specifically, R denotes the set of real numbers, RC
denotes the set of positive real numbers, RC denotes the set of nonnegative numbers, ZC denotes
the set of positive integers, Rn denotes the set of n� 1 real column vectors, Rn�m denotes the set of
n �m real matrices, Nn denotes the set of n � n nonnegative-definite matrices, and Pn denotes the
set of n � n positive-definite matrices. We write B".x/ for the open ball centered at x with radius
", k � k for the Euclidean vector norm or an induced matrix norm (depending on context), AT for the
transpose of the matrix A, ˝ for the Kronecker product, ˚ for the Kronecker sum, and In or I for
the n � n identity matrix. Furthermore, Bn denotes the � -algebra of Borel sets in D � Rn, and S

denotes a � -algebra generated on a set S � Rn.
We define a complete probability space as .�;F ;P /, where � denotes the sample space,

F denotes a � -algebra, and P defines a probability measure on the � -algebra F ; that is, P is a non-
negative countably additive set function on F such that P .�/ D 1 [24]. Furthermore, we assume
that w.�/ is a standard d -dimensional Wiener process defined by .w.�/;�;F ;Pw0/, where Pw0 is
the classical Wiener measure [25, p. 10], with a continuous-time filtration ¹Ftºt>0 generated by the
Wiener process w.t/ up to time t . We denote a stochastic dynamical system by G generating a filtra-
tion ¹Ftºt>0 adapted to the stochastic process x W RC��! D on .�;F ;Px0/ satisfying F� � Ft ,
0 6 � < t , such that ¹! 2 � W x.t; !/ 2 Bº 2 Ft , t > 0, for all Borel sets B � Rn contained in
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the Borel � -algebra Bn. Here, we use the notation x.t/ to represent the stochastic process x.t; !/
omitting its dependence on !.

We denote the set of equivalence classes of measurable, integrable, and square-integrable Rn

or Rn�m (depending on context) valued random processes on .�;F ;P / over the semi-infinite
parameter space Œ0;1/ by L0.�;F ;P /, L1.�;F ;P /, and L2.�;F ;P /, respectively, where the
equivalence relation is the one induced by P -almost-sure equality. In particular, elements of
L0.�;F ;P / take finite values P -almost surely (a.s.). Hence, depending on the context, Rn will
denote either the set of n � 1 real variables or the subspace of L0.�;F ;P / comprised of Rn ran-
dom processes that are constant almost surely. All inequalities and equalities involving random
processes on .�;F ;P / are to be understood to hold P -almost surely. Furthermore, EŒ � � and Ex0 Œ � �
denote, respectively, the expectation with respect to the probability measure P and with respect to
the classical Wiener measure Px0 .

Finally, we write tr(�) for the trace operator, .�/�1 for the inverse operator, V 0.x/ , @V.x/
@x

for the

Fréchet derivative of V at x, V 00.x/ , @2V.x/

@x2
for the Hessian of V at x, and Hn for the Hilbert

space of random vectors x 2 Rn, that is, Hn , ¹x W � ! Rnº. For an open set D � Rn, HD
n ,

¹x 2 Hn W x W � ! Dº denotes the set of all the random vectors in Hn induced by D. Similarly,
for every x0 2 Rn, Hx0

n , ¹x 2 Hn W x
a.s.
D x0º. Furthermore, C2 denotes the space of real-valued

functions V W D! R that are two-times continuously differentiable with respect to x 2 D � Rn.
Consider the nonlinear stochastic dynamical system G given by

dx.t/ D f .x.t//dt CD.x.t//dw.t/; x.t0/
a.s.
D x0; t > t0; (1)

where, for every t > t0, x.t/ 2 HD
n is a Ft -measurable random state vector, x.t0/ 2 Hx0

n , D � Rn

is an open set with 0 2 D, w.t/ is a d -dimensional independent standard Wiener process (i.e.,
Brownian motion) defined on a complete filtered probability space .�;F ; ¹Ftºt>t0 ;P /, x.t0/ is
independent of .w.t/ � w.t0//; t > t0, and f W D ! Rn and D W D ! Rn�d are continuous
functions and satisfy f .0/ D 0 and D.0/ D 0. The filtered probability space .�;F ; ¹Ftºt>t0 ;P /
is clearly a real vector space with addition and scalar multiplication defined componentwise and
pointwise. A Rn-valued stochastic process x W Œt0; � � ��! D is said to be a solution of (1) on the
time interval Œt0; � � with initial condition x.t0/

a.s.
D x0 if x.�/ is progressively measurable (i.e., x.�/ is

nonanticipating and measurable in t and !) with respect to the filtration ¹Ftºt>t0 , f 2 L1.�;F ;P /,
D 2 L2.�;F ;P /, and

x.t/ D x0 C

Z t

t0

f .x.s//ds C
Z t

t0

D.x.s//dw.s/ a.s.; t 2 Œt0; � �; (2)

where the integrals in (2) are Itô integrals.
Note that for each fixed t > t0, the random variable ! 7! x.t; !/ assigns a vector x.!/ to

every outcome ! 2 � of an experiment, and for each fixed ! 2 �, the mapping t 7! x.t; !/ is
the sample path of the stochastic process x.t/, t > t0. A pathwise solution t 7! x.t/ of (1) in
.�; ¹Ftºt>t0 ;Px0/ is said to be right maximally defined if x cannot be extended (either uniquely
or nonuniquely) forward in time. We assume that all right maximal pathwise solutions to (1) in
.�; ¹Ftºt>t0 ;Px0/ exist on Œt0;1/, and hence, we assume that (1) is forward complete. Sufficient
conditions for forward completeness or global solutions of (1) are given in [24, Corol. 6.3.5].

Furthermore, we assume that f W D ! Rn and D W D ! Rn�d satisfy the uniform Lipschitz
continuity condition

kf .x/ � f .y/k C kD.x/ �D.y/kF 6 Lkx � yk; x; y 2 D; (3)

and the growth restriction condition

kf .x/k2 C kD.x/k2F 6 L2.1C kxk2/; x 2 D; (4)

for some Lipschitz constant L > 0, and hence, because x.t0/ 2 HD
n and x.t0/ are independent of

.w.t/ � w.t0//; t > t0, it follows that there exists a unique solution x 2 L2.�;F ;P / of (1) in the
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following sense. For every x 2 HD
n n ¹0º, there exists �x > 0 such that if x1 W Œt0; �1���! D and

x2 W Œt0; �2� � � ! D are two solutions of (1); that is, if x1; x2 2 L2.�;F ;P /, with continuous
sample paths almost surely, solve (1), then �x6min¹�1; �2º and P

�
x1.t/Dx2.t/; t0 6 t 6 �x

�
D 1.

A weaker sufficient condition for the existence of a unique solution to (1) using a notion
of (finite or infinite) escape time under the local Lipschitz continuity condition (3) without the
growth condition (4) is given in [27]. Moreover, the unique solution determines a Rn-valued, time-
homogeneous Feller continuous Markov process x.�/, and hence, its stationary Feller transition
probability function is given by ([26, Thm. 3.4], [24, Thm. 9.2.8])

P .x.t/ 2 Bjx.t0/
a.s.
D x0/ D P .t � t0; x0; 0; B/; x0 2 Rn; (5)

for all t > t0 and all Borel subsets B of Rn, where P .s; x; t;B/; t > s, denotes the probability of
transition of the point x 2 Rn at time instant s into the set B � Rn at time instant t . Finally, recall
that every continuous process with Feller transition probability function is also a strong Markov
process [26, p. 101].

Definition 2.1 ([25, Def. 7.7])
Let x.�/ be a time-homogeneous Markov process in HD

n and let V W D! R. Then, the infinitesimal
generator L of x.t/, t > t0, with x.t0/

a.s.
D x0, is defined by

LV.x0/ , lim
t!0C

Ex0 ŒV .x.t//� � V.x0/

t
; x0 2 D: (6)

If V 2 C2 and has a compact support, and x.t/, t > t0, satisfies (1), then the limit in (6) exists for
all x 2 D and the infinitesimal generator L of x.t/, t > t0, can be characterized by the system drift
and diffusion functions f .x/ andD.x/ defining the stochastic dynamical system (1) and is given by
([25, Thm. 7.9])

LV.x/ , @V.x/

@x
f .x/C

1

2
tr DT.x/

@2V.x/

@x2
D.x/; x 2 D: (7)

The following definition introduces the notions of Lyapunov and asymptotic stability in proba-
bility. Recall that an equilibrium point xe D 0 of (1) is a point such that f .0/ D 0 and D.0/ D 0.
In this case, xe D 0 is an equilibrium point of (1) if and only if the zero solution (i.e., the zero
stochastic process) x.�/

a.s.
D 0 is a solution of (1).

Definition 2.2 ([22]) (i) The zero solution x.t/
a.s.
� 0 to (1) is Lyapunov stable in probability if, for

every r > 0 and " 2 .0; 1/, there exist ı D ı."; r/ > 0 such that, for all x0 2 Bı.0/,

Px0

 
sup
t>t0
kx.t/k > r

!
6 ": (8)

(ii) The zero solution x.t/
a.s.
� 0 to (1) is locally asymptotically stable in probability if it is Lya-

punov stable in probability and, for every " 2 .0; 1/, there exist ı D ı."/ > 0 such that, for all
x0 2 Bı.0/,

Px0
�

lim
t!1
kx.t/k D 0

�
> 1 � ": (9)

(iii) The zero solution x.t/
a.s.
� 0 to (1) is globally asymptotically stable in probability if it is

Lyapunov stable in probability and, for all x0 2 Rn,

Px0
�

lim
t!1
kx.t/k D 0

�
D 1: (10)
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Remark 2.1
A more general stochastic stability notion can also be introduced here involving stochastic stability
and convergence to an invariant (stationary) distribution. In this case, state convergence is not to
an equilibrium point but rather to a stationary distribution. This framework can relax the vanishing
perturbation assumption D.0/ D 0 and requires a more involved analysis and synthesis framework
showing stability of the underlying Markov semigroup [28].

