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1 Introduction

This chapter presents a general framework that utilizes reinforcement learning (RL)-

based method to regulate multiple parameters during intravenous drug administration.

First, the Q-learning algorithm which is an RL-based method is used to fine tune con-

tinuous infusion of the drug propofol for patients in the ICU. We control the infusion

of propofol so as to keep the bispectral index (BIS) and mean arterial pressure (MAP)

of the patient at a desired range. Next, the use of a similarQ-learning-based controller
is discussed to regulate the drug titration while different drugs with synergistic inter-

active effects are administered simultaneously. Finally, an RL-based controller design

strategy for cancer chemotherapy treatment is also presented.
1.1 Motivation

During the last few decades, the critical and complex task of anesthesia administration

has been widely studied and discussed in the literature using clinical as well as in silico

trials. Consequently, many recent reviews on the currently adopted strategies high-

light several aspects of the problem that need further research attention (Ionescu

et al., 2014; Van Den Berg et al., 2017). Moreover, common anesthetics, such as prop-

ofol and midazolam that are necessary for various medical procedures, have side

effects that include cough, nausea, skin irritations, numbness, delirium, seizures, mus-

cle pain, weak or shallow breathing, and hemodynamic instability. The overdosing of

some anesthetic and analgesic drugs is known to cause death ( Jacobi et al., 2002;

Mehta et al., 2006). Typically, patients admitted to the intensive care units suffer from

multiple illnesses which necessitate the use of many drugs for life support and treat-

ment. When it comes to the combined administration of several drugs such as anes-

thetic, analgesic, neuromuscular blockades, and cardiac drugs, the fact that the

mechanisms of action are complex, interlaced, and not yet completely understood

makes the problem very challenging. In the case of the continuous and simultaneous
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infusion of these drugs for long periods, it is evident that an appropriate closed-loop

control approach can be used to improve patient safety (Absalom et al., 2011; Ionescu

et al., 2014; Jacobi et al., 2002).

Cancer chemotherapy treatment is another important therapeutic approach that

involves continuous infusion of intravenous drugs. Surveys conducted in the area

of cancer diagnosis and treatment highlight that the relative survival rate for many

types of cancer have improved significantly over the years (ACS, 2015; WHO,

2018). These reports suggest that proficiency in early diagnosis and improvement

in treatment methods are the important factors that contributed to reducing the mor-

bidity rate and mortality rate associated with cancer. Even though there has been obvi-

ous improvement in the overall prognosis, diagnosis, and treatment of cancer, a steady

increase in the incidence of this disease is a matter of concern. Like any other drug-

dosing application, there are several factors that determine the drug dose required for a

patient to culminate certain desired response. In the case of cancer chemotherapy,

these factors include the type and stage of cancer, age, and weight of the patient,

immune response of the patient, and presence any other illness. Accordingly, the cli-

nician chooses the type and amount of the drug to be given to a patient by following

certain established treatment protocols and guidelines.

However, several clinical trials and scientific studies point out the limitations of

this approach and highlight the need for optimal and patient-specific dosing of che-

motherapeutic drugs (Chen et al., 2012; Sbeity and Younes, 2015). These literatures

highlight the importance to conduct clinical and in silico trials to study the effective-

ness and feasibility of novel chemotherapy, plan to improve the therapeutic benefits of

the treatment (Sbeity and Younes, 2015). However, clinical trials are often tedious to

conduct, require long trial time, and are expensive. On the other hand in silico trials are

cost effective and provide flexible techniques to evaluate novel treatment plans.

Even though several control methodologies have been suggested in the literature

for the closed-loop control of intravenous drug administration, very few findings have

attracted the attention of clinicians. This is mainly due to the discrepancy between the

actual clinical requirement and the one that is considered for study. An ideal closed-

loop controller that can effectively facilitate the complex task of drug delivery should

account for multiple clinical phenomena such as drug interaction, drug overdosing and

underdosing, significant variabilities in the drug response(s) of different patients, non-

linearities and disturbances in the system, and major drug-induced side effects such as

immunosuppression or hemodynamic instability.
1.2 Literature review

1.2.1 Drug-dosing control for anesthesia administration

Anesthesia is mainly used to facilitate invasive and painful clinical procedures such as

endotracheal intubation, ventilation, suction, and hemodialysis. Too much or too little

anesthetic can cause increased morbidity. Hence, the rate of infusion of anesthetic

drugs is critical, requiring continuous monitoring and repeated adjustments

(Haddad et al., 2010). Typically, open-loop drug infusion is facilitated by a medical
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practitioner or via target controlled infusion (TCI) pump (Absalom and Mason, 2017;

Absalom et al., 2011; Masui et al., 2010). TCI pumps are programmed to derive the

required drug dose for a patient by using a nominal model of the patient. However,

recent investigations in the area of anesthetic and analgesic drug dosing have docu-

mented several positive outcomes of the closed-loop control approaches compared

to open-loop ones (Absalom et al., 2011; Brogi et al., 2017; Kuizenga et al., 2016;

Soltesz et al., 2013). Specific advantages of the closed-loop control approaches

include improved patient safety, early recovery time, and reduced treatment cost.

Moreover, closed-loop control relieves the clinicians from doing frequent mechanical

adjustments which in turn allow them to indulge in more critical aspects of therapy to

improve overall well being of the patient (Haddad et al., 2010).

Patients admitted to ICU often suffer from multiple illnesses or even organ system

failure. Hence, it is necessary to evaluate the health of these patients using various

physiological monitors and provide required assistance using life-supporting devices.

Some of the life-supporting procedures such as mechanical ventilation involve inva-

sive endotracheal tube insertion which leaves the patient in physical as well as mental

distress. Moreover, due to anxiety and discomfort related to these procedures the

patients are often restless and in an incoherent state of mind. Hence, in order to com-

fort the patients and to perform painful clinical procedures in a cooperative and safe

manner, often these patients are kept in a state of moderate sedation for a long period

of time. Apart from the complications in the normal physiological functioning of the

body which arise due to an inherent illness, side effects of the drugs used for treatment

can also have an adverse effect on the overall health of these patients. For instance,

most of the sedatives and analgesics used these days are identified to impair cardiac

and respiratory functions (Absalom et al., 2011; Jacobi et al., 2002; Minto et al., 2000;

Robinson et al., 1997). Thus, the critically ill patients in the ICUs who are treated

using multiple intravenous drugs for long periods also demand the regulation of mul-

tiple physiological variables such as MAP, heart rate, respiratory rate, level of uncon-

sciousness and pain sensation, and other vital parameters within acceptable safe limits

(Heusden et al., 2018; Jacobi et al., 2002).

Analyzing drug anesthetic effects requires pharmacokinetic (PK) models to

account for the drug disposition and pharmacodynamic (PD) models to capture drug

concentration effects. In order to formulate the mathematical equivalent of a human

drug disposition system with a time-dependent drug dose as an input signal, several

physiological and nonphysiological models have been proposed (Absalom et al.,

2009; Haddad et al., 2010). Among these, deterministic PK models, represented by

compartmental models, which involve single or multiple compartments to capture

the drug distribution and metabolism have gained wide acceptance (Absalom et al.,

2009; Masui et al., 2010). In the case of intravenous infusion of anesthetic drugs,

the mechanism of drug disposition can be effectively represented using a three-

compartmental model with an additional effect-site compartment to model the

time-lag in the drug dynamics at the locus of the drug effect (Masui et al., 2010).

It should be noted that underlying illness, drug interaction, and other clinical distur-

bances alter the drug requirements (Absalom et al., 2011; Jacobi et al., 2002; Minto

et al., 2000; Robinson et al., 1997).
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Advancements in the area of automation and control engineering have fostered

human health care in many ways. There exist many control methods that have been

successfully used to design controllers for applications that require tracking a certain

desired response. However, the requirement for an accurate mathematical model that

depicts human physiology and difficulty in measuring certain system parameters that

are required for feedback are the two main hurdles that limit the utilization of such

control methods in the area of drug dosing. Several clinical and in silico trials con-

ducted to evaluate the efficacy of the fixed-gain and linear controllers for the

closed-loop control of anesthesia administration have proved inadequate (Absalom

et al., 2011; Bailey and Haddad, 2005; Haddad et al., 2013; Hahn et al., 2012;

Soltesz et al., 2013). This set back is mainly due to the complexity and uncertainty

involved in the intricate task of anesthesia administration.

