
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 3, MARCH 2023 1685

Finite-Time Stabilization and Optimal Feedback Control for Nonlinear
Discrete-Time Systems

Wassim M. Haddad , Fellow, IEEE, and Junsoo Lee

Abstract—Finite-time stability involves dynamical systems
whose trajectories converge to an equilibrium state in finite time.
Sufficient conditions for finite-time stability have recently been
developed in the literature for discrete-time dynamical systems. In
this article, we build on these results to develop a framework for
addressing the problem of optimal nonlinear analysis and feedback
control for finite-time stability and finite-time stabilization for non-
linear discrete-time controlled dynamical systems. Finite-time sta-
bility of the closed-loop nonlinear system is guaranteed by means
of a Lyapunov function that satisfies a difference inequality in-
volving fractional powers and a minimum operator. This Lyapunov
function can clearly be seen to be the solution to a difference
equation that corresponds to a steady-state form of the Bellman
equation, and hence, guaranteeing both finite-time stability and
optimality. Finally, a numerical example is presented to demon-
strate the efficacy of the proposed finite-time discrete stabilization
framework.

Index Terms—Bellman theory, discrete-time systems, finite-time
stability, finite-time stabilization, optimal control.

I. INTRODUCTION

In [1], the current status of continuous-time, nonlinear–nonquadratic
optimal control problems was presented in a simplified and tutorial man-
ner. This framework was extended in [2] and [3] to the discrete-time set-
ting. The basic underlying ideas of the results in [2] and [3] are based on
the fact that the steady-state solution of the Bellman equation is a Lya-
punov function for the nonlinear system, and thus, guaranteeing both
asymptotic stability and optimality [4]. Specifically, a feedback control
problem over an infinite horizon involving a nonlinear–nonquadratic
performance functional is considered. The performance functional is
then evaluated in closed form as long as the nonlinear–nonquadratic
cost functional considered is related in a specific way to an underlying
Lyapunov function that guarantees asymptotic stability of the nonlinear
closed-loop system. This Lyapunov function is shown to be the solution
of the steady-state Bellman equation. The overall framework provides
the foundation for extending linear-quadratic control for discrete-time
systems to nonlinear–nonquadratic problems.

Using the optimal control framework developed in [1] and [4],
the authors in [5] and [6] present a constructive approach for
designing optimal and inverse optimal continuous-time, finite-time
feedback controllers. In this article, we build on these results and extend
the framework developed in [2]–[4], and [7] to address the problem of
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optimal finite-time discrete stabilization, that is, the problem of finding
state-feedback control laws that minimize a given performance measure
and guarantee finite-time stability of the closed-loop system. Specifi-
cally, using the finite-time stability analysis results for discrete-time au-
tonomous closed systems presented in [7], we develop optimal control
and inverse optimal control problems under nonlinear–nonquadratic
costs. In particular, an optimal finite-time control problem is stated
and sufficient Bellman conditions are used to characterize an optimal
feedback controller. The steady-state solution of the Bellman equation
is clearly shown to be a Lyapunov function for the closed-loop, discrete-
time system that additionally satisfies a difference inequality involving a
fractional power and a minimum operator, and hence, guaranteeing both
finite-time stability and optimality. Finally, we explore connections of
our approach with inverse optimal control [8]–[12], wherein we param-
eterize a family of finite-time stabilizing (possibly) sublinear controllers
that minimize a derived cost functional involving a combination of
quadratic and subquadratic terms. Subquadratic performance criteria
have been studied in [13]–[15] for continuous-time systems and have
been shown to permit a unified treatment of a broad range of design
goals.

II. MATHEMATICAL PRELIMINARIES

In this section, we establish notation, definitions, and review some
basic results on finite-time stability. Let R denote the set of real
numbers, R+ denote the set of positive real numbers, R+ denote the
set of nonnegative numbers, Rn denote the set of n× 1 real column
vectors, Rn×m denote the set of n×m real matrices, Z denote the set
of integers, Z+ denote the set of positive integers, Z+ denote the set
of nonnegative integers, and (·)T denote transpose. We write Bε(x) for
the open ball centered at x with radius ε, ‖ · ‖ for the Euclidean vector
norm in Rn, ΔV (x) � V (f(x))− V (x) for the difference operator
of V : Rn → R at x for a given f(x), and �α� for the ceiling function
denoting the smallest integer greater than or equal to α.