Finally, we provide sufficient conditions for local and global asymptotic stability in probability
for the nonlinear stochastic dynamical system (1).

Theorem 2.1 ([26, Corol. 5.1])
Consider the nonlinear stochastic dynamical system (1) and assume that there exists a two-times
continuously differentiable function V W D! R such that

V.0/ D 0; (11)

V.x/ > 0; x 2 D; x ¤ 0; (12)

@V.x/

@x
f .x/C

1

2
tr DT.x/

@2V.x/

@x2
D.x/ < 0; x 2 D; x ¤ 0: (13)

Then, the zero solution x.t/
a.s.
� to (1) is locally asymptotically stable in probability. If, in addi-

tion, D D Rn and V.�/ is radially unbounded, then the zero solution x.t/
a.s.
� 0 to (1) is globally

asymptotically stable in probability.

3. STABILITY ANALYSIS AND NONLINEAR–NONQUADRATIC COST EVALUATION OF
NONLINEAR STOCHASTIC SYSTEMS

In this section, we provide connections between Lyapunov functions and nonquadratic cost evalua-
tion. Specifically, we present sufficient conditions for stability and performance for a given nonlinear
stochastic dynamical system with a nonlinear–nonquadratic performance measure. As in determin-
istic theory [13, 14], the cost functional can be explicitly evaluated as long as it is related to an
underlying Lyapunov function. For the following result, let L W D ! R with L.0/ D 0 and let
1Œt0;�m�.t/ denote the indicator function defined on the set Œt0; �m�, m 2 ZC, that is,

1Œt0;�m�.t/ ,
²
1; if t 2 Œt0; �m�;
0; otherwise.

Furthermore, let Bcost
x0

denote the set of all sample trajectories of (1) for which limt!1 kx.t; !/k D
0 and x.¹t > t

0
º; !/ 2 Bcost

x0
, ! 2 �. Finally, define

1Bcost
x0
.!/ ,

²
1; if x.¹t > t

0
º; !/ 2 Bcost

x0
;

0; otherwise.

Theorem 3.1
Consider the nonlinear stochastic dynamical system given by (1) with nonlinear–nonquadratic
performance measure

J.x0;B
cost
x0
/ , 1

Px0
�
Bcost
x0

�Ex0 �Z 1
t0

L.x.t//1Bcost
x0
.!/dt

�
: (14)

Furthermore, assume that there exists a two-times continuously differentiable function V W D ! R
such that

V.0/ D 0; (15)

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2017; 27:4723–4751
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V.x/ > 0; x 2 D; x ¤ 0; (16)

V 0.x/f .x/C
1

2
tr DT.x/V 00.x/D.x/ < 0; x 2 D; x ¤ 0; (17)

L.x/C V 0.x/f .x/C
1

2
tr DT.x/V 00.x/D.x/ D 0; x 2 D: (18)

Then, the zero solution x.t/
a.s.
� 0 to (1) is locally asymptotically stable in probability, and for every

" 2 .0; 1/, there exist ı D ı."/ and Bcost
x0

with Px0
�
Bcost
x0

�
> 1�" such that, for all x0 2 Bı.0/ � D,

J.x0;B
cost
x0
/ D V.x0/: (19)

Finally, if D D Rn and V.x/!1 as kxk ! 1, then the zero solution x.t/
a.s.
� 0 to (1) is globally

asymptotically stable in probability and (19) holds with Px0
�
Bcost
x0

�
D 1, x0 2 Rn.

Proof
Conditions (15)–(17) are a restatement of (11)–(13), and hence, it follows from Theorem 2.1 that
the zero solution x.t/

a.s.
� 0 of (1) is locally asymptotically stable in probability. Consequently, for

every " 2 .0; 1/, there exist ı D ı."/ and a set of sample trajectories x.¹t > t
0
º; !/ 2 Bcost

x0
, ! 2 �,

such that, for all x0 2 Bı.0/ � D, Px0
�
Bcost
x0

�
> 1 � ".

Next, using (1) and Itô’s (chain rule) formula, it follows that the stochastic differential of V.x.t//
along the system trajectories x.t/; t > t0, of (1) is given by

dV.x.t// D

�
V 0.x.t//f .x.t//C

1

2
tr DT.x.t//V 00.x.t//D.x.t//

	
dt C

@V.x.t//

@x
D.x.t//dw.t/:

(20)
Hence, using (18), it follows that

L.x.t//dt C dV.x.t// D

�
L.x.t//C V 0.x.t//f .x.t//C

1

2
tr DT.x.t//V 00.x.t//D.x.t//

	
dt

C
@V.x.t//

@x
D.x.t//dw.t/

D
@V.x.t//

@x
D.x.t//dw.t/:

(21)
Let ¹tnº1nD0 be a monotonic sequence of positive numbers with tn ! 1 as n ! 1, �m W

� ! Œt0;1/ be the first exit (stopping) time of the solution x.t/, t > t0, from the set Bm.0/, and
let � , limm!1 �m. Now, multiplying (21) with 1Bcost

x0
.!/ and integrating over Œt0;min¹tn; �mº�,

where .n;m/ 2 ZC � ZC, yieldsZ min¹tn;�mº

t0

L.x.t//1Bcost
x0
.!/dt

D �

Z min¹tn;�mº

t0

1Bcost
x0
.!/dV.x.s//C

Z min¹tn;�mº

t0

@V.x.s//

@x
D.x.s//1Bcost

x0
.!/dw.s/

D V.x.t0//1Bcost
x0
.!/ � V.x.min¹tn; �mº//1Bcost

x0
.!/

C

Z min¹tn;�mº

t0

@V.x.t//

@x
D.x.t//1Bcost

x0
.!/dw.t/

D V.x.t0//1Bcost
x0
.!/ � V.x.min¹tn; �mº//1Bcost

x0
.!/

C

Z tn

t0

@V.x.t//

@x
D.x.t//1Œt0;�m�.t/1Bcost

x0
.!/dw.t/:

(22)
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Taking the expectation on both sides of (22) yields

Ex0

"Z min¹tn;�mº

t0

L.x.t//1Bcost
x0
.!/ dt

#

D Ex0
�
V.x.t0//1Bcost

x0
.!/ � V.x.min¹tn; �mº//1Bcost

x0
.!/

C

Z tn

t0

@V.x.t//

@x
D.x.t//1Œt0;�m�.t/1Bcost

x0
.!/dw.t/

�
D V.x0/P

x0
�
Bcost
x0

�
� Ex0

h
V.x.min¹tn; �mº//1Bcost

x0
.!/

i
:

(23)

Next, let Bm
x0

denote the set of all the sample trajectories x.t/, t > t0, of (1) such that �m D 1
and note that, by regularity of solutions [26, p. 75], Px0.Bm

x0
/ ! 1 as m ! 1: Now, noting

that L.x/ > 0, x 2 D, the sequence of random variables ¹fm;nº1m;nD0 � H1, where

fm;n ,
Z min¹tn;�mº/

t0

L.x.t//1Bcost
x0
.!/dt;

is a pointwise nondecreasing sequence in n and m of nonnegative Ft -measurable random variables
on �. Next, defining the improper integralZ 1

t0

L.x.t//1Bcost
x0
.!/dt

as the limit of a sequence of proper integrals, it follows from the Lebesgue monotone convergence
theorem [29] that

lim
m!1

lim
n!1

Ex0

"Z min¹tn;�mº

t0

L.x.t//1Bcost
x0
.!/ dt

#

D lim
m!1

Ex0

"
lim
n!1

Z min¹tn;�mº

t0

L.x.t//1Bcost
x0
.!/ dt

#

D Ex0
�

lim
m!1

Z �m

t0

L.x.t//1Bcost
x0
.!/ dt

�

D Ex0
�Z 1
t0

L.x.t//1Bcost
x0
.!/dt

�
D J.x0;B

cost
x0
/Px0

�
Bcost
x0

�
:

(24)

Next, because the zero solution x.t/
a.s.
� 0 of (1) is asymptotically stable in probabil-

ity and V.x.min¹tn; �mº// is a positive supermartingale by [26, Lemma 5.4], it follows from
[26, Theorem 5.1] that

lim
m!1

lim
n!1

Ex0
h
V.x.min¹tn; �mº//1Bcost

x0
.!/

i
D lim
m!1

Ex0
h

lim
n!1

V.x.min¹tn; �mº//1Bcost
x0
.!/

i
D lim
m!1

Ex0
h
V.x.�m//1Bcost

x0
.!/

i
D Ex0

h
lim
m!1

V.x.�m//1Bcost
x0
.!/

i
D Ex0

h
V
�

lim
m!1

x.�m/
�
1Bcost

x0
.!/

i
D 0:

(25)

Now, taking the limit as n ! 1 and m ! 1 on both sides of (23) and using (24) and (25) yields
(19).
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Finally, for D D Rn, global asymptotic stability in probability is direct consequence of the
radially unbounded condition on V.�/, and hence, (19) holds with Px0

�
Bcost
x0

�
D 1 for all x0 2 Rn.