Furutani et al. (2010) reported 79 clinical trials conducted to evaluate the perfor-

mance of model predictive controllers (MPC) for the closed-loop control of anesthesia

administration. This study marks improved performance of the closed-loop control

approach over manual control in terms of the amount of drug used and tracking error

in reference output (BIS). However, the performance of theMPC-based controller was

not so good compared to the that reported byMorley et al. (2000), Absalom and Kenny

(2003), Liu et al. (2006), and Struys et al. (2001). Even though optimal control

methods can account for system state constraints and control constraints, as pointed

out by Furutani et al. (2010) suchmethods demand more accurate mathematical model

to improve the tracking ability and robustness of the closed-loop control system.

Haddad et al. (2003) documented the improved performance of adaptive disturbance

rejection controller in addressing the system uncertainties and system disturbances

associated with anesthesia administration. However, adaptive controllers cannot

embody optimality requirements of the system optimality. Thus, it is necessary to

develop novel methods that are capable of addressing problems that arise due to

the system disturbances and system uncertainties, while deriving at optimal control

laws to enhance the applicability and safety of automated anesthesia administration.
1.2.2 Drug-dosing control for cancer chemotherapy

Most of the cancer chemotherapy control algorithms reported in the literature are

implemented using optimization methods (Chen et al., 2012, 2014; Doloff and

Waxman, 2015; Engelhart et al., 2011; Kiran et al., 2009; Noble et al., 2010;

Swierniak et al., 2003). Chen et al. (2012) and Noble et al. (2010) discussed an

MPC-based controller which uses a new state measurement at the end of each sam-

pling period to update the model used for solving the optimization problem. Kiran

et al. (2009) used a multiobjective optimization approach to regulate the use of ther-

apeutic agents and derive optimal treatment schedule for immunotherapy and chemo-

therapy. Similarly, Engelhart et al. (2011) investigated the problem of deriving

optimal treatment plan for immunotherapy, chemotherapy, or/and antiangiogenic

therapy with respect to various objective functions.

Batmani and Khaloozadeh (2013) and Çimen (2010) resorted to state-dependent

Riccati equation (SDRE)-based controller design approach for deriving treatment
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schedule for cancer chemotherapy. Specifically, Batmani and Khaloozadeh (2013)

used a state observer to estimate the unavailable system states. In Babaei and

Salamci (2015), a hybrid method that compounds SDRE andmodel reference adaptive

controller design method is used to determine a personalized drug dose for cancer

treatment. As mentioned earlier, the efficacy of the optimal control approaches

depends on the accuracy of the mathematical used. However, it is often impossible

to derive an ideal mathematical model which can accommodate all the complex

dynamics involved in the tumor microenvironment (Pillis and Radunskaya, 2001;

Sbeity and Younes, 2015; Swan, 1990). Typically, these dynamics include the tumor

growth, immune response to tumor growth, changes in the vascular network that sup-

ply nutrients to the tumor, and the effect of the drug on various cell types in the tumor

microenvironment to name some.

Evolutionary algorithms (EA)-based approaches have also been used to derive

optimal drug-dosing schedules for chemotherapy (Tan et al., 2002; Tse et al.,

2007). Even though the EA-based approaches exhibit competitive performance com-

pared to the other existing chemotherapy optimization approaches, difficulty in the

selection of the initial population and significant computation effort involved limits

the acceptance of these methods (Sbeity and Younes, 2015).
1.2.3 RL-based algorithms

Even though several control methodologies have been suggested in the available lit-

erature for the closed-loop control of intravenous drug administration, very few find-

ings have attracted the attention of clinicians. This is mainly due to the discrepancy

between the actual clinical situation and the one that is considered for study. An ideal

closed-loop controller that can effectively facilitate the complex task of drug delivery

should account for multiple clinical phenomena such as drug interaction, drug over-

dosing and underdosing, significant variabilities in the drug response(s) of different

patients, nonlinearities and disturbances in the system, and major drug-induced side

effects such as immunosuppression or hemodynamic instability. RL-based control is a

novel promising approaches for the control of intravenous drug administration to

achieve multiple clinical objectives simultaneously.

RL-based methods have been used for many years to derive optimal control inputs

in the presence of system disturbances and in the absence of knowledge of complete

system dynamics (Bertsekas and Tsitsiklis, 1996; Sutton and Barto, 1998; Vrabie

et al., 2013). RL algorithms arrive at an optimal solution by performing control policy

updates based on a reward or performance index defined with respect to the controlled

system. Such algorithms are based on dynamic programming and give optimal solu-

tions when the iterations converge (Barto et al., 1983; Sutton, 1988; Sutton and Barto,

1998). Moreover, these are interactive algorithms which can account for time-varying

system dynamics and performance requirements (Vrabie et al., 2013). RL methods

rely on the speed, efficiency, and computational advantages of the digital computers

to assess the impact of each possible control action on the system and derive the best

control action in an uncertain noisy environment.
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RL-based control strategies have exhibited satisfactory performance in the areas

of aeronautics, robotics, and clinical pharmacology when used for the control, auto-

mation, motion planning, signal processing, and networking (Abbeel et al., 2007;

Dadhich et al., 2016; Hong et al., 2016; Sedighizadeh and Rezazadeh, 2008). RL

methods can derive an optimal controller by exploring the advantage of each possi-

ble action in driving the system to a target (goal) state. After training, the controller

uses the learned optimal control policies to regulate the transience of the system

under control from an arbitrary initial state to the goal state. RL is suitable for deriv-

ing optimal drug-dosing schedules mainly because this method does not require the

model of the system and it can learn the best sequence of actions or the optimal con-

trol law using the response of the patient to the control input (drug infusion). In the

context of RL, the term agent is used as a synonym of the term controller in the field

of control theory (Sutton and Barto, 1998). Here, a policy can be either a function of

system states, or a path or a plan to transition the system from an arbitrary initial state

to the goal state, or it can even be rule-based such as “if in this state, then do this.”

A reward function is used to assess the advantage of an action with respect to system

states.

Recently, RL-based control strategies have been used in the drug-dosing control

scenario to optimize the dosing of erythropoietin during hemodialysis, develop

dynamic treatment regime for patients with lung cancer, assist insulin regulation

in diabetic patients, regulate heparin dosing, and administer anesthetic drugs to

induce and maintain the desired sedation level (Daskalaki et al., 2013; Martin-

Guerrero et al., 2009; Moore et al., 2014; Nemati et al., 2016; Zhao et al., 2011).

Moore et al. (2010) discussed RL-based optimal controller for the regulation of

hypnosis during surgery. Specifically, the authors derived optimal control solutions

by penalizing the control actions that correspond to an increase or decrease in BIS

value from the target BIS value and rewarding the control actions that maintain the

BIS output of the patient at the target value of BIS. The authors used three control

actions (drug dose) u such as 0, 20, or 40 mg to train the RL-based controller.

Currently, bedside monitors that can provide a measure of the depth of anesthesia

in terms of BIS index value are available ( Johansen et al., 2000). Extending the

RL-based controller presented by Moore et al. (2010, 2014) and conducted the first

clinical trial to evaluate the closed-loop control of hypnosis using human volunteers.

This RL-based controller showed a patient-specific control of hypnosis with an

enhanced control accuracy with respect to other similar investigations in the

literature.

The remaining chapter is organized as follows. In Section 2, a general framework is

presented to formulate the intravenous drug-dosing control problem in a finiteMarkov

decision process (MDP) framework and develop a Q-learning based controller to

design a multiobjective controller to regulate anesthesia administration by accounting

for important physiological parameters of the patients. In Section 3, an optimal drug-

dosing profile is derived by accounting for PK and PD disturbances such as drug inter-

action in the human body under treatment. Finally, in Section 4, the Q-learning-based
controller design approach presented in Section 2 is adapted to address specific cases

in cancer chemotherapy treatment.
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2 Control of BIS by accounting for MAP

The aim of this section is to develop a multiobjective controller that can regulate seda-

tion by simultaneously accounting for drug-induced hemodynamic instability in a

patient. Administration of sedative drug such as propofol can have adverse effects

on the hemodynamic stability of the patient. Specifically, propofol causes vasodilation

leading to the decrease in MAP, drug overdose, and even cardiovascular collapse (Fan

et al., 2012). Consequently, during propofol infusion, along with regulating the

desired drug response (BIS index) it is important to maintain hemodynamics param-

eters (e.g., MAP) of the patient in an clinically acceptable and safe range (Haddad

et al., 2010; Rao and Bequette, 2000). Toward this end, first, a general framework

for the development of an RL-based controller for the control of nonlinear dynamical

systems is presented. Next, the PK and PD models of propofol related to patient

responses such as the BIS index and MAP are discussed. Here, this model serves

as a patient model which is then used to generate input-output data required to train

the RL agent or the RL-based controller.
2.1 Problem formulation

The problem of obtaining control solutions to follow a desired system trajectory often

requires sequential decision making and can be solved by representing it in a finite