Consider the discrete-time nonlinear dynamical system

x(k + 1) = f(x(k)), x(0) = x0, k ∈ Z+ (1)

where x(k) ∈ D ⊆ Rn, k ∈ Z+, is the system state vector, D is an
open set, 0 ∈ D, f : D → D, and f(0) = 0. We assume that f(·) is
continuous on D. Furthermore, we denote the solution to (1) with
initial condition x(0) = x0 by s(·, x0) so that the map of the dynamical
system given by s : Z+ ×D → D is continuous on D and satisfies
the consistency property s(0, x0) = x0 and the semigroup property
s(κ, s(k, x0)) = s(k + κ, x0) for all x0 ∈ D and k, κ ∈ Z+. We use
the notation s(k, x0), k ∈ Z+, and x(k), k ∈ Z+, interchangeably as
the solution of the nonlinear discrete-time dynamical system (1) with
initial condition x(0) = x0. By a solution to (1) with initial condition
x(0) = x0, we mean a function x : Z+ → D that satisfies (1). Given
k ∈ Z+ and x ∈ D, we denote the map s(k, ·) : D → D by sk and the
map s(·, x) : Z+ → D by sx.
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If f(·) is continuous, then it follows that f(s(k − 1, ·)) is also
continuous since it is constructed as a composition of continuous
functions. Hence, s(k, ·) is continuous on D. If f(·) is such that
f : Rn → Rn, then we can construct the solution sequence or discrete
trajectory x(k) = s(k, x0) to (1) iteratively by setting x(0) = x0 and
using f(·) to define x(k) recursively by x(k + 1) = f(x(k)). This
iterative process can be continued indefinitely, and hence, a solution to
(1) exists for all k ≥ 0.

Alternatively, if f(·) is such that f : D → Rn, then the solution may
cease to exist at some point if f(·) maps x(k) into some point x(k + 1)
outside the domain of f(·). In this case, the solution sequence x(k) =
s(k, x0) will be defined on the maximal interval of existence x(k),
k ∈ I+

x0
⊂ Z+. Furthermore, note that the solution sequence x(k), k ∈

I+
x0

, is uniquely defined for every initial condition x0 ∈ D irrespective
of whether or not f(·) is a continuous function. That is, any other
solution sequence y(k) starting from x0 at k = 0 will take exactly
the same values as x(k) and can be continued to the same interval
as x(k). It is important to note that if k ∈ Z+, then uniqueness of
solutions backward in time need not necessarily hold. This is due to
the fact that (k, x0) = f−1(s(k + 1, x0)), k ∈ Z+, and there is no
guarantee that f(·) is invertible for all k ∈ Z+. However, if f : D → D
is a homeomorphism for all k ∈ Z+, then the solution sequence is
unique for all k ∈ Z.

The following definition introduces the notion of finite-time stability
for discrete systems.

Definition II.1: Consider the nonlinear dynamical system (1). The
zero solution x(k) ≡ 0 to (1) is finite-time stable if there exist an open
neighborhoodN ⊆ D of the origin and a functionK : N \ {0} → Z+,
called the settling time function, such that the following statements hold.
1) Finite-time convergence. For every x ∈ N \ {0}, sx(k) ∈ N\{0}

is defined onk ∈ {0, . . . ,K(x)− 1}, and s(k, x) = 0,k ≥ K(x).
2) Lyapunov stability. For every ε > 0, there exists δ > 0 such that

Bδ(0) ⊂ N and for every x ∈ Bδ(0) \ {0}, s(k, x) ∈ Bε(0) for
all k ∈ {0, . . . ,K(x)− 1}.

The zero solution x(k) ≡ 0 to (1) is globally finite-time stable if it is
finite-time stable with N = D = Rn.

Note that if the zero solution x(k) ≡ 0 to (1) is finite-time stable,
then it is asymptotically stable [4, p. 765]; however, the converse is not
true.