�

Remark 3.1
Note that for global asymptotic stability in probability, Px0

�
Bcost
x0

�
D 1 for all x0 2 Rn, and hence,

1Bcost
x0
.!/

a.s.
D 1. In this case,

J.x0;B
cost
x0
/ , 1

Px0
�
Bcost
x0

�Ex0 �Z 1
t0

L.x.t//1Bcost
x0
.!/dt

�
D Ex0

�Z 1
t0

L.x.t//dt

�
:

Thus, in the remainder of this section, we omit the dependence on Bcost
x0

in the cost functional for all
the results concerning global asymptotic stability in probability.

It is important to note that if (18) holds, then (17) is equivalent to L.x/ > 0, x 2 D, x ¤ 0. Next,
we specialize Theorem 3.1 to linear stochastic systems. For this result, let A 2 Rn�n, let � 2 Rd ,
and let R 2 Rn�n be a positive-definite matrix.

Corollary 3.1
Consider the linear stochastic dynamical system with multiplicative noise given by

dx.t/ D Ax.t/dt C x.t/�Tdw.t/; x.0/ D x0 a.s.; t > 0; (26)

and with quadratic performance measure

J.x0/ , Ex0
�Z 1
0

xT.t/Rx.t/dt

�
: (27)

Furthermore, assume that there exists a positive-definite matrix P 2 Rn�n such that

0 D

�
AC

1

2
k�k2In

	T

P C P

�
AC

1

2
k�k2In

	
CR: (28)

Then, the zero solution x.t/
a.s.
� 0 to (26) is globally asymptotically stable in probability and

J.x0/ D x
T
0Px0; x0 2 Rn: (29)

Proof
The result is a direct consequence of Theorem 3.1 with f .x/ D Ax, D.x/ D x�T, L.x/ D xTRx,
V.x/ D xTPx, and D D Rn. Specifically, conditions (15) and (16) are trivially satisfied. Now,

V 0.x/f .x/C
1

2
tr DT.x/V 00.x/D.x/ D xT.ATP C PA/x C

1

2
tr.x�T/T2P.x�T/

D xT

"�
AC

1

2
k�k2In

	T

P C P

�
AC

1

2
k�k2In

	#
x;

and hence, it follows from (28) that L.x/C V 0.x/f .x/C 1
2

trDT.x/V 00.x/D.x/ D 0, x 2 Rn, so
that all the conditions of Theorem 3.1 are satisfied. Finally, because V.�/ is radially unbounded, the
zero solution x.t/

a.s.
� 0 to (26) is globally asymptotically stable in probability. �

Next, we specialize Theorem 3.1 to linear and nonlinear stochastic systems with multilinear cost
functionals. First, however, we give several definitions involving multilinear functions and a key
lemma establishing the existence and uniqueness of specific multilinear forms. Define xŒq� , x ˝

x ˝ � � � ˝ x and
q
˚A , A ˚ A ˚ � � � ˚ A, where x and A appear q times and q is a positive

integer. A scalar function  W Rn ! R is q-multilinear if q is a positive integer and  .x/ is a linear
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combination of terms of the form x
i1
1 x

i2
2 : : : x

in
n , where ij is a nonnegative integer for j D 1; : : : ; n

and i1 C i2 C � � � C in D q. Furthermore, a q-multilinear function  .�/ is nonnegative definite
(resp., positive definite) if  .x/ > 0 for all x 2 Rn (resp.,  .x/ > 0 for all nonzero x 2 Rn).
Note that if q is odd, then  .x/ cannot be positive definite. If  .�/ is a q-multilinear function, then
 .�/ can be represented by means of Kronecker products, that is,  .x/ is given by  .x/ D ‰xŒq�,
where‰ 2 R1�n

q
. Note that every polynomial function can be written as a multilinear function; the

converse, however, is not true.
The following lemma is needed for several of the main results of this paper.

Lemma 3.1
Let A 2 Rn�n and � 2 Rd be such that AC 1

2
.q � 1/k�k2In is Hurwitz, and let h W Rn ! R be a

q-multilinear function. Then, there exists a unique q-multilinear function g W Rn ! R such that

0 D
1

2
tr.x�T/Tg00.x/.x�T/C g0.x/Ax C h.x/; x 2 Rn: (30)

Furthermore, if h.x/ is nonnegative (resp., positive) definite, then g.x/ is nonnegative (resp.,
positive) definite.

Proof

Let h.x/ D ‰xŒq� and define g.x/ , �xŒq�, where � , �‰.
q
˚.AC 1

2
.q�1/k�k2In//

�1, and note

that
q
˚.AC 1

2
.q � 1/k�k2In/ is invertible because AC 1

2
.q � 1/k�k2In is Hurwitz by assumption.

Now, note that, for all x 2 Rn,

g0.x/Ax C
1

2
tr.x�T/Tg00.x/.x�T/

D .�xŒq�/0Ax C
1

2
xT.�xŒq�/00xk�k2

D �

 
qX

iqD1

x ˝ � � � ˝

i thq entry‚…„ƒ
In ˝ � � � ˝ x

!
Ax C

1

2
k�k2

 
nX
iD1

nX
jD1

qX
iqD1

qX
jqD1;jq¤iq

xi�.x ˝ � � �

� � � ˝

i thq entry‚…„ƒ
ei ˝ � � � ˝

j th
q entry‚…„ƒ
ej ˝ � � � ˝ x/xj

!

D �

 
qX

iqD1

x ˝ � � � ˝

i thq entry‚…„ƒ
Ax ˝ � � � ˝ x

!
C
1

2
k�k2

 
qX

iqD1

qX
jqD1;jq¤iq

nX
iD1

nX
jD1

�.x ˝ � � �

� � � ˝

i thq entry‚…„ƒ
xiei ˝ � � � ˝

j th
q entry‚…„ƒ
xj ej ˝ � � � ˝ x/

!

D �

 
qX

iqD1

In ˝ � � � ˝

i thq entry‚…„ƒ
A ˝ � � � ˝ In

!
xŒq� C

1

2
k�k2

 
qX

iqD1

qX
jqD1;jq¤iq

�.x ˝ � � �

� � � ˝

i thq entry‚ …„ ƒ 
nX
iD1

xiei

!
˝ � � � ˝

j th
q entry‚ …„ ƒ 
nX
jD1

xj ej

!
˝ � � � ˝ x/

!
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D �

 
qX

iqD1

In ˝ � � � ˝

i thq entry‚…„ƒ
A ˝ � � � ˝ In

!
xŒq� C

1

2
k�k2�

 
qX

iqD1

qX
jqD1;jq¤iq

x ˝ � � �

� � � ˝

i thq entry‚…„ƒ
x ˝ � � � ˝

j th
q entry‚…„ƒ
x ˝ � � � ˝ x

!

D �

 
qX

iqD1

In ˝ � � � ˝

i thq entry‚…„ƒ
A ˝ � � � ˝ In

!
xŒq�

C �

 
qX

iqD1

In ˝ � � � ˝

i thq entry‚ …„ ƒ
1

2
.q � 1/k�k2In˝ � � � ˝ In

!
xŒq�

D �

 
qX

iqD1

In ˝ � � � ˝

i thq entry‚ …„ ƒ
.AC

1

2
.q � 1/k�k2In/˝ � � � ˝ In

!
xŒq�

D �

 
q
˚

 
AC

1

2
.q � 1/k�k2In

!!
xŒq�

D �‰xŒq�

D �h.x/:

To prove uniqueness, suppose, ad absurdum, that Og.x/ D O�xŒq� satisfies (30). Then, it follows
that

�

�
q
˚

�
AC

1

2
.q � 1/k�k2In

		
xŒq� D O�

�
q
˚

�
AC

1

2
.q � 1/k�k2In

		
xŒq�:

Because
q
˚.AC 1

2
.q�1/k�k2In/ is Hurwitz and e.

q

˚.AC 12 .q�1/k�k
2In//t D .e.AC

1
2 .q�1/k�k

2In/t /Œq�,
it follows that, for all x 2 Rn,

�xŒq� D �

�
q
˚

�
AC

1

2
.q � 1/k�k2In

		�
q
˚

�
AC

1

2
.q � 1/k�k2In

		�1
xŒq�

D ��

�
q
˚

�
AC

1

2
.q � 1/k�k2In

		Z 1
0

e.
q

˚.AC 12 .q�1/k�k
2In//txŒq�dt

D ��

�
q
˚

�
AC

1

2
.q � 1/k�k2In

		Z 1
0

.e.AC
1
2 .q�1/k�k

2In/t /Œq�xŒq�dt

D ��

�
q
˚

�
AC

1

2
.q � 1/k�k2In

		Z 1
0

.e.AC
1
2 .q�1/k�k

2In/tx/Œq�dt

D � O�

�
q
˚

�
AC

1

2
.q � 1/k�k2In

		Z 1
0

.e.AC
1
2 .q�1/k�k

2In/tx/Œq�dt

D O�xŒq�;

which shows that g.x/ D Og.x/, x 2 Rn, leading to a contradiction.
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Finally, if h.x/ is nonnegative definite, then it follows that, for all x 2 Rn,

g.x/ D �‰

�
q
˚

�
AC

1

2
.q � 1/k�k2In

		�1
xŒq�

D ‰

Z 1
0

e.
q

˚.AC 12 .q�1/k�k
2In//txŒq�dt

D ‰

Z 1
0

.e.AC
1
2 .q�1/k�k

2In/tx/Œq�dt

> 0:

If, in addition, x ¤ 0, then e.AC
1
2 .q�1/k�k

2In/tx ¤ 0, t > 0. Hence, if h.x/ is positive definite, then
g.x/, x 2 Rn, is positive definite. �

Next, assume that
�
AC 1

2
.q � 1/k�k2In

�
is Hurwitz, where q > 2 is a given integer, let P be

given by (28), and consider the case in which D.�/ L.�/, f .�/, and V.�/ are given by D.x/ D x�T,