MDP framework (Vrabie et al., 2013). During anesthesia administration, the aim is

to reach a defined goal state (desired BIS value) with decisions predicated on the best

sequence of control actions (propofol infusion) required to transition the system from

a given arbitrary initial condition to the desired goal state. Toward this end, consider

the nonlinear dynamical system given by
_xðtÞ ¼ f ðxðtÞ,uðtÞÞ, xð0Þ¼ x0, t� 0, (1)

yðtÞ ¼ hðxðtÞÞ, (2)

e xðtÞ 2n, t� 0, is a vector with n states of the system as the elements, uðtÞ 2,
wher

t � 0, denotes the control input, yðtÞ 2l, t � 0, represents l number of outputs or

responses of the system, f : n�!n is locally Lipschitz continuous and

h : n!l is continuous. RL-based control approaches are suitable for problems that

require a goal-oriented decision making (Sutton and Barto, 1998).

A finite MDP can be defined using the four-tuple (S,A,P,R), where S is a finite

set of states of the system or environment,A is a finite set of possible actions when in

the states sk 2S, P represents a state transition probability matrix, Pakðsk,sk + 1Þ is the
probability that the state sk 2S at k transits to the state sk+1 at k + 1 with an action ak 2
A at k, andR represents a reward that assesses the advantage of an action ak 2A for all

sk 2S. Note that the transition probability matrix denoted as P represents the system

dynamics and is equivalent to the function f(�, �) which is assumed to be unknown. The

discrete states in the finite set S are denoted as ðSiÞi2 + , where  +≜f1,2,…,qg and q



258 Control Applications for Biomedical Engineering Systems
represents the total number of states. Similarly, the discrete actions in the finite

sequence A are denoted as ðAjÞj2+ , where +≜f1,2,…,pg and p represents the total
number of actions.

RL-based methods, such as Q-learning (Watkins and Dayan, 1992), have gained

significant attention in recent years. The main reason for the increased acceptance

of RL-based methods is the fact that it does not rely on a model of the system

for the design of the controller. Moreover, RL-based methods can account for changes

in the system that happens during the learning phase. Fig. 1 shows the schematic

diagram of an RL-based approach in which the agent or controller learn a useful policy

or an action plan using the information on the action taken, reward observed, and a new

state to which the system reached due to the current action. In other words, the

Q-learning-based controller design method can train an RL agent to learn the best

sequence of control actions to regulate the states sk of the system without using

the system state x(t), t � 0. Instead it uses the information gathered at time steps

k 2{1, 2, …}, kT � t < (k + 1)T along the system trajectories. At every time step k,
the RL agent identifies the current state sk from the set S and then it chooses an action

ak from the defined action set A. Consequently, the system stochastically transitions

from the current state sk to a new state sk+1 incurring a numerical reward rk + 1 2.
Since learning is predicated on the knowledge of the discrete states sk 2S and

which should be measurable at time step k. Hence, the states sk of the RL environment

are defined with respect to the system response given by y(t), t � 0, as
Fig.

schem

et al.
sk ¼ gðyðtÞÞ, kT� t< ðk + 1ÞT, (3)

l
where g :  !S� is a mapping between the system response y(t) and the state

representation sk, k ¼ 1, 2, …. Here, T > 0 is the sampling time.

The agent aims to maximize the reward it earns over an infinite horizon. This can be

achieved by using different strategies (Watkins and Dayan, 1992). A straightforward

approach is to choose each action ak such that it maximizes the expected value of

the discounted return (Moore et al., 2014; Watkins and Dayan, 1992). In this case,

the objective function is given by
JðRkÞ¼
X∞
i¼1

θði�1Þri + k

" #
, (4)
1 Reinforcement learning

atic (Padmanabhan

(2015)).



Reinforcement learning-based control of drug dosing 259
where ½ � � denotes expectation, Rk denotes the total discounted return, and θ 2 [0, 1]

is a discount rate parameter which represents the horizon of interest to the agent.

For θ ¼ 0, J(Rk)¼ rk, that is, for learning, the agent considers only the current reward.
Alternatively, for θ approaching 1, the weight of the costs incurred in the future is

increased.
2.2 Learning an optimal policy

RL-based control relies on learning an optimal control policy while interacting with

the system. Information obtained while interacting with the system is used to enhance

the agent’s decision-making policy over time. Thus, the agent interacts with the

system to learns the optimal policy starting from an initial arbitrary policy. In the case

of linear systems, optimal control law pertaining to the certain defined objective func-

tion and system constraints can be derived by solving associated algebraic Riccati

equation. However, deriving optimal control law for nonlinear systems is tedious

and requires the solution of complex Hamilton-Jacobi-Bellman partial differential

equation (Balashevich et al., 2002; Haddad and Chellaboina, 2008).

Watkin’s Q-learning is an RL-based approach which uses each state transition to

update each entry of a tableQwhich forms the control policy. The policy is stored in a

table so that appropriate responses can be retrieved quickly with respect to the state of

the system. The entry Q(sk, ak) of the Q table for each pair of state sk and action ak,
k 2{1, 2,…} shows the value of the state sk when associated with action ak. The con-
troller or RL agent assess the measured variables, and implement control actions

according to the learned optimal policy given by Qðsk,akÞ : S�A! (see Fig. 1).

For every k and state sk, the controller or agent selects the control action ak as
ak ¼ argmax
a2A

Qðsk,aÞ: (5)

numerical reward r 2 guides the agent to whether the action chosen at the time
The k

step k was “good” or “bad.” After the transition sk! sk+1, having taken an action ak
and received a reward rk+1, the Q table is updated by
Qkðsk,akÞ Qk�1ðsk,akÞ+ ηkðsk,akÞ½rk + 1 + θmax
ak + 1

Qk�1ðsk + 1,ak + 1Þ�Qk�1ðsk,akÞ�,
(6)

e η (s , a ) 2 [0, 1) is the learning rate or step size parameter that is related to the
wher k k k

size of adjustment after each experiment and θ denotes the discount rate parameter.

It has been shown by Bertsekas and Tsitsiklis (1996), Sutton and Barto (1998), and

Watkins and Dayan (1992) that the Q-learning algorithm (6) converges to the optimal

Q-function while maximizing Eq. (4) with probability one as long as
X∞
k¼1

ηkðsk,akÞ¼∞,
X∞
k¼1

η2kðsk,akÞ<∞, ðsk,akÞ 2S�A: (7)
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Note that
P∞

k¼1ηkðsk,akÞ¼∞ requires that all state-action pairs (sk, ak) are visited infi-

nitely often, whereas
P∞

k¼1η
2
kðsk,akÞ<∞,ðsk,akÞ 2S�A is the condition required to

ensure convergence of the algorithm with probability one. As mentioned earlier, the

Q-learning algorithm starts with an initial arbitrary estimate of the unknown Q(s, a)
and then the algorithm iteratively updates the Q table until convergence is achieved,

that is, until ΔQ ¼ 0, where ΔQ is the change in the Q table, or when the updates

satisfy a minimum threshold ΔQ � δ, where δ is a prespecified tolerance parameter.

Note that the optimal value of the Q table depends on the parameter values that are

used for each iteration.

The framework introduced in this section is used to develop a Q-learning-based
controller for the closed-loop regulation of the BIS and MAP by controlling the con-

tinuous infusion of propofol. The controller is designed to regulate the system output

yðtÞ 2l, t � 0, using the control input uðtÞ 2, t � 0. For our simulation, we use the

simulated patient model as introduced in the following section to train the RL agent.

Thus, the RL system or the environment shown in Fig. 1 is replaced by the nominal PK

and PD model of the patient as shown in Fig. 2.
Fig. 2 Closed-loop control using RL showing the interaction between the agent and the

simulated patient for simultaneous regulation of BIS and MAP management (Padmanabhan

et al. (2015)).
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2.3 Pharmacokinetic and pharmacodynamic patient model

As mentioned earlier, propofol has interlaced effects on the consciousness and hemo-

dynamic stability of the patient. Specifically, most anesthetic drugs reduce sympa-

thetic tone and alter arterial pressure of the patient by bringing about venodilation.