For continuous-time dynamical systems with a finite-time stable
equilibrium, the vector field f(·) is necessarily non-Lipschitzian at the
system equilibrium because of backward nonuniqueness at the system
equilibrium. This leads to standard existence and uniqueness results not
applying to solutions reaching the system equilibrium. Consequently,
finite-time stability is defined over the time interval that the solution
takes to reach the system equilibrium with solutions after the settling
time function being given as a separate result (see [16, Prop. 2.3]). In
contrast, for finite-time discrete autonomous systems, forward unique-
ness is always guaranteed, and hence, such a result is not necessary. In
other words, we can extend K(·) to all of N by defining K(0) � 0 for
the equilibrium point xe = 0. It is easy to see from Definition II.1 that

K(x) = min{k ∈ Z+ : s(k, x) = 0}, x ∈ N . (2)

The next proposition shows that if the settling-time function of a
finite-time stable system is lower semicontinuous at the origin, then it
is lower semicontinuous on N .

Proposition II.1 (see[7]): Consider the nonlinear dynamical system
(1). Assume that the zero solution x(k) ≡ 0 to (1) is finite-time stable,
letN ⊆ D be as in Definition II.1, and letK : N → Z+ be the settling-
time function. Then, K(·) is lower semicontinuous on N .

Remark II.1: In the case of continuous-time systems, it is known
that the settling-time function T (·) of a finite-time stable equilibrium is

continuous in the domain of convergence if and only if it is continuous
at the equilibrium (see [16, Prop. 2.4]). In the case of discrete-time
systems, the integer-valued functionK(·) is continuous at a point only if
it is locally constant. Thus, ifK(·) is continuous at an equilibrium point
xe, then xe necessarily has to satisfy K(x) = K(xe), x ∈ Bε(xe). On
the other hand, since f(·) is continuous, the set of equilibrium points
is closed. Hence, K(·) can be continuous at any equilibrium point only
in the uninteresting case where the set of equilibria is either empty or
the whole space D.

Next, we provide sufficient conditions for finite-time stability of the
nonlinear dynamical system given by (1). For the results in this section,
defineΔV (x) � V (f(x))− V (x) for a given continuous functionV :
D → R.

Theorem II.1 (see[7]): Consider the nonlinear dynamical system
(1). Assume that there exist a continuous function V : D → R, real
numbers α ∈ (0, 1) and c > 0, and a neighborhood M ⊆ D of the
origin such that

V (0) = 0 (3)

V (x) > 0, x ∈ M \ {0} (4)

ΔV (x) ≤ −cmin

{
V (x)

c
, V (x)α

}
, x ∈ M \ {0}. (5)

Then, the zero solution x(k) ≡ 0 to (1) is finite-time stable. Moreover,
there exist an open neighborhood N of the origin and a settling-time
function K : N → Z+ such that either

K(x0) ≤
⌈
log[1−cV (x0)α−1]

c
1

1−α

V (x0)

⌉
+ 1

x0 ∈ N , V (x0) > c
1

1−α (6)

or

K(x0) = 1, x0 ∈ N \ {0}, V (x0) ≤ c
1

1−α (7)

where K(·) is lower semicontinuous on N . If, in addition, N = D =
Rn, V (·) is radially unbounded, and (5) holds on Rn, then the zero
solution x(k) ≡ 0 to (1) is globally finite-time stable.

Remark II.2: Note that Theorem II.1 also holds for the case where
(5) is replaced by

ΔV (x) ≤ −min {V (x), c} , x ∈ M \ {0} (8)

and with the settling-time function K : N → Z+ given by

K(x0) ≤
⌈
V (x0)

c

⌉
, x0 ∈ N . (9)

For details of this fact, see [7, Th. 4.2]. A similar remark holds for
Theorems III.1 and IV.1 below.

III. OPTIMAL FINITE-TIME STABILIZATION

In this section, we obtain a characterization of optimal feedback
controllers that guarantee closed-loop, finite-time stabilization. Specif-
ically, sufficient conditions for optimality are given in a form that
corresponds to a steady-state version of the Bellman equation. To
address the problem of characterizing finite-time stabilizing feedback
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controllers, consider the controlled discrete-time nonlinear dynamical
system

x(k + 1) = F (x(k), u(k)), x(0) = x0, k ∈ Z+ (10)

where x(k) ∈ D ⊆ Rn, k ∈ Z+, is the state vector, D is an open set
with 0 ∈ D, u(k) ∈ U ⊆ Rm, k ∈ Z+, is the control input with 0 ∈
U , F : D × U → Rn is continuous in x and u, and F (0, 0) = 0. The
control u(·) in (10) is restricted to the class of admissible controls
consisting of functions u(·) such that u(k) ∈ U for all k ∈ Z+, where
the control constraint set U is given.