L.x/ D xTRx C h.x/; f .x/ D Ax CN.x/; V .x/ D xTPx C g.x/; (31)

where h W D ! R and g W D ! R are nonlinear and nonquadratic, and N W D ! Rn is nonlinear.
In this case, (18) holds if and only if

0 D xTRx C h.x/C xT.ATP C PA/x C 2xTPN.x/C g0.x/.Ax CN.x//

C
1

2
tr.x�T/T



2P C g00.x/

�
.x�T/; x 2 D;

(32)

or, equivalently,

0 D xT

"�
AC

1

2
k�k2In

	T

P C P

�
AC

1

2
k�k2In

	
CR

#
x

C
1

2
.x�T/Tg00.x/.x�T/C g0.x/.Ax CN.x//C h.x/C 2xTPN.x/; x 2 D:

(33)

Because
�
AC 1

2
k�k2In

�
is Hurwitz, we can choose P to satisfy (28). Now, suppose N.x/ � 0 and

let P satisfy (28). Then, (33) specializes to

0 D
1

2
tr.x�T/Tg00.x/.x�T/C g0.x/Ax C h.x/; x 2 D: (34)

Next, given h.�/, we determine the existence of a function g.�/ satisfying (34). Here, we focus
our attention on multilinear functionals for which (34) holds with D D Rn. Specifically, let
h.x/ be a nonnegative-definite q-multilinear function, where q is necessarily even. Furthermore,
let g.x/ be the nonnegative-definite q-multilinear function given by Lemma 3.1. Then, because
1
2

tr.x�T/Tg00.x/.x�T/C g0.x/Ax 6 0, x 2 Rn, it follows that xTPx C g.x/ is a Lyapunov func-
tion for (26). Hence, Lemma 3.1 can be used to generate Lyapunov functions of specific multilinear
structures.

To demonstrate the aforementioned discussion, suppose h.x/ in (31) is of the more general form
given by

h.x/ D

rX
�D2

h2�.x/; (35)

where, for � D 2; 3; : : : ; r , h2� W Rn ! R is a nonnegative-definite 2�-multilinear function. Now,
using Lemma 3.1, it follows that there exists a nonnegative-definite 2�-multilinear function g2� W
Rn ! R satisfying

0 D
1

2
tr.x�T/Tg002�.x/.x�

T/C g02�.x/Ax C h2�.x/; x 2 Rn; � D 2; 3; : : : ; r: (36)
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Defining g.x/ ,
Pr
�D2 g2�.x/ and summing (36) over � yields (34). Because (18) is satisfied with

L.x/ and V.x/ given by (31), respectively, (19) implies that

J.x0/ D x
T
0Px0 C g.x0/: (37)

To illustrate condition (34) with quartic Lyapunov functions, let

V.x/ D xTPx C .xTMx/2; (38)

where P satisfies (28) and assume M is an n� n symmetric matrix. In this case, g.x/ D .xTMx/2

is a nonnegative-definite four-multilinear function and (34) yields

h.x/ D �4.xTMx/xTMAx �
1

2
tr.x�T/T



8MxxTM C 4.xTMx/M

�
.x�T/

D �2.xTMx/xT

"�
AC

3

2
k�k2In

	T

M CM

�
AC

3

2
k�k2In

	#
x:

(39)

Now, letting M satisfy

0 D

�
AC

3

2
k�k2In

	T

M CM

�
AC

3

2
k�k2In

	
C OR; (40)

where OR is an n � n symmetric matrix, it follows from (39) that h.x/ satisfying (34) is of the form

h.x/ D 2.xTMx/.xT ORx/: (41)

If OR is nonnegative definite, then M is nonnegative definite, and hence, h.x/ is a nonnegative-
definite four-multilinear function. Thus, if V.x/ is a quartic Lyapunov function of the form given by
(38) and L.x/ is given by

L.x/ D xTRx C 2.xTMx/.xT ORx/; (42)

where M satisfies (40), then condition (34), and hence, (18) is satisfied.
The following proposition generalizes the aforementioned results to general polynomial cost

functionals.

Proposition 3.1
LetA 2 Rn�n and � 2 Rd be such thatAC 1

2
.2r�1/k�k2In is Hurwitz, and letR 2 Rn�n,R > 0,

and ORq 2 Rn�n, ORq > 0, q D 2; : : : ; r . Consider the linear stochastic dynamical system (26) with
performance measure

J.x0/ , Ex0

2
4Z 1

0

8<
:xT.t/Rx.t/C

rX
qD2

h
.xT.t/ ORqx.t//.x

T.t/Mqx.t//
q�1

i9=
; dt

3
5 ; (43)

where Mq 2 Rn�n, and Mq > 0, q D 2; : : : ; r , satisfy

0 D

�
AC

1

2
.2q � 1/k�k2In

	T

Mq CMq

�
AC

1

2
.2q � 1/k�k2In

	
C ORq : (44)

Then, there exists a positive-definite matrix P 2 Rn�n such that

0 D

�
AC

1

2
k�k2In

	T

P C P

�
AC

1

2
k�k2In

	
CR (45)

and the zero solution x.t/
a.s.
� 0 to (26) is globally asymptotically stable in probability and

J.x0/ D x
T
0Px0 C

rX
qD2

1

q
.xT
0Mqx0/

q; x0 2 Rn: (46)
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Proof
The existence of a positive-definite matrix P 2 Rn�n for some R > 0 follows from converse
Lyapunov theory using the fact thatAC 1

2
k�k2In is Hurwitz. The result now is a direct consequence

of Theorem 3.1 with f .x/ D Ax, D.x/ D x�T, L.x/ D xTRx C
Pr
qD2Œ.x

T ORqx/.x
TMqx/

q�1�,
V.x/ D xTPx C

Pr
qD2

1
q
.xT Mqx/

q , and D D Rn. Specifically, conditions (15) and (16) are
trivially satisfied. Now,

V 0.x/f .x/C
1

2
tr DT.x/V 00.x/D.x/

D xT.ATP C PA/x C

rX
qD2

.xTMqx/
q�1xT.ATMq CMqA/x

C
1

2
tr.x�T/T



2P C 4.q � 1/.xTMqx/

q�2Mqxx
TMq C 2.x

TMqx/Mq

�
.x�T/

D xT

"�
AC

1

2
k�k2In

	T

P C P

�
AC

1

2
k�k2In

	#
x

C

rX
qD2

.xTMqx/
q�1xT

"�
AC

1

2
.2q � 1/k�k2In

	T

Mq

CMq

�
AC

1

2
.2q � 1/k�k2In

	#
x;

and hence, it follows from (44) and (45) that L.x/ C V 0.x/f .x/ C 1
2

trDT.x/V 00.x/D.x/ D 0,
x 2 Rn, so that all the conditions of Theorem 3.1 are satisfied. Finally, because V.�/ is radially
unbounded, (26) is globally asymptotically stable in probability. �

Remark 3.2
Proposition 3.1 requires the solutions of r � 1 Lyapunov equations in (44) to obtain a closed-form
expression for the nonlinear–nonquadratic cost functional (43).

4. STOCHASTIC OPTIMAL NONLINEAR CONTROL

In this section, we consider a control problem involving a notion of optimality with respect to a
nonlinear–nonquadratic cost functional. We use the framework developed in Theorem 3.1 to obtain
a characterization of optimal feedback controllers that guarantee closed-loop local and global sta-
bilization in probability. Specifically, sufficient conditions for optimality are given in a form that
corresponds to a steady-state version of the stochastic Hamilton–Jacobi–Bellman equation. To
address the problem of characterizing stochastic optimal stabilizing feedback controllers, consider
the controlled nonlinear stochastic dynamical system G given by

dx.t/ D F.x.t/; u.t//dt CD.x.t/; u.t//dw.t/; x.t0/
a.s.
D x0; t > t0; (47)

where, for every t > t0, x.t/ 2 HD
n , x.0/ 2 Hx0

n , D is an open set with 0 2 D, u.t/ 2 HU
m ,

U � Rm is open set with 0 2 U , w.t/ is a d -dimensional independent standard Wiener process,
F W D � U ! Rn is jointly continuous in x and u with F.0; 0/ D 0, and D W D � U ! Rn�d is
jointly continuous in x and u with D.0; 0/ D 0.

Here, we assume that u.�/ satisfies sufficient regularity conditions such that (47) has a unique
solution forward in time. Specifically, we assume that the control process u.�/ in (47) is restricted
to the class of admissible controls consisting of measurable functions u.�/ adapted to the filtration
¹Ftºt>t0 such that u.t/ 2 Hm, t > t0, and, for all t > s, w.t/ � w.s/ is independent of u.�/,
w.�/, � 6 s, and x.t0/, and hence, u.�/ is nonanticipative. Furthermore, we assume that u.�/ takes
values in a compact, metrizable set U and the uniform Lipschitz continuity and growth conditions
(3) and (4) hold for the controlled drift and diffusion terms F.x; u/ and D.x; u/ uniformly in u. In
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this case, it follows from Theorem 2.2.4 of [30] that there exists a pathwise unique solution to (47)
in .�; ¹Ft>t0º;Px0/.