Propofol infusion also decreases cardiac output and thereby reduces drug disposition.

This reduction in disposition of the drug in body is compensated by titrating more drug

which may lead to overdose. A nonlinear dynamical patient model given by the

function f(x(t), u(t)) is used to represent the nonlinear PK and PD of the drug, where

u(t), t� 0, denotes the intravenous infusion of the drug propofol and x(t), t� 0, is the

system states.

As shown in Fig. 2, a nonlinear three-compartment model with an effect-site com-

partment is used to represent the patient dynamics. The control input is the continuous

infusion of propofol to the central compartment. In this model, x1(t), t� 0, represents

the amount of the drug in the arteries and veins (intravascular blood). In addition to the

intravascular blood, x1(t), t� 0, also includes the mass of the drug in organs with very

high blood supply such as the brain, heart, kidneys, and liver. The states x2(t), t � 0,

and x3(t), t� 0, represent the rest of the drug in the body which is assumed to be in two

peripheral compartments, comprised of muscle and fat, respectively. These two

peripheral compartments receive less than 20% of the overall blood supply (cardiac

output) in the body.

The three-compartment model is given by Haddad et al. (2010), Soltesz et al.

(2013), and Absalom et al. (2009)
_x1ðtÞ¼�½a11ðcðtÞÞ + a21ðcðtÞÞ + a31ðcðtÞÞ�x1ðtÞ+ a12ðcðtÞÞx2ðtÞ+ u1ðtÞ,
x1ð0Þ¼ x10, t� 0, (8)

_x2ðtÞ ¼ a21ðcðtÞÞx1ðtÞ�a12ðcðtÞÞx2ðtÞ, x2ð0Þ¼ x20, (9)

_x3ðtÞ ¼ a31ðcðtÞÞx1ðtÞ�a13ðcðtÞÞx3ðtÞ, x3ð0Þ¼ x30, (10)

_ceffðtÞ ¼ aeffðx1ðtÞ=Vc� ceffðtÞÞ, ceffð0Þ¼ ceff0, (11)

e c(t)¼ x1(t)/Vc, t� 0, denotes the drug concentration in the central compartment
wher

denoted by x1(t), t � 0, and Vc represents the volume of the central compartment,

aijðcðtÞÞ¼Aij AC
γa
50= AC

γa
50 + ðcðtÞÞγa

� �� �
, i, j ¼ 1, 2, 3, denote the nonnegative mass

transfer coefficients between the jth and ith compartment, Aij are positive constants,

γa is a parameter that determines the steepness of the concentration-effect relationship,

and AC50 is the drug concentration associated with a 50% decrease in the transfer

coefficient. The relation between the amount of the drug in the system and its effect

on the output variables such as BIS and MAP follow a nonlinear sigmoidal dynamics

and thus, the function h(�) in Eq. (2) can be modeled using the Hill equation given by

Haddad et al. (2010)
hðxðtÞÞ¼ ½BISmeasuredðceffðtÞÞ,MAPmeasuredðcðtÞÞ�T , (12)
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where BISmeasured(ceff(t)) and MAPmeasured(c(t)) are the drug effects captured by
BISmeasuredðceffðtÞÞ ¼ BIS0 1� ðceffðtÞÞγ
ðceffðtÞÞγ + ðC50Þγ

� �
, (13)

MAPmeasuredðcðtÞÞ ¼ MAP0 1� ðcðtÞÞα
ðcðtÞÞα + ðMC50Þα

� �
, (14)

re BIS represents the baseline value, which is typically assigned a value of 100 to
whe 0

denote an awake state, C50 denotes the concentration of the drug related to the half-

maximal effect of the BIS and models the patient’s sensitivity to the drug, γ denotes
the degree of nonlinearity, MAP0 is the initial value of MAP of the patient before drug

infusion, MC50 denotes the concentration of the drug related to the half-maximal

effect of the MAP, and α denotes the degree of nonlinearity associated with MAP

of the patient (Haddad et al., 2010).
2.4 Closed-loop control of BIS and MAP using RL

In this section, theQ-learning algorithm is used to develop a drug-dosing agent for the

simultaneous regulation of anesthesia and hemodynamic status. The control variable

u(t), t � 0, in the dynamical system given by Eq. (1) is the continuous intravenous

infusion of propofol. In the RL framework, since the agent interacts with the patient

at discrete time steps the propofol infusion rate at each time step k is defined as
IRk ¼ ak� IRmax, (15)

re k 2{1, 2, …}, IR is the maximum allowable infusion rate, and a is
whe max k

a particular action from the action set A selected at the kth time step. Thus,

between any two time steps k and k + 1, the infusion rate remains constant and is

given by u(t) ¼ IRk, kT � t < (k + 1)T, where T is the time duration between any

two time steps. The action ak 2A at the kth time step can vary from 0 (no

infusion) to 1 (maximum rate of infusion) within the finite action set

A¼f0,0:01,0:02,0:03,0:04,0:05,0:08,0:1,0:15,0:2,0:25,0:3,0:35,0:4,0:5,0:6, 0.7,
0.8, 0.9, 1}, where  +¼f1,2,…,20g. Since IRmax is a configurable parameter,

one of the benefits of the infusion rate scheme given by Eq. (15) is that it is easy

to set its value according to the sedation requirements of the patient in the ICU.

In the RL framework, the controller or agent makes a decision about the action to be

taken at each time step based on the current state of the system sk¼ g(y(t)), sk 2S, t 2
[kT, (k + 1)T). Hence, the state sk of the system should be observable for decision mak-

ing. Therefore, the states sk of the RL system is defined based on the measurable

parameters BISmeasured(ceff(t)) and MAPmeasured(c(t)), kT � t < (k + 1)T. The state

sk is defined based on the error e(t), kT � t < (k + 1)T, given by
eðtÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βwBIS

2
errorðtÞ+MAP2errorðtÞ

q
, (16)
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where βw> 0 is a weighing factor, which can be used to weigh the importance of anes-

thesia control over hemodynamic control,
BISerrorðtÞ ¼BISmeasuredðceffðtÞÞ�BIStarget

BIStarget
�100, (17)
and
MAPerrorðtÞ ¼MAPmeasuredðcðtÞÞ�MAPtarget

MAPtarget
�100: (18)

CU sedation, the agent aims to learn the best sequence of infusion rates which
For I

minimize BISerror and MAPerror. Hence, defining the system states denoted by sk with
respect to the error e(t), t � 0, is reasonable. Moreover, using e(t), t � 0, for training

purposes has the advantage of involving single measurement given by Eq. (16) rather

than two separate measurements of BISerror(t) and MAPerror(t), t � 0. This decreases

the complexity of the training algorithm. In this case, the action of the agent is pred-

icated on the values of BIS and MAP. For our simulations, the parameters BIS and the

MAP are calculated using the propofol concentration in the PD models (13), (14). In

real time, both these variables can be measured in ICU using corresponding bedside

monitors. Tomodel possible measurement limitations in the BIS andMAPmonitors, a

sampling time T ¼ 6 s is used. Thus, the agent interacts with the patient at every 6 s

(Moore et al., 2014).

Here, the agent seeks to learn the best action sequence that will transition the system

from given initial state to target states identified as BIStarget ¼ 65 and MAPtarget ¼ 80.

The range of output variables that are considered for our simulation are BISmeasured(t) 2
[0, 100] and MAPmeasured(t) 2 [0, 120]. Note that BISerror(t), t � 0, remains positive

when BISmeasured(t) 2 (65, 100] and negative when BISmeasured(t) 2 [0, 65). However,

this change in sign is not reflected in the value of e(t) for BISmeasured(t) 2 (65, 100] and

BISmeasured(t)2 [30, 65). See that, as shown in Fig. 3, e(t) when calculated using Eq. (16)
gives the same value for BISmeasured(t) 2 (65, 100] and BISmeasured(t) 2 [30, 65). The

agent should increase the infusion of the sedative drug when BISerror(t) is positive

and decrease it when BISerror(t) is negative. In order to account for this, separate set

of states is assigned for positive and negative values of BISerror(t), t � 0. Specifically,

sk 2{1, 2,…, 13} is assigned for e(kT) 2 [0, ep(t)] and sk 2{14, 15,…, 20} is assigned

for e(kT) 2 [0, en(t)], where ep(t) and en(t) denote the maximum error in the region of

error e(kT) where BISerror(t) is positive and negative, respectively. See Table 1 for the

mapping between the error e(kT) and state sk. The entries in the Q table which corre-

sponds to the states 1–13 for positive values of BISerror(t), t� 0, and 14–20 for negative
values of BISerror(t), t � 0, are updated using Eq. (6).