A continuous function φ : D → U satisfying φ(0) = 0 is called a
control law. If u(k) = φ(x(k)), k ∈ Z+, where φ(·) is a control law
and x(k) satisfies (10), then we call u(·) a feedback control law. Note
that the feedback control law is an admissible control since φ(·) has
values inU . Given a control lawφ(·) and a feedback control lawu(k) =
φ(x(k)), the closed-loop system has the form

x(k + 1) = F (x(k), φ(x(k))), x(0) = x0, k ∈ Z+. (11)

We now consider the problem of finite-time stabilization.
Definition III.1: Consider the controlled dynamical system given

by (10). The feedback control law u = φ(x) is finite-time stabilizing
if the closed-loop system (11) is finite-time stable. Furthermore, the
feedback control law u = φ(x) is globally finite-time stabilizing if the
closed-loop system (11) is globally finite-time stable.

Next, we present a main theorem for characterizing sufficient condi-
tions for feedback controllers that guarantee finite-time stability for a
nonlinear discrete-time system and minimize a nonlinear–nonquadratic
performance functional. For the statement of this result, let L : D ×
U → R and define the set of regulation control input signals for the
nonlinear system (10) by

S(x0) � {u(·) : u(·)is admissible andx(·)given by (10)

satisfies lim
k→∞

x(k) = 0}.

Note that since finite-time convergence is a stronger condition than
asymptotic convergence, S(x0) includes the set of all finite-time con-
vergent controllers.

Theorem III.1: Consider the nonlinear controlled dynamical system
(10) with performance functional

J(x0, u(·)) �
∞∑

k=0

L(x(k), u(k)) (12)

where u(·) is an admissible control. Assume there exist a continuous
function V : D → R, real numbers c > 0 and α ∈ (0, 1), a neighbor-
hood M ⊆ D of the origin, and a control law φ : D → U such that

φ(0) = 0 (13)

V (0) = 0 (14)

V (x) > 0, x ∈ M \ {0} (15)

V (F (x, φ(x)))− V (x) ≤ −cmin

{
V (x)

c
, V (x)α

}

x ∈ M \ {0} (16)

L(x, φ(x)) + V (F (x, φ(x)))− V (x) = 0, x ∈ D (17)

L(x, u) + V (F (x, u))− V (x) ≥ 0, (x, u) ∈ D × U. (18)

Then, with the feedback control u = φ(x), the zero solution x(k) ≡ 0,
k ∈ Z+, to (10) is finite-time stable. Moreover, there exist an open

neighborhood D0 ⊂ M of the origin and a settling-time function
K : D0 → Z+ such that either

K(x0) ≤
⌈
log[1−cV (x0)α−1]

c
1

1−α

V (x0)

⌉
+ 1, x0 ∈ D0

V (x0) > c
1

1−α (19)

or

K(x0) = 1, x0 ∈ D0 \ {0}, V (x0) ≤ c
1

1−α (20)

and

J(x0, φ(x(·))) = V (x0), x0 ∈ D0. (21)

In addition, if x0 ∈ D0, then the feedback control u(·) = φ(x(·))
minimizes J(x0, u(·)) in the sense that

J(x0, φ(·)) = min
u(·)∈S(x0)

J(x0, u(·)). (22)

Finally, if D = Rn, U = Rm, V (·) is radially unbounded, and (16)
holds on Rn \ {0}, then the closed-loop system (11) is globally finite-
time stable.

Proof: Local and global finite-time stability for all initial conditions
x0 ∈ D0 for some neighborhood of the origin D0 ⊆ D and x0 ∈ Rn,
along with the existence of a settling-time function K : D0 → [0,∞)
such that either (19) or (20) holds are a direct consequence of (13)–(16)
by applying Theorem II.1 to the closed-loop system given by (11).