A measurable function � W D! U satisfying �.0/ D 0 is called a control law. If u.t/ D �.x.t//,
t > t0, where �.�/ is a control law and x.t/, t > t0, satisfies (47), then we call u.�/ a feedback
control law. Note that the feedback control law is an admissible control because �.�/ has values in
U . Given a control law �.�/ and a feedback control law u.t/ D �.x.t//, t > t0, the closed-loop
system (47) has the form

dx.t/ D F.x.t/; �.x.t///dt CD.x.t/; �.x.t///dw.t/ x.t0/
a.s.
D x0; t > t0: (48)

Next, we present a main theorem for stochastic stabilization characterizing feedback controllers
that guarantee local and global closed-loop stability in probability and minimize a nonlinear–
nonquadratic performance measure. For the statement of this result, let L W D � U ! R be jointly
continuous in x and u, and, for every " 2 .0; 1/, define the set of stochastic regulation controllers
given by

S.x0; "/ ,
²
u.�/ W u.�/ is admissible and x.�/ given by (47) is such that Px0

�
Bu.�/
x0

�
> 1 � ";

where Bu.�/
x0
,
°
x.¹t > t0º; !/ W lim

t!1
kx.t; !/k D 0; ! 2 �

± ³
:

Theorem 4.1
Consider the nonlinear stochastic controlled dynamical system (47) with performance measure

J
�
x0; u.�/;B

u.�/
x0

�
, 1

Px0
�
B
u.�/
x0

�Ex0 �Z 1
t0

L.x.t/; u.t//1
B
u.�/
x0

.!/dt

�
; (49)

where u.�/ is an admissible control and 1
B
u.�/
x0

.!/ denotes the indicator function of the set Bu.�/
x0 .

Assume that there exists a two-times continuously differentiable function V W D! R and a control
law � W D! U such that

V.0/ D 0; (50)

V.x/ > 0; x 2 D; x ¤ 0; (51)

�.0/ D 0; (52)

V 0.x/F.x; �.x//C
1

2
tr DT.x; �.x//V 00.x/D.x; �.x// < 0; x 2 D; x ¤ 0; (53)

H.x; �.x// D 0; x 2 D; (54)

H.x; u/ > 0; x 2 D; u 2 U; (55)

where

H.x; u/ , L.x; u/C V 0.x/F.x; u/C 1

2
tr DT.x; u/V 00.x/D.x; u/: (56)

Then, with the feedback control u.�/ D �.x.�//, the zero solution x.t/
a.s.
� 0 of the closed-loop

system (48) is locally asymptotically stable in probability and, for every " 2 .0; 1/, there exist
ı D ı."/ and B

�.x.�//
x0 with Px0

�
B
�.x.�//
x0

�
> 1 � " such that, for all x0 2 Bı.0/ � D,

J
�
x0; �.x.�//;B

�.x.�//
x0

�
D V.x0/: (57)
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In addition, if x0 2 Bı.0/, then the feedback control u.�/ D �.x.�//minimizes (49) in the sense that

J
�
x0; �.x.�//;B

�.x.�//
x0

�
D min
u.�/2S.x0;"/

J
�
x0; u.�/;B

u.�/
x0

�
: (58)

Finally, if D D Rn, U D Rm, and V.x/!1 as kxk ! 1, then the zero solution x.t/
a.s.
� 0 of the

closed-loop system (48) is globally asymptotically stable in probability and (58) holds with " D 0

and Px0
�
B
�.x.�//
x0

�
D 1, x0 2 Rn.

Proof
Local and global asymptotic stability in probability are a direct consequence of (50)–(53) by
applying Theorem 3.1 to the closed-loop system (48). Furthermore, using (54), condition (57) is
a restatement of (19) as applied to the closed-loop system. Consequently, for every " 2 .0; 1/,
there exist ı D ı."/ and a set of sample trajectories x.¹t > t0º; !/ 2 B

�.x.�//
x0 such that, for all

x0 2 Bı.0/ � D, Px0
�
B
�.x.�//
x0

�
> 1 � ".

Next, let x0 2 Bı.0/, let u.�/ 2 S.x0; "/, and let x.t/, t > t0, be the solution of (47). Then using
Itô’s (chain rule) formula, it follows that

L.x.t/; u.t//dt C dV.x.t// D

�
L.x.t/; u.t//C V 0.x.t//F.x; u.t//C

1

2
tr DT.x.t/; u.t//

� V 00.x.t//D.x.t/; u.t//

	
dt C

@V.x/

@x
D.x; u/dw.t/;

and hence,

L.x.t/; u.t//dt D �dV.x.t//CH.x.t/; u.t//dt C
@V.x.t//

@x
D.x.t/; u.t//dw.t/: (59)

Let ¹tnº1nD0 be a monotonic sequence of positive numbers with tn ! 1 as n ! 1, �m W � !
Œt0;1/ be the first exit (stopping) time of the solution x.t/, t > t0, from the set Bm.0/, and let
� , limm!1 �m. Now, multiplying (59) with 1

B
u.�/
x0

.!/ and integrating over Œ0;min¹tn; �mº�, where

.n;m/ 2 ZC � ZC, yields

Z min¹tn;�mº

t0

L.x.t/; u.t//1
B
u.�/
x0

.!/ dt

D �

Z min¹tn;�mº

t0

1
B
u.�/
x0

.!/dV.x.t//C
Z min¹tn;�mº

t0

H.x.t/; u.t//1
B
u.�/
x0

.!/dt

C

Z min¹tn;�mº

t0

@V.x.t//

@x
D.x.t/; u.t//1

B
u.�/
x0

.!/dw.t/

D V.x.t0//1Bu.�/x0

.!/ � V.x.min¹tn; �mº//1Bu.�/x0

.!/

C

Z min¹tn;�mº

t0

H.x.t/; u.t//1
B
u.�/
x0

.!/dt

C

Z tn

t0

@V.x.t//

@x
D.x.t/; u.t//1Œt0;�m�.t/1Bu.�/x0

.!/dw.t/:

(60)

Next, taking the expectation on both sides of (60) and using (55) yields
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Ex0

"Z min¹tn;�mº

t0

L.x.t/; u.t//1
B
u.�/
x0

.!/ dt

#

D Ex0

"
V.x.t0//1Bu.�/x0

.!/ � V.x.min¹tn; �mº//1Bu.�/x0

.!/

C

Z min¹tn;�mº

t0

H.x.t/; u.t//1
B
u.�/
x0

.!/dt

C

Z tn

t0

@V.x.t//

@x
D.x.t/; u.t//1Œt0;�m�.t/1Bu.�/x0

.!/dw.t/

#
(61)

> V.x0/Px0
�
Bu.�/
x0

�
� Ex0

h
V.x.min¹tn; �mº//1Bu.�/x0

.!/
i
: (62)

Next, let Bm
x0

denote the set of all the sample trajectories of x.t/, t > t0, such that �m D 1 and
note that, by regularity of solutions [26, p. 75], Px0.Bm

x0
/ ! 1 as m ! 1. Now, noting that

for all u.�/ 2 S.x0; "/, Z 1
0

ˇ̌̌
L.x.t/; u.t//1

B
u.�/
x0

.!/
ˇ̌̌
dt

a.s.
< 1;

let the random variable

g , sup
t>0;m>0

Z min¹t;�mº

0

ˇ̌̌
L.x.s/; u.s//1

B
u.�/
x0

.!/
ˇ̌̌
ds:

In this case, the sequence in n and m of Ft -measurable random variables ¹fm;nº1m;nD0 � H1 on �
for all .n;m/ 2 ZC � ZC, where

fm;n ,
Z min¹tn;�mº

0

L.x.t/; u.t//1
B
u.�/
x0

.!/dt

satisfies jfm;nj
a.s.
< g, .n;m/ 2 ZC � ZC. Now, defining the improper integralZ 1

0

L.x.t/; u.t//1
B
u.�/
x0

.!/dt

as the limit of a sequence of proper integrals, it follows from the dominated convergence theorem
[29] that

lim
m!1

lim
n!1

Ex0

"Z min¹tn;�mº

t0

L.x.t/; u.t//1
B
u.�/
x0

.!/dt

#

D lim
m!1

Ex0

"
lim
n!1

Z min¹tn;�mº

t0

L.x.t/; u.t//1
B
u.�/
x0

.!/dt

#

D Ex0
�

lim
m!1

Z �m

t0

L.x.t/; u.t//1
B
u.�/
x0

.!/dt

�

D Ex0
�Z 1
t0

L.x.t/; u.t//1
B
u.�/
x0

.!/dt

�
D J

�
x0; u.�/;B

u.�/
x0

�
Px0

�
Bu.�/
x0

�
:

(63)

Next, using the fact that u.�/ 2 S.x0; "/ and V.�/ is continuous, it follows that for every m > 0,
V.x..min¹tn; �mº// is bounded for all n 2 ZC. Thus, using the dominated convergence theorem
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[29] and the fact that kx.t; !/k ! 0 as t !1 for all x.¹t > t0º; !/ 2 B
u.�/
x0 , we obtain

lim
m!1

lim
n!1

Ex0
h
V.x.min¹tn; �mº//1Bu.�/x0

.!/
i
D lim
m!1

Ex0
h

lim
n!1

V.x.min¹tn; �mº//1Bu.�/x0

.!/
i

D Ex0
h

lim
m!1

V.x.�m//1Bu.�/x0

.!/
i

D Ex0
h
V
�

lim
m!1

x.�m/
�
1
B
u.�/
x0

.!/
i

D 0:
(64)

Now, taking the limit as n ! 1 and m ! 1 on both sides of (62) and using the fact that u.�/ 2
S.x0; "/, (63), (64), and J

�
x0; �.x.�//;B

�.x.�//
x0

�
D V.x0/ yields (58).