It can be seen from Table 1 that there is a dense discretization of e(kT) near
the region where e(kT) ¼ 0. Moreover, compared the case when BISerror(t) is

negative, more number of states are assigned when BISerror(t) is positive. This is
to account for the fact that when BISerror(t) is negative the patient is oversedated

and hence the ideal infusion rate is zero as e(kT) approaches the value 300.
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et al. (2015)).

Table 1 State assignment based on e(t) (Padmanabhan et al., 2015)

BISerror > 0 BISerror < 0

State sk e(kT) State sk e(kT)

1 [0, 2] 14 [0, 10]

2 [2, 4] 15 [10, 50]

3 [4, 10] 16 [50, 100]

4 [10, 15] 17 [100, 150]

5 [15, 25] 18 [150, 200]

6 [25, 35] 19 [200, 250]

7 [35, 45] 20 [250, 300]

8 [45, 60]

9 [60, 80]

10 [80, 100]

11 [100, 120]

12 [120, 140]

13 [140, 165]
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On the other hand, when BISerror(t) is positive the patient is undersedated and the

infusion rate should vary considerably according to how close is the patient from

targeted BIS value.

Choosing an appropriate reward function is a very important step during the imple-

mentation of Q-learning-based algorithm. Note that the reward function is used to

assess the advantage of each action in the action set. Reward function plays a key role

in reinforcing the agent’s decision-making policies and hence choosing reward func-

tion requires a careful consideration. For ICU sedation, it is apparent that the action

that decreases the difference between the measured value of BIS and MAP denoted by

BISmeasured and MAPmeasured and the targeted value of BIS and MAP denoted by

BIStarget and MAPtarget, respectively, must incur more reward. An appropriate reward

has to steer the agent to learn the optimal policy for the regulation of BIS and MAP

responses toward the required target values. Hence, the reward rk+1 corresponding to

action ak at k is computed by
rk + 1¼
eðkTÞ� eððk + 1ÞTÞ

eðkTÞ , eððk + 1ÞTÞ< eðkTÞ,
0, eððk + 1ÞTÞ� eðkTÞ:

8<
: (19)

n error e((k + 1)T) � e(kT), the algorithm assigns r ¼ 0. This means that if
For a k+1

certain action imparted to the system at k could not reduce the error at the time step

k + 1 then that action is given a zero reward. This assignment penalizes bad control

actions. On the other hand, if certain action imparted to the system at the current time

step reduces the error at the next time step, then that action is given a reward propor-

tional to the difference in error (e(kT)� e((k + 1)T)) between two time steps. Note that

the Q table is updated using Eqs. (6), (19). Here, for each state sk, the action in the set
A that results in maximum value for e(kT) � e((k + 1)T) is assigned the highest value
of reward.

RL-based algorithms exploit the computational power of computers to execute all

possible actions from each state to asses which action will steer the system closer

toward the desired target state. The aim is to drive the system from a given initial state

s0 2S, S ¼f1,2,…,20g, to the desired target state 1 as k!∞. A policy is defined as

the sequences of state actions which can steer the system from an initial arbitrary state

to the target state. Among the possible policies, the optimal policy is the one which

earns a maximum reward. Thus, successful training is achieved when, for each state

sk 2S, the agent identifies the best action a∗k among all possible actions ak 2A
resulting in a maximum reward. Maximizing the reward in turn implies that the action

a∗k will drive the system closer to the desired state 1 as compared to all other possible

actions in the given action set. The learned optimal policy is unique for a given set of

states and action set (Sutton and Barto, 1998).

First, the RL agent learns by experimenting with the system using the permissible

actions and assessing the response (output) of the simulated patient as shown in Fig. 4.

For our simulations, the patient model is assigned an arbitrary initial condition.



Fig. 4 Schematic representation of training sequence to obtain the optimal Q table

(Padmanabhan et al. (2015)).
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Note that, as shown in Fig. 2, the patient is replaced by a nominal population model

which represents the PK and PD of the drug. The combined error e(t), t� 0, is derived

using the PD model for the response variables BIS and MAP given in Eqs. (13), (14),

respectively. As shown in Fig. 4, using the value of e(t), t � 0, the current state of the

system is identified. Initially, the values of theQ table are set to zero. Using Eq. (5), in

aQ table with all zero entries, the agent is always directed to choose the same action as

a∗k . In order to avoid this initial difficulty, and to facilitate learning, an E-greedy policy
can be used (Sutton and Barto, 1998). Using E-greedy policy, the agent executes ran-

dom actions with probability E, where E is a small positive number. These random

actions help the agent to gather information according to the pharmacology of a

patient. Toward this end, the agent infuses propofol at different rates defined in the

action set and observes the response of the patient. After each experiment, the agent

calculates the reward incurred and updates the corresponding state-action entry in the

Q table using Eqs. (6), (19), respectively. This is done to associate each state with the

best action in the action set A.
Given the current state sk 2S, a “good” control action ak 2A imparted by the con-

troller results in a positive reward (rk+1> 0) for e((k + 1)T)< e(kT). Similarly, a “bad”

control action ak 2A results in zero reward (rk+1 ¼ 0), for e((k + 1)T) � e(kT). Note
that rk+1 is used in Eq. (6) to update the Q table. To facilitate learning, the agent tries

every possible action ak 2A for all possible states sk 2S and observes the utility of

each action in earning a positive reward (Sutton and Barto, 1998). According to

Eq. (7), to arrive at an optimal policy with respect to a defined set of states and actions,
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the controller or the RL agent should explore all states and actions and utilize the

information pertaining to the previous trails that were useful or effective in incurring

more reward (Sutton and Barto, 1998). With k!∞, all the defined states and actions

in the Q table will be executed recurrently which enables the Q table to converge the

optimal Q table. Another condition required to ensure convergence of the Q table and

to learn the optimal policy is to reduce the learning rate ηk(sk, ak) defined in Eq. (7)

over time (Sutton and Barto, 1998).
2.5 Details of the simulation

In this section, simulation results are presented to illustrate the use of RL-based con-

troller for the closed-loop control of BIS and MAP. Simulations are conducted by set-

ting iteration number to 50,000 (arbitrarily high) scenarios, where a scenario

represents the series of transitions from an arbitrary initial state to the required final

state 1. Furthermore, initially ηk(sk, ak) ¼ 0.2 (for scenarios 1–499) is assigned and

subsequently halved ηk(sk, ak) every 500th scenario. For each scenario, a new set

of randomized initial states x1(0) 2 [0, 0.084] g, x2(0) 2 [0, 0.067] g, x3(0) 2 [0,

0.039] g, and ceff(0) 2 [0, 0.005] g L�1 of propofol was assigned to the simulated

patient model and then the learning phase was repeated until convergence and the per-

formance goals were met; that is, keeping the BIS and the MAP values within the

desired ranges. For our simulation, the Q table converged before reaching the maxi-

mum iteration. After convergence, for every state sk, the agent chose an action

ak ¼ arg maxa2AQðsk,aÞ.
After the training phase, that is, once the agent learned the optimal sequence of

infusion rates required for each state sk 2S to reach the desired goal state, the efficacy
of the learned agent in a sequence of scenarios is evaluated over individual patients to

check howwell the agent can perform drug administration based on its optimal control

policy during practical situations.

During anesthesia administration oversedation and undersedation is not accept-

able. Hence, after training exploration or random actions are avoided to update the

Q table, but used the optimal Q(sk, ak) discussed in the previous section for making

drug infusion decisions for the 30 simulated patients.

The value of BISerror(t), t � 0, and MAPerror(t), t � 0, is in range the range of

0%�100%. Next, in order to prioritize the control of BIS over MAP a positive-

weighing parameter βw is used. A high value for βw decreases the regulation of

MAP, on the other hand choosing a small value for βw will reduce the control of

BIS. For our simulation βw ¼ 8 is used which is set by trial and error. The rec-

ommended dose of propofol given in ASHP guidelines ( Jacobi et al., 2002) is an ini-

tial bolus (20 mg) followed by continuous infusion (5�80 μgkg�1min�1). The

maximum amount of drug required for a 100-kg patient during the maintenance phase

of anesthesia administration is 8 mg min�1. Hence, for training the RL agent IRmax¼
20 mgmin�1 is used.