Next, let u(·) = φ(x(·)) and x(k), k ∈ Z+, satisfy (11). Then, since

0 = −ΔV (x(k)) + V (F (x(k), φ(x(k))))− V (x(k)), k ∈ Z+

(23)

it follows from (17) that

L(x(k), φ(x(k))) = −ΔV (x(k)) + L(x(k), φ(x(k)))

+ V (F (x(k), φ(x(k))))− V (x(k))

= −ΔV (x(k)), k ∈ Z+. (24)

Now, summing (24) over [0, κ] yields

κ∑
k=0

L(x(k), u(k)) = −V (x(κ+ 1)) + V (x0), k ∈ Z+. (25)

Using (14) and letting κ → ∞, it follows from (25) and the continuity
of V (·) that

∞∑
k=0

L(x(k), u(k)) = −V
(
lim
κ→∞

x(κ)
)
+ V (x0), k ∈ Z+ (26)

and hence, (21) is a direct consequence of (26) using the fact that
limκ→∞ x(κ) = x(K(x0)) = 0.

Next, let x0 ∈ D0, let u(·) ∈ S(x0), and let x(k), k ∈ Z+, be the
solution of (10). Then, it follows that

0 = −ΔV (x(k), u(k)) + V (F (x(k), u(k)))− V (x(k)), k ∈ Z+

(27)

where ΔV (x, u) � V (F (x, u))− V (x). Hence

L(x(k), u(k)) = −ΔV (x(k), u(k)) + L(x(k), u(k))

+ V (F (x(k), u(k)))− V (x(k)), k ∈ Z+. (28)
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Now, it follows from (14), (17), (18), (21), (28) and the fact that u(·) ∈
S(x0) that

J(x0, u(·)) =
∞∑

k=0

[−ΔV (x(k), u(k)) + L(x(k), u(k))

+V (F (x(k), u(k)))− V (x(k))]

= − lim
k→∞

V (x(k)) + V (x0)

+
∞∑

k=0

[L(x(k), u(k))

+V (F (x(k), u(k)))− V (x(k))]

≥ −V
(
lim
k→∞

x(k)
)
+ V (x0)

= −V
(
lim
k→K

x(k)
)
+ V (x0)

= V (x0)

= J(x0, φ(x(·))) (29)

which yields (22). �
Note that (17) is the steady-state Bellman equation for the con-

trolled nonlinear dynamical system (10) with performance criterion
(12). Furthermore, conditions (16)–(18) guarantee optimality as well
as finite-time stability with respect to the set of admissible stabilizing
controllers S(x0). However, it is important to note that an explicit
characterization of S(x0) is not required. In order to ensure finite-time
stability of the closed-loop system (11), Theorem III.1 requires that
V (·) satisfy (14)–(16), which implies that V (·) is a Lyapunov function
for the closed-loop system (11). However, for optimality, V (·) need not
satisfy (15) and (16). Specifically, if V (·) is a continuous function such
that (14) is satisfied and φ(·) ∈ S(x0), then (17) and (18) imply (21)
and (22).

Finally, setting M = D in Theorem III.1 and replacing (16) with

V (F (x, φ(x)))− V (x) < 0, x ∈ D (30)

Theorem III.1 reduces to [4, Th. 14.4] characterizing the classical
asymptotically stabilizing optimal control problem for time-invariant
systems on an infinite interval.

IV. FINITE-TIME STABILIZATION FOR AFFINE DYNAMICAL SYSTEMS

AND CONNECTIONS TO INVERSE OPTIMAL CONTROL

In this section, we specialize the results of Section III to discrete-time
nonlinear affine dynamical systems of the form

x(k + 1) = f(x(k)) +G(x(k))u(k), x(0) = x0, k ∈ Z+ (31)

where, for every k ∈ Z+, x(k) ∈ Rn, u(k) ∈ Rm, and f : Rn → Rn

and G : Rn → Rn×m are such that f(·) and G(·) are continuous in
x and f(0) = 0. Furthermore, we consider performance summands
L(x, u) of the form

L(x, u) = L1(x) + L2(x)u+ uTR2(x)u (32)

where L1 : Rn → R, L2 : Rn → R1×m, and R2(x) > 0, x ∈ Rn, so
that (12) becomes

J(x0, u(·)) =
∞∑

k=0

[L1(x(k)) + L2(x(k))u(k)

+uT(k)R2(x(k))u(k)
]
. (33)

Theorem IV.1: Consider the controlled discrete-time nonlinear
affine system (31) with performance measure (33). Assume that there
exist functions V : Rn → R, L2 : Rn → R1×m, P12 : Rn → R1×m,
and P2 : Rn → Rm×m, and real numbers c > 0 and α ∈ (0, 1) such
that V (·) is continuous, P2(·) is nonnegative definite