Finally, for D D Rn, global asymptotic stability in probability of closed-loop system is direct
consequence of the radially unbounded condition on V.�/, and hence, Px0

�
B
�.x.�//
x0

�
D 1 for all

x0 2 Rn. In this case, the proof of (58) follows using identical arguments as in the proof of the local
result. �

Note that (54) is the steady-state stochastic Hamilton–Jacobi–Bellman equation. To see this, recall
that the stochastic Hamilton–Jacobi–Bellman equation is given by ([24])

@

@t
V .t; x.t//C min

u2U
H

�
t; x.t/; u;

@

@x
V.t; x.t//;

@2

@x2
V.t; x.t//

	
D 0; t > t0; (65)

which characterizes the optimal control for stochastic time-varying systems on a finite or infinite
interval. For infinite horizon time-invariant systems, V.t; x/ D V.x/, and hence (65), reduces to
(54) and (55). Conditions (54) and (55) guarantee optimality with respect to the set of admissible
stabilizing controllers S.x0; "/. However, it is important to note that an explicit characterization of
the set S.x0; "/ is not required. In addition, the optimal stabilizing feedback control law u D �.x/ is
independent of the initial condition x0. Finally, in order to ensure asymptotic stability in probability
of the closed-loop system (47), Theorem 4.1 requires that V.�/ satisfy (50), (51), and (53), which
implies that V.�/ is a Lyapunov function for the closed-loop system (47). However, for optimality,
V.�/ need not satisfy (51) and (53). Specifically, if V.�/ is a two-times continuously differentiable
function such that (50) is satisfied and �.�/ 2 S.x0; "/, then (54) and (55) imply (57) and (58).

The optimal feedback control �.�/ that guarantees global asymptotic stability in probability gives
Px0

�
B
�.�/
x0

�
D 1, and hence, 1

B
�.�/
x0

.!/
a.s.
D 1. Moreover, all the admissible controls u.�/ that guar-

antee global attraction in probability satisfy Px0
�
B
u.�/
x0

�
D 1 for all x0 2 Rn, and hence, " D 0

and 1
B
u.�/
x0

.!/
a.s.
D 1. In this case,

J
�
x0; u.�/;B

u.�/
x0

�
D

1

Px0
�
B
u.�/
x0

�Ex0 �Z 1
t0

L.x.t/; u.t//1
B
u.�/
x0

.!/dt

�

D Ex0
�Z 1
t0

L.x.t/; u.t//dt

� (66)

and

J
�
x0; �.�/;B

�.�/
x0

�
D

1

Px0
�
B
�.�/
x0

�Ex0 �Z 1
t0

L.x.t/; �.x.t///1
B
�.�/
x0

.!/dt

�

D Ex0
�Z 1
t0

L.x.t/; �.x.t///dt

�
:

(67)

Thus, in the remainder of the paper, we omit the dependence on B
�.�/
x0 and B

u.�/
x0 in the cost func-

tional, and we write S.x0/ for S.x0; "/ for all the results concerning globally stabilizing controllers
in probability.
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Next, we specialize Theorem 4.1 to linear stochastic dynamical systems and provide connec-
tions to the stochastic optimal linear–quadratic regulator problem with multiplicative noise. For the
following result, let A 2 Rn�n, B 2 Rn�m, � 2 Rd , R1 2 Pn, and R2 2 Pm be given.

Corollary 4.1
Consider the linear controlled stochastic dynamical system with multiplicative noise given by

dx.t/ D ŒAx.t/C Bu.t/� dt C x.t/�Tdw.t/; x.0/
a.s.
D x0; t > 0; (68)

and with quadratic performance measure

J.x0; u.�// , Ex0
�Z 1
0

ŒxT.t/R1x.t/C u
T.t/R2u.t/�dt

�
; (69)

where u.�/ is an admissible control. Furthermore, assume that there exists a positive-definite matrix
P 2 Rn�n such that

0 D

�
AC

1

2
k�k2In

	T

P C P

�
AC

1

2
k�k2In

	
CR1 � PBR

�1
2 BTP: (70)

Then, with the feedback control u D �.x/ , �R�12 BTPx, the zero solution x.t/
a.s.
� 0 to (68) is

globally asymptotically stable in probability and

J.x0; �.x.�/// D x
T
0Px0; x0 2 Rn: (71)

Furthermore,

J.x0; �.x.�/// D min
u.�/2S.x0/

J.x0; u.�//; (72)

where S.x0/ is the set of regulation controllers for (68) and x0 2 Rn.

Proof
The result is a direct consequence of Theorem 4.1 with F.x; u/ D Ax C Bu, D.x; u/ D x�T,
L.x; u/ D xTR1x C u

TR2u, V.x/ D xTPx, D D Rn, and U D Rm. Specifically, conditions
(50) and (51) are trivially satisfied. Next, it follows from (70) that H.x; �.x// D 0, and hence,
V 0.x/F.x; �.x// C 1

2
tr DT.x; �.x//V 00.x/D.x; �.x// < 0 for all x 2 Rn and x ¤ 0. Thus,

H.x; u/ D H.x; u/ � H.x; �.x// D Œu � �.x/�TR2Œu � �.x/� > 0 so that all the conditions of
Theorem 4.1 are satisfied. Finally, because V.�/ is radially unbounded, the zero solution x.t/

a.s.
� 0

to (68), with u.t/ D �.x.t// D �R�12 BTPx.t/, is globally asymptotically stable in probability. �
The optimal feedback control law �.x/ in Corollary 4.1 is derived using the properties ofH.x; u/

as defined in Theorem 4.1. Specifically, becauseH.x; u/ D xTR1xCu
TR2uCx

T.ATP CPA/xC

2xTPBuCk�k2xTPx, it follows that @
2H
@u2
D R2 > 0. Now, @H

@u
D 2R2uC 2B

TPx D 0 gives the
unique global minimum of H.x; u/. Hence, because �.x/ minimizes H.x; u/, it follows that �.x/
satisfies @H

@u
D 0 or, equivalently, �.x/ D �R�12 BTPx.

5. INVERSE OPTIMAL STOCHASTIC CONTROL FOR NONLINEAR AFFINE SYSTEMS

In this section, we specialize Theorem 4.1 to affine in the control systems. Specifically, we con-
struct nonlinear feedback controllers using a stochastic optimal control framework that minimizes
a nonlinear–nonquadratic performance criterion. This is accomplished by choosing the controller
such that the mapping of the infinitesimal generator of the Lyapunov function is negative definite
along the closed-loop system trajectories while providing sufficient conditions for the existence
of asymptotically stabilizing (in probability) solutions to the stochastic Hamilton–Jacobi–Bellman
equation. Thus, these results provide a family of globally stabilizing controllers parameterized by
the cost functional that is minimized.
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The controllers obtained in this section are predicated on an inverse optimal stochastic con-
trol problem [15–21]. In particular, to avoid the complexity in solving the stochastic steady-state
Hamilton–Jacobi–Bellman equation, we do not attempt to minimize a given cost functional, but
rather, we parameterize a family of stochastically stabilizing controllers that minimize some derived
cost functional that provides flexibility in specifying the control law. The performance integrand is
shown to explicitly depend on the nonlinear system dynamics, the Lyapunov function for the closed-
loop system, and the stabilizing feedback control law, wherein the coupling is introduced via the
stochastic Hamilton–Jacobi–Bellman equation. Hence, by varying parameters in the Lyapunov func-
tion and the performance integrand, the proposed framework can be used to characterize a class of
globally stabilizing in probability controllers that can meet closed-loop system response constraints.

Consider the nonlinear stochastic affine in the control dynamical system given by

dx.t/ D Œf .x.t//CG.x.t//u.t/� dt CD.x.t//dw.t/; x.0/
a.s.
D x0; t > 0; (73)

where f W Rn ! Rn satisfies f .0/ D 0, G W Rn ! Rn�m, D W Rn ! Rn�d satisfies D.0/ D 0,
D D Rn, and U D Rm. Furthermore, we consider performance integrands L.x; u/ of the form

L.x; u/ D L1.x/C L2.x/uC u
TR2.x/u; (74)

where L1 W Rn ! R; L2 W Rn ! R1�m, and R2 W Rn ! Pm so that (49) becomes

J.x0; u.�// D Ex0
�Z 1
0

ŒL1.x.t//C L2.x.t//u.t/C u
T.t/R2.x.t//u.t/�dt

�
: (75)

Theorem 5.1
Consider the nonlinear controlled affine stochastic dynamical system (73) with performance mea-
sure (75). Assume that there exists a two-times continuously differentiable function V W Rn ! R
and a function L2 W Rn ! R1�m such that

V.0/ D 0; (76)

L2.0/ D 0; (77)

V.x/ > 0; x 2 Rn; x ¤ 0; (78)

V 0.x/

�
f .x/ �

1

2
G.x/R�12 .x/LT

2.x/ �
1

2
G.x/R�12 .x/GT.x/V 0T.x/

�
C
1

2
tr DT.x/V 00.x/D.x/ < 0; x 2 Rn; x ¤ 0;

(79)

and V.x/!1 as kxk ! 1: Then, the zero solution x.t/
a.s.
� 0 of the closed-loop system

dx.t/ D Œf .x.t//CG.x.t//�.x.t//�dt CD.x.t//dw.t/; x.0/
a.s.
D x0; t > 0; (80)

is globally asymptotically stable in probability with the feedback control law

�.x/ D �
1

2
R�12 .x/ŒV 0.x/G.x/C L2.x/�

T; (81)

and the performance measure (75), with

L1.x/ D �
T.x/R2.x/�.x/ � V

0.x/f .x/ �
1

2
tr DT.x/V 00.x/D.x/; (82)

is minimized in the sense that

J.x0; �.x.�/// D min
u.�/2S.x0/

J.x0; u.�//; x0 2 Rn: (83)

Finally,

J.x0; �.x.�/// D V.x0/; x0 2 Rn: (84)
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Proof
The result is a direct consequence of Theorem 4.1 with D D Rn, U D Rm, F.x; u/ D f .x/ C
G.x/u, D.x; u/ D D.x/, and L.x; u/ D L1.x/ C L2.x/u C u