The evaluation of the performance of the Q-learning algorithm-based controller is

conducted in 30 simulated patient models using hypnosis scenarios that lasted for 2 h.



Table 2 Perturbation values (Padmanabhan et al., 2015)

Parameter Perturbation range

Concentration at half maximal effect of BIS, C50 0.004	 0.001 g L�1

Concentration at half maximal effect of MAP, MC50 0.004	 0.001 g L�1

Concentration at half maximal effect of aij, AC50 0.004	 0.001 g L�1

Degree of nonlinearity of BIS(ceff), γ 3 	 1

Degree of nonlinearity of MAP(c), α 3 	 1

Degree of nonlinearity of aij, γa 3 	 1

Time lag between ceff(t) and c(t), aeff 2 [0.17, 1] (min�1)
Volume of central compartment, Vc 16 	 1 L

Transfer coefficients, aij 	 0.5% (min�1)
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The pharmacological parameter values of the 30 simulated patients are taken

randomly from a predefined parameter range as given in Table 2. In addition,

A11 ¼ 0.119min�1, A12 ¼ 0.0550min�1, A21 ¼ 0.112min�1, A31 ¼ 0.0419min�1,
and A13 ¼ 0.0033min�1 are used (Bailey and Haddad, 2005). Unlike surgery which

requires deep sedation, often the procedures in ICU can be carried out with moderate

sedation. Thus, for our simulation, the target values of output variables are set to

BIStarget ¼ 65 and MAPtarget ¼ 80. Simulation results showing the steady-state per-

formance of the Q-learning-based anesthesia control approach for two case studies

are presented. Statistical analysis pertaining to these simulation studies is also

conducted.
2.6 Results and discussion

Fig. 5 shows the implementation of the closed-loop control strategy using the learned

optimal policy. At each time step K, the RL agent chooses an infusion rate based on the

learned optimalQ table. Note that, even though the training of the agent is done using a

simulated patient model, performance evaluation is conducted on a population of

30 simulated patients. To study the efficacy of the trained RL agent in the closed-loop

regulation of anesthesia, common performance matrices such as the root mean square

error (RMSE), median performance error (MDPE), and median absolute performance

error (MDAPE) are used (Moore et al., 2014). The performance error (PE) is defined as
PEiðjÞ≜Measured valueiðjÞ�Target value

Target value
�100, j¼ 1,…,N, (20)

re i2{1,…, 30} represents the ith patient, j represents the set of PEmeasurements
whe

for an individual, N is the number of measurements for each patient, and Measured

value and Target value in Eq. (20) refer to BIS and MAP, respectively. Note that

for the controlled variables BIS and MAP, the PE is the same as the BISerror(t) and



Fig. 5 RL-based optimal and robust closed-loop control of BIS and MAP (Padmanabhan

et al. (2015)).
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MAPerror(t), t� 0, given by Eqs. (17), (18), respectively. The MDPE gives the control

bias observed and is computed by
MDPEi¼medianðPEiðjÞÞ, j¼ 1,…,N, (21)

eas
wher
MDAPEi¼medianðjPEiðjÞjÞ, j¼ 1,…,N, (22)
and
RMSEi¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

j¼1ðMeasured valueiðjÞ�Target valueÞ2

N

s
,

(23)

e MDAPEi denotes the median of the absolute value of PE and it reflects the
wher

accuracy of the trained RL agent in keeping the targeted values of the control variables

BIS and MAP for each of the 30 simulated patients (Moore et al., 2014). RMSEi

is the RMSE for each patient. Table 3 shows the performance metrics for the

Q-learning-based agent for 30 simulated patients during the 2 h of hypnosis scenario

considered. The amount of inaccuracy reflected in the values of the MDAPE metrics

listed in Table 3 is in the acceptable clinical performance range (Moore et al., 2014).

To further elucidate the performance of the RL agent, the central tendency as well

as the range of measured variables is evaluated for all of 30 simulated patients. Spe-

cifically, the amount of time that the outputs are within a desired band of the targeted

values, that is, 	5, and the percentage of all of the patients for which the outputs are

within a predefined band is calculated. For the 2-h drug infusion period considered in

our simulation, the measured value of the output variable BIS is within	5 of BIStarget
for 90.41% of the time for all 30 simulated patients. Similarly, the measured value of



Table 3 Performance metrics for control variables BIS and MAP

(Padmanabhan et al., 2015)

Performance metrics (for

30 patients)

Controlled variables

BIS MAP

MDPE (%) 3.97 	 2.32 4.05 	 2.50

MDAPE (%) 4.19 	 6.43 5.31 	 5.30

Min�max 66.43�68.25 75.52�89.46
Interquartile range 0.55 7.16

RMSE 2.12�3.30 2.30�9.50
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the output variable MAP is within 	5 of MAPtarget for 76.65% of the time for 60% of

30 simulated patients.

Table 3 shows the minimum and maximum values of BIS and MAP, respectively,

during the maintenance period of drug administration. The time range t 2 [0, 10)

and t 2 [10, 120] are considered as the induction period and maintenance period

of anesthesia administration, respectively. This table also lists the variability or mid-

spread of the controlled variables determined in terms of the interquartile range

(IQR). IQR is the value of the middle of a data set arranged in ascending order.

In order to obtain the IQR, the average value of the controlled variables BIS and

MAP during t 2 [10, 120] for all of the simulated patients is used. The IQR of

BIS variable is 0.55 and that of MAP is 7.16. Note that BIS has comparatively lesser

variability than MAP.

Fig. 6 shows the closed-loop anesthesia control scenario for three randomly selected

simulated patients from 30 simulated patients. These plots further elucidate the varia-

tions of the controlled variables BIS and MAP around the target MAPtarget and BIStarget
values with respect to RL-based control. Often postsurgical patients are kept in ICU

under moderate sedation to facilitate treatment procedures. Patient 1 is assumed to

be a postsurgical patient and hence a nonzero initial condition is assigned to indicate

the presence of propofol in the patient’s body. This is to model the residual quantity

of anesthetic drugs in the patient’s body that has been administered during surgery.

The initial conditions of Patients 2 and 3 are set to zero. The RL-based controller is able

to regulate the output BIS and MAP value close to the target values. The trained

RL-based controller demonstrates acceptable performance with respect to the simulta-

neous control of BIS and MAP (Moore et al., 2014). Fig. 6 along with the performance

evaluationmetrics given in Table 3 demonstrates the significance of the βw parameter in

Eq. (16) for prioritizing the control of BIS relative to MAP.

Note that our simulations show similar performance compared to the clinical trial

conducted by Moore et al. (2014) for the evaluation of RL-based closed-loop control

of intraoperative hypnosis. With respect to this clinical trial, the authors report that the

range of the percentage values of MDPE and MDAPE is �2.8 to 8.8 and 3.4–9.6,
respectively. For the 15 patients considered for the experiment, the range of the value

of RMSE is 3.3–6.5. These figures are comparable with our results given in Table 2 for
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Fig. 6 Simulation results for three patients chosen randomly from the test set of 30 patients.
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(Padmanabhan et al. (2015)).
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the 30 simulated patients. Apart from the closed-loop regulation of the BIS, a meth-

odology for the control of MAP is developed. In addition to that the RL-based con-

troller does not rely on a system model and it demonstrates optimal and robust

performance (see Fig. 6 and Table 3). This is an added advantage when it comes to

the control of uncertain biological systems wherein developing accurate system

models are very challenging.

In the context of simultaneous control of output variables such as BIS and MAP,

one could debate that including an additional parameter (secondary variable(s)) can

adversely affect the regulation of BIS (primary variable). However, instead of regu-

lating sedation alone, simultaneous and balanced maintenance of the level of sedation

along with other important requirements such as hemodynamic and respiratory system

stability, pain management, muscle relaxation, etc. should be considered for improv-

ing patient safety. This is important as many of the sedative drugs (e.g., propofol) are

known to induce significant changes in the heart rate, cardiac output, MAP, and respi-

ratory rate of the patient. For our simulations, we consider MAP as the secondary con-

trol variable as propofol infusion reduces the sympathetic tone of the patient and

induces venodilation. As a consequence, significant changes in the cardiac output

and MAP is reported in the literature (Robinson et al., 1997).

Next, two case studies are presented to further elucidate the effect of simultaneous

control of the BIS and MAP of a patient. First, a hemodynamic disturbance is simu-

lated to account for the effect of hemorrhage onMAP by altering the MAP values by d
units. For the second case study, irrespective of propofol infusion, the value of the

secondary controlled variable (MAP) is held constant throughout the simulation

period. This is to model the case of the intubated patients in the ICU who suffer from

complications due to postaortic aneurysm repair. Another similar clinical situation in

which the MAP becomes dangerously low is in the case of the septic patients.