L2(0) = 0 (34)

P12(0) = 0 (35)

V (0) = 0 (36)

V (x) > 0, x ∈ Rn, x = 0 (37)

V

(
f(x)− 1

2
G(x)[R2(x) + P2(x)]

−1[L2(x) + P12(x)]
T

)

− V (x) ≤ −cmin

{
V (x)

c
, V (x)α

}
, x ∈ Rn, x = 0 (38)

V (f(x) +G(x)u) = V (f(x)) + P12(x)u+ uTP2(x)u

x ∈ Rn, u ∈ Rm (39)

0 = L1(x)− 1

4
[L2(x) + P12(x)][R2(x) + P2(x)]

−1

· [L2(x) + P12(x)]
T + V (f(x))− V (x) (40)

and

V (x) → ∞ as ‖x‖ → ∞. (41)

Then, the zero solution x(k) ≡ 0 to

x(k + 1) = f(x(k)) +G(x(k))φ(x(k)), x(0) = x0, k ∈ Z+

(42)

is globally finite-time stable with the feedback control

u = φ(x) = −1

2
[R2(x) + P2(x)]

−1[L2(x) + P12(x)]
T. (43)

Moreover, there exists a settling-time functionK : Rn → Z+ such that
either

K(x0) ≤
⌈
log[1−cV (x0)α−1]

c
1

1−α

V (x0)

⌉
+ 1, x0 ∈ Rn

V (x0) > c
1

1−α (44)

or

K(x0) = 1, x0 ∈ Rn \ {0}, V (x0) ≤ c
1

1−α . (45)

and the performance measure (33) is minimized in the sense of (22).
Finally

J(x0, φ(x(·))) = V (x0), x0 ∈ Rn. (46)

Proof: The result is a direct consequence of Theorem III.1 withD =
Rn, U = Rm, F (x, u) = f(x) +G(x)u, and L(x, u) = L1(x) +
L2(x)u+ uTR2(x)u. Specifically, the feedback control law (43) fol-
lows from (17) and (18) by setting

∂

∂u
[L1(x) + V (f(x)) + [L2(x) + P12(x)]u

+uT(R2(x) + P2(x))u− V (x)
]
= 0. (47)

Now, withu = φ(x) given by (43), conditions (36)–(38) and (40) imply
(14)–(17), respectively.
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Next, since

L(x, u) + V (f(x, u) +G(x)u)− V (x)

= L(x, u) + V (f(x, u) +G(x)u)− V (x)− L(x, φ(x))

− V (f(x, φ(x)) +G(x)φ(x)) + V (x)

= (u− φ(x))T(R2(x) + P2(x))(u− φ(x)) (48)

andR2(x) + P2(x) > 0,x ∈ Rn, condition (18) holds. The result now
follows as a direct consequence of Theorem III.1. �

Remark IV.1: Condition (39) requires that V (f(x) +G(x)u) is
quadratic in u. In the local case, this condition is without loss of
generality if the Lyapunov function V has a nondegenerate minimum at
the origin. In the global case, a sufficient (but not necessary) condition
for (39) holding is the case when V is quadratic. For details, see [17].

Next, we construct state feedback controllers for nonlinear affine
in the control dynamical systems that are predicated on an inverse
optimal control problem. In particular, to avoid the complexity in
solving the steady-state Bellman equation (40), we do not attempt to
minimize a given cost functional, but rather, we parameterize a family
of finite-time stabilizing controllers that minimize some derived cost
functional that provides flexibility in specifying the control law. The
performance summand is shown to explicitly depend on the nonlinear
system dynamics, the Lyapunov function of the closed-loop system, and
the finite-time stabilizing feedback control law, wherein the coupling is
introduced via the Bellman equation. Hence, by varying the parameters
in the Lyapunov function and the performance summand, the proposed
framework can be used to characterize a class of globally finite-time
stabilizing controllers that can meet closed-loop response constraints.