TR2.x/u. Specifically, with (74),
the Hamiltonian has the form

H.x; u/ D L1.x/C L2.x/uC u
TR2.x/uC V

0.x/.f .x/CG.x/u/C
1

2
tr DT.x/V 00.x/D.x/:

Now, the feedback control law (81) is obtained by setting @H
@u
D 0. With (81), it follows that (76),

(78), and (79) imply (50), (51), and (53), respectively. Next, because V.�/ is two-times continuously
differentiable and x D 0 is a local minimum of V.�/, it follows that V 0.0/ D 0, and hence, because
by assumption L2.0/ D 0, it follows that �.0/ D 0, which implies (52). Next, with L1.x/ given
by (82) and �.x/ given by (81), (54) holds. Finally, because H.x; u/ D H.x; u/ �H.x; �.x// D
Œu��.x/�TR2.x/Œu��.x/� and R2.x/ is positive definite for all x 2 Rn, condition (55) holds. The
result now follows as a direct consequence of Theorem 4.1. �

Note that (79) is equivalent to

LV.x/ , V 0.x/Œf .x/CG.x/�.x/�C 1

2
tr DT.x/V 00.x/D.x/ < 0; x 2 Rn; x ¤ 0; (85)

with �.x/ given by (81). Furthermore, conditions (76), (78), and (85) ensure that V.�/ is a Lyapunov
function for the closed-loop system (80). As discussed in [14], it is important to recognize that the
function L2.x/, which appears in the integrand of the performance measure (74), is an arbitrary
function of x 2 Rn subject to conditions (77) and (79). Thus, L2.x/ provides flexibility in choosing
the control law.

With L1.x/ given by (82) and �.x/ given by (81), L.x; u/ can be expressed as

L.x; u/ D uTR2.x/u � �
T.x/R2.x/�.x/C L2.x/.u � �.x//

� V 0.x/Œf .x/CG.x/�.x/� �
1

2
tr DT.x/V 00.x/D.x/

D

�
uC

1

2
R�12 .x/LT

2.x/

�T

R2.x/

�
uC

1

2
R�12 .x/LT

2.x/

�
� V 0.x/Œf .x/

CG.x/�.x/� �
1

2
tr DT.x/V 00.x/D.x/ �

1

4
V 0.x/G.x/R�12 .x/GT.x/V 0T.x/:

(86)

Because R2.x/ > 0, x 2 Rn, the first term on the right-hand side of (86) is nonnegative,
while (85) implies that the second, third, and fourth terms collectively are nonnegative. Thus, it
follows that

L.x; u/ > �1
4
V 0.x/G.x/R�12 .x/GT.x/V 0T.x/; (87)

which shows that L.x; u/ may be negative. As a result, there may exist a control input u for which
the performance measure J.x0; u/ is negative. However, if the control u is a regulation controller,
that is, u 2 S.x0/, then it follows from (83) and (84) that

J.x0; u.�// > V.x0/ > 0; x0 2 Rn; u.�/ 2 S.x0/: (88)

Furthermore, in this case, substituting u D �.x/ into (86) yields

L.x; �.x// D �V 0.x/Œf .x/CG.x/�.x/� �
1

2
tr DT.x/V 00.x/D.x/; (89)

which, by (85), is positive.
Next, we specialize Theorem 5.1 to linear stochastic systems controlled by nonlinear controllers

that minimize a polynomial cost functional. For the following result, let � 2 Rd , R1 2 Pn, R2 2
Pm, and ORq 2 Nn, q D 2; : : : ; r , be given, where r is a positive integer, and define S , BR�12 BT.
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Corollary 5.1
Consider the linear controlled stochastic dynamical system (68). Assume that there exist P 2 Pn

and Mq 2 Nn, q D 2; : : : ; r , such that

0 D

�
AC

1

2
k�k2In

	T

P C P

�
AC

1

2
k�k2In

	
CR1 � PSP; (90)

0 D

�
AC

1

2
.2q � 1/k�k2In � SP

	T

Mq CMq

�
AC

1

2
.2q � 1/k�k2In � SP

	
C ORq;

q D 2; : : : ; r:

(91)

Then, the zero solution x.t/
a.s.
� 0 of the closed-loop system

dx.t/ D .Ax.t/C B�.x.t///dt C x.t/�Tdw.t/; x.0/
a.s.
D x0; t > 0; (92)

is globally asymptotically stable in probability with the feedback control law

�.x/ D �R�12 BT

0
@P C rX

qD2

.xTMqx/
q�1Mq

1
A x; (93)

and the performance measure (75) with R2.x/ D R2, L2.x/ D 0, and

L1.x/ D x
T

 
R1 C

rX
qD2

.xTMqx/
q�1 ORq C

� rX
qD2

.xTMqx/
q�1Mq

�T

S

�

� rX
qD2

.xTMqx/
q�1Mq

�!
x;

(94)

is minimized in the sense of (83). Finally,

J.x0; �.x.�/// D x
T
0Px0 C

rX
qD2

1

q
.xT
0Mqx0/

q; x0 2 Rn: (95)

Proof
The result is a direct consequence of Theorem 5.1 with f .x/ D Ax, G.x/ D B , D.x/ D x�T,
L2.x/ D 0, R2.x/ D R2, and

V.x/ D xTPx C

rX
qD2

1

q
.xTMqx/

q :

Specifically, (76)–(78) are trivially satisfied. Next, it follows from (90), (91), and (93) that

V 0.x/

�
f .x/ �

1

2
G.x/R�12 .x/GT.x/V 0T.x/

�
C
1

2
tr DT.x/V 00.x/D.x/

D �xTR1x �

rX
qD2

.xTMqx/
q�1xT ORqx � �

T.x/R2�.x/

� xT

2
4 rX
qD2

.xTMqx/
q�1Mq

3
5T

S

2
4 rX
qD2

.xTMqx/
q�1Mq

3
5 x;

which implies (79), so that all the conditions of Theorem 5.1 are satisfied. �
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Corollary 5.1 requires the solutions of r � 1 modified Riccati equations in (91) to obtain the
optimal controller (93). It is important to note that the derived performance measure weighs the state
variables by arbitrary even powers. Furthermore, J.x0; u.�// has the form

J.x0; u.�// D Ex0

"Z 1
0

´
xT.t/

 
R1 C

rX
qD2

.xT.t/Mqx.t//
q�1 ORq

!
x.t/C uT.t/R2u.t/

C �T
NL.x.t//R2�NL.x.t//

μ
dt

#
;

where �NL.x/ is the nonlinear part of the optimal feedback control

�.x/ D �L.x/C �NL.x/;

where �L.x/ , �R�12 BTPx and �NL.x/ , �R�12 BTPr
qD2.x

TMqx/
q�1Mqx.

Remark 5.1
Corollary 5.1 generalizes the stochastic nonlinear–nonquadratic optimal control problem considered
in [5] to polynomial performance criteria. Specifically, unlike the results of [5], Corollary 5.1 is
not limited to sixth-order cost functionals and cubic nonlinear controllers but rather addresses a
polynomial performance criterion of an arbitrary even order.

Remark 5.2
General nonquadratic cost functions can result in nonlinear controllers that yield a faster than expo-
nential closed-loop system response. Alternatively, when the nonlinear–nonquadratic performance
measure involves terms of order xp , where p < 2, then we have a subquadratic cost criterion,
which pays close attention to the system state near the origin. In this case, the optimal controller is
sublinear and, hence, exhibits finite settling time behavior [31].

Next, we specialize Theorem 5.1 to linear stochastic systems controlled by nonlinear controllers
that minimize a multilinear cost functional. For the following result, recall the definition of S and
let R1 2 Pn, R2 2 Pm, and OR2q 2 N .2q;n/, q D 2; : : : ; r , be given, where r is a given integer and
N .k;n/ , ¹‰ 2 R1�n

k
W ‰xŒk� > 0; x 2 Rnº.

Corollary 5.2
Consider the linear controlled stochastic dynamical system (68). Assume that there exist P 2 Pn

and OPq 2 N .2q;n/, q D 2; : : : ; r , such that

0 D

�
AC

1

2
k�k2In

	T

P C P

�
AC

1

2
k�k2In

	
CR1 � PSP; (96)

0 D OPq

�
2q
˚

�
AC

1

2
.2q � 1/k�k2In � SP

	�
C OR2q; q D 2; : : : ; r: (97)

Then, the zero solution x.t/
a.s.
� 0 of the closed-loop system (92) is globally asymptotically stable in

probability with the feedback control law

�.x/ D �R�12 BT

�
Px C

1

2
g0

T
.x/

	
; (98)

where g.x/ ,
Pr
qD2
OPqx

Œ2q�, and the performance measure (75) with R2.x/ D R2, L2.x/ D 0,
and

L1.x/ D x
TR1x C

rX
qD2

OR2qx
Œ2q� C

1

4
g0.x/Sg0

T
.x/ (99)
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is minimized in the sense of (83). Finally,

J.x0; �.x.�/// D x
T
0Px0 C

rX
qD2

OPqx
Œ2q�
0 ; x0 2 Rn: (100)

Proof
The result is a direct consequence of Theorem 5.1 with f .x/ D Ax, G.x/ D B , D.x/ D x�T,

L2.x/ D 0, R2.x/ D R2, and V.x/ D xTPxC
Pr
qD2
OPqx

Œ2q�
0 . Specifically, (76)–(78) are trivially

satisfied. Next, it follows from (96)–(98) that

V 0.x/

"
f .x/ �

1

2
G.x/R�12 .x/GT.x/V 0T.x/

#
C
1

2
tr DT.x/V 00.x/D.x/

D �xTR1x �

rX
qD2

OR2qx
Œ2q� � �T.x/R2�.x/ �

1

4
g0.x/Sg0

T
.x/;

which implies (79) so that all the conditions of Theorem 5.1 are satisfied. �
Note that because

g0.x/.A � SP /x C
1

2
tr.x�T/Tg00.x/.x�T/ D

rX
qD2

OPq

"
2q
˚

 
AC

1

2
.2q � 1/k�k2In � SP

!#
xŒ2q�;

it follows that (97) can be equivalently written as

0 D
1

2
tr.x�T/Tg00.x/.x�T/C g0.x/.A � SP /x C

rX
qD2

OR2qx
Œ2q�; x 2 Rn;

and hence, it follows from Lemma 3.1 that there exists a unique OPq 2 N .2q;n/ such that (97) is
satisfied.