First, to test the efficacy of theRLagent due to exogenous hemodynamic disturbance, a

random patient from the population of 30 generated patients is simulated for: (i)MAP(t), t
� 0; (ii) MAP(t) + d, t > 20; and (iii) MAP(t) � d, t > 40. Here, the value of the
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exogenous disturbance on MAP is set to d ¼ 10 (see Fig. 7). Simulation results reflect

the effect of prioritizing the control of BIS over MAP by using the parameter βw ¼ 8.

For scenarios (i)–(iii), the average values of BIS and MAP are obtained as BIS ¼
68.18, MAP ¼ 81.82, BIS ¼ 66.84, MAP ¼ 90.17, and BIS ¼ 66.86, MAP ¼ 69.85,

for the interval t 2 [10, 120], t 2 [20, 120], and t 2 [40, 120], respectively. It should

be noted that, because of the exogenous disturbance quantified by the parameter d, the
value of MAPerror is more and so the error signal is e(t), t � 0. This explains the reason

why the patient is sedated slightly more in the case of scenarios (ii) and (iii) compared to

that of scenario (i). The control of BIS is affected by the increase in e(t), t� 0, contributed

mainly by the disturbance in the MAP value. However, the RL agent is able to keep the

variation in BIS value within the acceptable range given by 	5 units of the BIStarget
(Moore et al., 2014).

During the second case study, irrespective of the propofol infusion, the value of

MAP(t), t� 0, is kept constant at the values 120, 100, 60, and 40 for all of the 30 sim-

ulated patients. The efficacy of the RL agent in regulating the value of BIS for these

constant values of MAP is analyzed. Note that for all these simulation studies, the

effect of propofol infusion on MAP is not considered. Instead, the value of the

MAP is held constant. As shown in Table 4, for the cases with MAP(t), t � 0, kept

at values 100 and 60, the RL agent is able to keep the variation in BIS value within

the acceptable range given by	5 units of the BIStarget (Moore et al., 2014). However,

for the cases in which MAP(t), t � 0, is kept constant at values 120 and 40, the var-

iations in the value of BIS are in the range of BIStarget 	 10. For such extreme sce-

narios, it is recommended to use an RL agent which is trained by setting a large

value for the parameter βw to improve the regulation of BIS.

Efficacy of RL methods is demonstrated in several real-time applications, how-

ever, for clinical scenarios, decision making predicated on online identification

requires a careful consideration. This work is a preliminary study toward the
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Fig. 7 Simulation results for a patient chosen randomly from the test set of 30 patients; Case

(i) MAP(t), t � 0; Case (ii) MAP(t) + d, t > 20; and Case (iii) MAP(t) � d, t > 40, where d ¼
10 units represents a disturbance in the hemodynamic system of patient. (A) BIS index versus

time for BIStarget ¼ 65. (B) MAP versus time for MAPtarget ¼ 80 (Padmanabhan et al. (2015)).



Table 4 Performance metrics for the control variable BIS by keeping MAP constant; for

30 simulated patients (Padmanabhan et al., 2015)

Performance

metrics

MAP(t) 5
120

MAP(t) 5
100 MAP(t) 5 60

MAP(t) 5
40

MDPE (%) 9.43 	 0.63 �0.84 	 0.45 �0.87 	 0.49 9.44 	 0.62

MDAPE (%) 9.43 	 0.95 1.56 	 0.43 1.58 	 0.45 9.44 	 0.56

Min�max 69.18�74.28 62.51�66.50 62.48�66.64 69.14�74.31
Interquartile

range

2.6 2.15 2.16 2.67
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implementation of RL-based closed-loop control of anesthesia. Some of the factors

that contribute to the interindividual variations in the pharmacological parameters

within a patient population are the patient physiological features, age, and concurrent

illness. Drug habituation due to the frequent use of certain drugs also affect the

response of a patient to the drug. Note that compared to the nominal model used

for training, the variation in the pharmacologic parameters of the patient under treat-

ment will be reflected in the response of the patient. Consequently, the error signal

e(t), t � 0, varies accordingly and thus the state sk. This implies that as the RL agent

executes control actions with respect to the state sk, it can indirectly address pharma-

cological variations in patient to a certain extent. However, if the drug habituation or

any other clinical situation results in significant and nonlinear changes in the patient

pharmacology, then adaptive decision making is essential. As mentioned, the amount

of propofol required to result in certain desired sedation level changes with the gen-

der, age, weight, and height of the patient. These patient features are reflected in the

pharmacological model parameters such as aij, aeff, C50, MC50, Vc, γ, and α. The RL
agent is trained by setting IRk ¼ ak � IRmax, where IRmax ¼ 20mgmin�1. Table 2

shows the range of the patient pharmacological features used to obtain the 30 simu-

lated patients.

Figs. 6 and 7 and Tables 3 and 4 show that the RL-based controller demonstrates

acceptable performance for the 30 simulated patients with a wide range of pharma-

cological features. However, patient pharmacological features will considerably

vary between different patient populations such as elderly, adults, children, and

infants. Accordingly, the value of IRmax should be fixed and the RL agent needs

to be trained with the new value of IRmax. Similarly, to address the drug-dosing

requirements of each patient population with vivid pharmacological features, it is

recommended to use a bank of RL agents in which each agent is trained by using

an appropriate IRmax.

Finally, even though the RL-based controller demonstrates good performance, one

of the limitations of this approach is the use of discrete state space and action space.

Continuous-time state space and action space can enhance the robust adaptation of the

RL-based controller and thereby derive more patient-specific and optimal control

solution. However, this improved performance comes at the cost of increased
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computational cost. The performance of the RL agent can be further enhanced by

adjusting the value of the discount factor θ, learning rate η(sk, ak), and by choosing

a more appropriate reward function (Matignon et al., 2006).
3 Control of BIS by accounting for synergistic drug
interaction

In this section, the use of an RL-based controller to fine tune the drug titration while

different drugs with interactive effects are administered simultaneously is discussed.

It is important to consider the interactive effects of the drugs to restrict the drug usage

to the optimal level required to achieve certain therapeutic effects. In Section 2, a gen-

eral framework is presented to formulate the problem of closed-loop control of intra-

venous drug administration using a finite MDP framework and the development of the

Q-learning-based controller (Padmanabhan et al., 2015). In view of automated drug

delivery for ICU sedation, another relevant factor that needs attention is the interactive

effects of the drugs that are administered together.

In the following section, a Q-learning-based controller is developed to account for
the synergistic effect during the combined administration of sedatives and analgesics.

Then, the simulated patients who are used to train the RL agent and to conduct in silico

trials are explained. The aim is to develop a controller to derive an optimal drug-

dosing profile by accounting for the PK and PD disturbances in the human body under

treatment.
3.1 Training the RL agent

The real-time system in this context is a dynamical system that represents the PK and

PD of the multiple drugs that are administered together. The system description that

follows is required to comprehend the input-output information needed to train the

RL agent.

Consider the nonlinear dynamical system given by
_xðtÞ ¼ f ðxðtÞ,uðtÞÞ, xð0Þ ¼ x0, t� 0, (24)

yðtÞ ¼ hðxðtÞÞ, (25)

ðn+ pÞ
where for t� 0, xðtÞ 2 is the state vector, n and p are the number of states used

to represent the PK of the sedative agent and analgesic agent, respectively,

uðtÞ 2ðm+ rÞ is the control input, m and r are the number of sedative agents and anal-

gesic agent infused, yðtÞ 2l is the output (controlled variable) of the system,

f : ðn+ pÞ �ðm+ rÞ !ðn+ pÞ is locally Lipschitz continuous, and h : ðn+ pÞ !l is

continuous. Here, the controlled variable of interest is the sedation level of the patient.
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The aim is to develop an RL-based agent for the closed-loop control of the primary

drug during their combined administration with any other drugs with a synergistic

interactive effect.