Theorem IV.2: Consider the controlled discrete-time nonlinear
affine dynamical system (31) with performance measure (33). Assume
that there exist a continuous radially unbounded functionV : Rn → R,
L2 : Rn → R1×m, P12 : Rn → R1×m, a nonnegative-definite func-
tion P2 : Rn → Rm×m, and real numbers c > 0 and α ∈ (0, 1) such
that (34)–(39) hold. Then, with the feedback control

u = φ(x) = −1

2
[R2(x) + P2(x)]

−1[L2(x) + P12(x)]
T (49)

the zero solution x(k) ≡ 0 to (42) is globally finite-time stable. More-
over, there exists a settling-time function K : Rn → Z+ such that
either (44) or (45) hold and the performance measure (33), with

L1(x) = φT(x)(R2(x) + P2(x))φ(x)− V (f(x)) + V (x) (50)

is minimized in the sense of (22). Finally, (46) holds.
Proof: The proof is similar to the proof of Theorem IV.1, and hence,

is omitted. �

V. ILLUSTRATIVE NUMERICAL EXAMPLE

In this section, we provide an illustrative numerical example to
demonstrate the proposed optimal finite-time discrete stabilization
framework. Consider the discrete-time nonlinear affine system given
by

x1(k + 1) = f1(x1(k), x2(k)) + u1(k), x1(0) = x10

k ∈ Z+ (51)

x2(k + 1) = f2(x1(k), x2(k)) + u2(k), x2(0) = x20 (52)

where, for k ∈ Z+, x1(k), x2(k), u1(k), and u2(k) ∈ R, and
f1(0, 0) = 0 and f2(0, 0) = 0. For this example, we apply Theo-
rem IV.2 to find an inverse optimal globally finite-time stabilizing
control law u = [u1, u2]

T = φ(x), where x = [x1, x2]
T. Note that

(51) and (52) can be cast in the form of (31) with n = 2, m = 2,
f(x) = [f1(x1, x2), f2(x1, x2)]

T, and G(x) = I2.
To construct an inverse optimal finite-time controller for (51)

and (52), let V (x) = xTx, L(x, u) be given by (32), R2(x) = I2,
P2(x) = I2

P12(x) = [2f1(x1, x2), 2f2(x1, x2)] (53)

and let

L2(x) =

[
2f1(x)− 4x1 + 4c sign(x1) min

{ |x1|
c

, |x1|α
}
,

2f2(x)− 4x2 + 4c sign(x2) min

{ |x2|
c

, |x2|α
}]

(54)

where sign(z) � z/|z|, z = 0, and sign(0) � 0. Now, the inverse
optimal control law (49) is given by

u = φ(x) = −1

2
[R2(x) + P2(x)]

−1[L2(x) + P12(x)]
T

= −1

4
[L2(x) + P12(x)]

T

=

⎡
⎣x1 − c sign(x1) min

{
|x1 |
c
, |x1|α

}
− f1(x1, x2)

x2 − c sign(x2) min
{

|x2 |
c
, |x2|α

}
− f2(x1, x2)

⎤
⎦ (55)

and the performance functional (33), with

L1(x) = φT(x)φ(x)− V (f(x)) + V (x) (56)

is minimized in the sense of (22).
Furthermore, note that (36) and (37) hold and, since

V

(
f(x)− 1

2
G(x)[R2(x) + P2(x)]

−1[L2(x) + P12]
T

)

− V (x)

= V

[
f(x)− 1

4
[L2(x) + P12(x)]

T

]
− V (x)

=

(
x1 − c sign(x1) min

{ |x1|
c

, |x1|α
})2

− x2
1

+

(
x2 − c sign(x2) min

{ |x2|
c

, |x2|α
})2

− x2
2

= −2c |x1| min

{ |x1|
c

, |x1|α
}

+

(
c sign(x1) min

{ |x1|
c

, |x1|α
})2

− 2c |x2| min

{ |x2|
c

, |x2|α
}

+

(
c sign(x2) min

{ |x2|
c

, |x2|α
})2

≤ −c min

{ |x1|
c

, |x1|α
}
|x1|

− c min

{ |x2|
c

, |x2|α
}
|x2|

≤ −c2
(
min

{ |x1|
c

, |x1|α
})2
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− c2
(
min

{ |x1|
c

, |x1|α
})2

= −c2 min

{ |x1|2
c2

, |x1|2α
}
− c2 min

{ |x2|2
c2

, |x2|2α
}

= −c2
[
min

{ |x1|2
c2

, |x1|2α
}
+min

{ |x2|2
c2

, |x2|2α
}]