Remark 5.3
Corollary 5.2 generalizes the deterministic nonlinear feedback controller results obtained by Bass
and Webber in [4] to stochastic nonlinear feedback control.

6. ILLUSTRATIVE NUMERICAL EXAMPLES

In this section, we present two numerical examples to demonstrate the efficacy of the proposed
approach.

Example 6.1
Consider the two-state controlled nonlinear stochastic dynamical system given by

dx1.t/ D �x1.t/dt C u1.t/dt C x
2
2.t/dw.t/; x1.0/

a.s.
D x10; t > 0; (101)

dx2.t/ D �x
3
2.t/dt C u2.t/dt C x1.t/dw.t/; x2.0/

a.s.
D x20; (102)

and note that (101) and (102) can be cast in the form of (73) with f .x/ D Œ�x1; �x32 �
T,G.x/ D I2,

and D.x/ D Œx22 ; x1�
T, where x , Œx1 x2�

T. To construct an inverse optimal globally stabilizing
control law for (101) and (102), let V.x/ D 1

2
x21C

1
2
x22 and letL.x; u/ D L1.x/CL2.x/uCuTR2u,

where R2 > 0. Now, L2.x/ D xT satisfies (77) so that the inverse optimal control law (81) is given
by �.x/ D �R�12 x. In this case, the performance measure (75), with L1.x/ D xTR�12 x C 1

2
x21 C

1
2
x42 , is minimized in the sense of (83). Furthermore, because V.x/ is radially unbounded and

LV.x/ D �xTR�12 x �
1

2
x21 �

1

2
x42 < 0; x 2 R2; x ¤ 0; (103)
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the feedback control law �.x/ D �R�12 x is globally stabilizing in probability.
Let x.0/ D Œ1; �1�T a.s. and R2 D 4I2. Figure 1 shows the sample average along with the

standard deviation of the controlled system state versus time, whereas Figure 2 shows the sample
average along with the standard deviation of the corresponding control signal versus time for 20
sample paths.

Example 6.2
Consider the pitch axis longitudinal dynamics model of the F-16 fighter aircraft system for nominal
flight conditions at 3000 ft and Mach number of 0.6 with stochastic disturbances given by ([14])

dx.t/ D ŒAx.t/C Bu.t/� dt C x.t/�Tdw.t/; x.0/
a.s.
D x0; t > 0; (104)

Figure 1. Sample average along with the sample standard deviation of the closed-loop system trajectory
versus time: x1.t/ in blue and x2.t/ in red. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 2. Sample average along with the sample standard deviation of the control signal versus time: u1.t/
in blue and u2.t/ in red. [Colour figure can be viewed at wileyonlinelibrary.com]
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where x , Œx1 x2 x3�
T, u , Œu1 u2�

T, x1 is the pitch angle, x2 is the pitch rate, x3 is the angle of
attack, u1 is the elevator deflection, u2 is the flaperon deflection, and

A D

2
4 0 1:00 0

0 �0:87 43:22
0 0:99 �1:34

3
5 ; B D

2
4 0 0

�17:25 �1:58
�0:17 �0:25

3
5 ; � D 0:5:

In order to design an inverse optimal control law for the controlled stochastic dynamical system
(104), consider the Lyapunov function candidate given by

V.x/ D xTPx C

3X
qD2

1

q
.xTMqx/

q; (105)

where P 2 Pn and Mq 2 Nn, q D 2; 3. Now, letting L.x; u/ D L1.x/C u
TR2u, where R2 > 0,

it follows from Corollary 5.1 that

P D

2
4 0:3773 0:0039 �0:0307
0:0039 0:0032 0:0010

�0:0307 0:0010 0:0906

3
5 ; M2 D

2
4 0:0740 �0:0778 �0:0266
�0:0778 0:0836 0:0236

�0:0266 0:0236 0:0354

3
5 ;

M3 D

2
4 0:0005 �0:0003 �0:0013
�0:0003 0:0008 �0:0011
�0:0013 �0:0011 0:0140

3
5 ;

satisfy (90) and (91) for R1 D 0:3I3, R2 D 0:01I2, OR2 D 0:1I3, and

OR3 D

2
4 0 0 0

0 0:05 0

0 0 0:05

3
5 :

In this case, the feedback control law

�.x/ D �R�12 BT

0
@P C 3X

qD2

.xTMqx/
q�1Mq

1
A x

Figure 3. Sample average along with the sample standard deviation of the closed-loop system trajec-
tory versus time: x1.t/ in blue, x2.t/ in red, and x3.t/ in green. [Colour figure can be viewed at

wileyonlinelibrary.com]
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globally stabilizes in probability the controlled dynamical system (104). Furthermore, the perfor-
mance measure (75), with

L1.x/ D x
T

 
R1 C

3X
qD2

.xTMqx/
q�1 ORq C

� 3X
qD2

.xTMqx/
q�1Mq

�T

S

�

� 3X
qD2

.xTMqx/
q�1Mq

�!
x;

is minimized in the sense of (83).
Figure 3 shows the sample average along with the standard deviation of the controlled system

state versus time, whereas Figure 4 shows the sample average along with the standard deviation of

Figure 4. Sample average along with the sample standard deviation of the control signal versus time: u1.t/
in blue and u2.t/ in red. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 5. Sample average along with the sample standard deviation of the closed-loop system trajec-
tory versus time: x1.t/ in blue, x2.t/ in red, and x3.t/ in green. [Colour figure can be viewed at

wileyonlinelibrary.com]
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Figure 6. Sample average along with the sample standard deviation of the control signal versus time: u1.t/
in blue and u2.t/ in red. [Colour figure can be viewed at wileyonlinelibrary.com]

the corresponding control signal versus time for x.0/
a.s.
D Œ0:5; �0:1; 0:1�T for 20 sample paths. This

controller is compared with the Speyer controller [5] involving a sixth-order cost functional and a
cubic-order controller (q D 2 in (105)) in Figures 5 and 6. 4

7. CONCLUSION

In this paper, an optimal control problem for stochastic stabilization is stated, and sufficient condi-
tions are derived to characterize a stochastic optimal nonlinear feedback controller that guarantees
asymptotic stability in probability of the closed-loop system. Specifically, we utilized a steady-state
stochastic Hamilton–Jacobi–Bellman framework to characterize optimal nonlinear feedback con-
trollers with a notion of optimality that is directly related to a given Lyapunov function guaranteeing
stability in probability of the closed-loop system. This result was then used to develop inverse opti-
mal feedback controllers for affine nonlinear stochastic systems and linear stochastic systems with
polynomial and multilinear performance criteria.

In spite of the appealing nature of the classical stochastic Hamilton–Jacobi–Bellman theory, its
current state of development entails limitations in addressing the design of static and dynamic
output-feedback compensators. In contrast, the simplified and tutorial exposition of the stochastic
optimal control framework presented in this paper can potentially be used to develop a fixed-
structure stochastic Hamilton–Jacobi–Bellman theory in which one can prespecify the structure of
the feedback law with respect to, for example, the order of nonlinearities appearing in the dynamic
compensator. The actual gain maps can then be determined by solving algebraic relations in much
the same way full-state feedback controllers can be obtained. In this case, the structure of the
nonlinear–nonquadratic Lyapunov function, nonlinear–nonquadratic cost functional, and nonlin-
ear feedback controller can be fixed, while the performance can be optimized with respect to the
controller gains.

To demonstrate how fixed-structure stochastic Hamilton–Jacobi–Bellman synthesis can be per-
formed assume that A (which can denote a closed-loop system) is Hurwitz, let P be given by (28),
and consider the case where D.x/ D x�T and L.x/; f .x/, and V.x/ are given by (31). To satisfy
(18), we require that (33) holds. Equation (33) is the basic constraint that must be satisfied by the
closed-loop system in order for J.x0/ to be given by (19).

Now, for the simplicity of exposition, consider the linear controlled dynamical system with
multiplicative noise given by

dx.t/ D ŒAx.t/C Bu.t/� dt C x.t/�Tdw.t/; x.0/
a.s.
D x0; t > 0; (106)
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y.t/ D Cx.t/; (107)

and constrain the output feedback control law to be given by u D �.y/, where �.�/ is a finitely
parameterized control law (e.g., linear plus cubic plus quintic). Then the closed-loop system takes
the form

dx.t/ D .Ax.t/C B�.Cx.t///dt C x.t/�Tdw.t/; x.0/
a.s.
D x0; t > 0; (108)

which has the form of (1) with f .x/ given by (31). Minimizing J.x0/ given by (19) subject to
(33) now reduces to a system of algebraic relations in the coefficients of the different powers of
x. Hence, the proposed framework allows for the synthesis of fixed-structure static and dynamic
output-feedback controllers. This line of research is currently under development.
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