≤ −c2 min

{ |x1|2 + |x2|2
c2

,
[|x1|2 + |x2|2

]α}

= −c2 min

{
V (x)

c2
, V (x)α

}
(57)

where the last inequality in (57) follows from the Minkowski inequality,
(38) is verified. Hence, with the feedback control law φ(x) given by
(55), the closed-loop system (51) and (52) is globally finite-time stable
with the settling-time function satisfying either

K(x0) ≤
⌈
log[1−c2V (x0)α−1]

c
2

1−α

V (x0)

⌉
+ 1, x0 ∈ R2

V (x0) > c
2

1−α (58)

or

K(x0) = 1, x0 ∈ R2 \ {0}, V (x0) ≤ c
2

1−α . (59)

Next, consider the spacecraft with one axis of symmetry given by

ω̇1(t) = I23ω3ω2(t) + u1(t), ω1(0) = ω10, t ≥ 0 (60)

ω̇2(t) = −I23ω3ω1(t) + u2(t), ω2(0) = ω20 (61)

where I23 � (I2 − I3)/I1, I1, I2, and I3 are the principal moment of
inertia of the spacecraft such that 0 < I1 = I2 < I3,ω1 : [0,∞) → R,
ω2 : [0,∞) → R, andω3 ∈ R denote the components of the angular ve-
locity vector with respect to a given inertial reference frame expressed in
a central body reference frame, and u1 and u2 are the spacecraft control
moments. In order to apply (55), we use a simple Euler discretization
scheme to discretize (60) and (61), which yields

ω1(k + 1) = ω1(k) + h [I23ω3ω2(k) + u1(k)]

ω1(0) = ω10, k ∈ Z+ (62)

ω2(k + 1) = ω2(k) + h [−I23ω3ω1(k) + u2(k)]

ω2(0) = ω20 (63)

where h > 0 denotes the sampling time.
Note that (62) and (63) have the form of (31), and hence, the control

law

u1(k) = −I23ω3ω2(k)

− c

h
sign(ω1(k)) min

{ |ω1(k)|
c

, |ω1(k)|α
}

(64)

u2(k) = I23ω3ω1(k)

− c

h
sign(ω2(k)) min

{ |ω2(k)|
c

, |ω2(k)|α
}

(65)

where c > 0, guarantees global finite-time stability of the controlled
spacecraft (60) and (61). Moreover, there exists a settling-time func-
tion K : R2 → Z+ such that either (58) or (59) hold, where x0 =
[ω10, ω20]

T, and

J(x0, φ(x(·))) = ω2
10 + ω2

20, x0 ∈ R2. (66)

Fig. 1. Closed-loop system trajectory and control inputs versus time of
(60) and (61) with control inputs (64) and (65).

Let I1 = I2 = 4kg ·m2, I3 = 20kg ·m2, ω10 = 2Hz, and ω20 =
−2Hz. The controlled system trajectory and control profile, with
h = 0.1, c = 0.7, and α = 0.8, are shown in Fig. 1. Note
that (ω1(k), ω2(k)) = (0, 0) for k = 4 < K(x0) = 16. Finally,
J(x0, φ(x(·))) = 8Hz2. It is clear from Fig. 1 that the inverse opti-
mal controller (64) and (65) guarantees finite-time stabilization. The
parameters c and α in (64) and (65) can be varied to reduce the
conservatism between the guaranteed settling-time function K(x0)
and the achieved finite-time convergence. However, achieving faster
finite-time convergence comes at the expense of higher controller
effort.

VI. CONCLUSION

In this article, an optimal control problem for finite-time stabi-
lization for nonlinear discrete-time dynamical systems is stated and
sufficient conditions are derived to characterize an optimal nonlinear
feedback controller that stabilizes the closed-loop system in finite
time. Specifically, we utilized a steady-state Bellman framework to
characterize optimal nonlinear feedback controllers with a notion of
optimality that is directly related to a given Lyapunov function satisfy-
ing a difference inequality involving fractional powers and a minimum
operator. A numerical example was presented to show the efficacy of
the proposed framework. Future extensions will focus on developing
finite-time optimal controllers for stochastic discrete-time systems by
building on the recent stochastic discrete-time stability analysis results
in [18].
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