Toward this end, the equivalent finite MDP representation of the system presented

in Section 2.1, which involves a finite set of states S of the system, a finite set of action

A that is available for each state sk 2S, a scalar reward rk 2, and the transition prob-
ability matrix P that depends on the function f (�, �) defined in Eq. (24) which is

assumed to be unknown is used. With respect to the infusion of the sedative agent,

the finite action set with p number of discrete actions defined as ðAjÞj2+ ,

 +≜f1,2,…,pg is considered. As explained in Section 2.2, a Q-function is progres-

sively updated as per Eq. (6) using the available information with respect to system

(24), which involve current state, action taken, new state reached, and reward received

for the state transition.
3.2 Simulated patient

In this section, the patient models used for our simulations are presented. A superscript

S or A denote that the parameter is associated with a sedative or an analgesic drug,

respectively. First, consider the dynamical system
_xðtÞ¼AxðtÞ +BuðtÞ, xð0Þ¼ x0, t� 0, (26)

ðn+ pÞ�ðn+ pÞ ðn+ pÞ�ðm+ rÞ
where A2 is a compartmental matrix, B2 is an input

matrix, xðtÞ 2ðn+ pÞ, t � 0, is the state vector, and uðtÞ 2ðm+ rÞ, t � 0, is given by

u(t) ¼ [(uS(t))T, (uA(t))T]T, where uSðtÞ 2m, t � 0, and uAðtÞ 2r, t � 0, represent

the sedative and analgesic drug infusion, respectively. Next, rewrite Eq. (26) as
_xðtÞ¼AxðtÞ +B�uSðtÞ+ dðtÞ, xð0Þ¼ x0, t� 0, (27)

�S S T T �A �A T T

where u ðtÞ¼ ½ðu ðtÞÞ ,0� , dðtÞ¼Bu ðtÞ, and u ðtÞ¼ ½0,ðuAðtÞÞ � . For each drug, a
three-compartment model with an effect-site compartment is used to represent the

drug disposition in the human body. While infusing several drugs simultaneously,

the mass distribution of each drug in these three compartments and the effect site

can be represented using the respective system states for each drug.

For the simultaneous infusion of a sedative and an analgesic drug, we consider the

state vector x(t)¼ [x1(t), x2(t), x3(t), ceff
S (t), x5(t), x6(t), x7(t), ceff

A (t)]T, where xi(t), t� 0,

i¼ 1, 2, 3, and xi(t), t� 0, i¼ 5, 6, 7, denote the masses of the sedative and analgesic in

the ith compartment, respectively, and ceff
S (t), t� 0, and ceff

A (t), t� 0, are the effect-site

concentrations of the sedative and analgesic, respectively. In particular,
_x1ðtÞ ¼�ðaS11 + aS21 + aS31Þx1ðtÞ+ aS12x2ðtÞ+ uSðtÞ, x1ð0Þ¼ x10, t� 0, (28)
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_x2ðtÞ ¼ aS21x1ðtÞ�aS12x2ðtÞ, x2ð0Þ¼ x20, (29)

_x3ðtÞ ¼ aS31x1ðtÞ�aS13x3ðtÞ, x3ð0Þ¼ x30, (30)

_cSeffðtÞ ¼ aSeffðx1ðtÞ=Vc� cSeffðtÞÞ, cSeffð0Þ¼ cSeff0, (31)
and
_x5ðtÞ ¼�ðaA11 + aA21 + aA31Þx5ðtÞ+ aA12x6ðtÞ + uAðtÞ, x5ð0Þ¼ x50, t� 0, (32)

_x6ðtÞ ¼ aA21x5ðtÞ�aA12x6ðtÞ, x6ð0Þ¼ x60, (33)

_x7ðtÞ ¼ aA31x5ðtÞ�aA13x7ðtÞ, x7ð0Þ¼ x70, (34)

_cAeffðtÞ ¼ aAeffðx5ðtÞ=Vc� cAeffðtÞÞ, cAeffð0Þ¼ cAeff0, (35)

re aS and aA denote the rate of mass transfer between the jth and ith compartment
whe ij ij

for the sedative and analgesic drug, respectively, and Vc is the volume of the central

compartment (blood).

When two drugs with interactive effects are administered simultaneously, their

drug effect varies according to the ratio of the two drugs denoted as ϕ and their nor-

malized drug concentration U. We use the common sedation assessment measure

given by the BIS ( Johansen et al., 2000) to assess the sedation level of the patient.

The net sedative effect of an anesthetic drug when administered along with an anal-

gesic drug which has synergistic interactive effect is given by
BISmeasuredðtÞ¼BIS0 1�
USðtÞ+UAðtÞ

U50ðϕÞ
� �γðϕðtÞÞ

1 +
USðtÞ+UAðtÞ
U50ðϕðtÞÞ

� �γðϕÞ

0
BBB@

1
CCCA, (36)

USðtÞ

where ϕðtÞ≜USðtÞ+UAðtÞ, γ(ϕ(t)), t � 0, is the steepness of the concentration-response

relation at ratio ϕ(t), andU50(ϕ(t)) is the number of units associated with 50% of max-

imum effect at ratio ϕ(t) (Minto et al., 2000). Furthermore,US(t), t� 0, andUA(t), t�
0, are the normalized drug concentrations of the sedative and analgesic drugs and are

given by USðtÞ¼ cS
eff
ðtÞ

CS
50

and UAðtÞ¼ cA
eff
ðtÞ

CA
50

, where C50
S and C50

A are the drug concentra-

tions of the sedative and analgesic that cause 50% drug effects, respectively. The

BIS value corresponding to fully conscious patient is denoted by BIS0. For training

the RL agent, e(t) ¼ BISerror(t) is assigned, where BISerror(t) is given by Eq. (17).
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3.3 Results and discussion

In this section, the efficacy of the RL-based controller in deriving optimal infusion

rates of an anesthetic drug so as to achieve certain desired sedation level by simulta-

neously accounting for the infusion of an synergistic analgesic is discussed. For our

simulation, the most widely used sedative and analgesic drugs, propofol and

remifentanil, respectively, are used. These drugs have synergistic interactive effects

(Mehta et al., 2006).

For our simulations, 25 simulated patients using clinically relevant patient param-

eters are used. The pain experienced by a patient during the clinical procedures such as

surgery, tracheal tube insertion, or physiotherapy treatment varies considerably. In the

case of analgesic drugs, the drug concentration that causes half-maximal effect (pain

relief ) denoted byCA
50 varies with the intensity of the pain associated. For instance, the

CS
50 and CA

50 of patients with or without liver disorders varies considerably (Mehta

et al., 2006). Hence, to account for such variations in the pharmacological parameter

CA
50 with respect to different pain stimulus, the values in the range 0.025 	

0.007 mg L�1 are used (Mehta et al., 2006). Table 5 summarizes the range of PK

and PD parameters of the drugs propofol and remifentanil that are used to generate

25 simulated patients. For training the RL agent using a simulated patient, the PK

parameter values CS
50¼ 5:6 μg L�1 for propofol, and CA

50¼ 30 ng L�1 for remifentanil

are used. The response of the patient given by Eq. (36) are calculated using the relation

U50(ϕ) ¼ 1 � θBϕ + θBϕ
2, where θB ¼ 0.22 and γ(ϕ) ¼ 0.85 (Padmanabhan

et al., 2014).

At each time step k, the Q-learning algorithm (6) requires the values of sk, ak, sk+1,
and rk+1 to progressively derive the optimal action set. Toward this end, the states

sk are defined based on the error e(kT). The values s ¼ 10 when BISerror < 0 and

sk 2{1, 2, …, 9} when BISerror > 0 are used. The range of values of the error

e(kT) for each sk 2{1, 2, …, 9} is ([0, 1], (1, 3], (3, 8], (8, 12], (12, 18], (18, 25],

(25, 35], (35, 45], (45, 54]), respectively. We use a finite action set

A¼f0,0:02,0:04,0:1,0:25,0:5,0:7,0:8,0:9,1g for the RL agent. At each time step

k, the agent imparts an infusion rate u(t) ¼ IRk, IRk ¼ ak � IRmax, where IRmax is

the maximum allowable infusion rate for the sedative drug propofol. For our simula-

tions, IRmax ¼ 25mgmin�1 and BIStarget ¼ 65 are used. The action ak at the kth time

step is chosen from the finite action set A.
Table 5 Range of values used to generate 25 simulated patients

(Padmanabhan et al., April, 2017a)

Parameter Propofol Remifentanil

C50 0.004 	 0.001 g L�1 0.025 	 0.007 mg L�1

Vc (L) 16 	 1 16 	 1

aij (min�1) 	 0.5% 	 0.5%
aeff (min�1) 	 0.5% 	 0.5%
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Another factor to consider is that the patient PK and PD vary significantly

according to the health condition of the patient. The recommended propofol infusion

rate for a patient treated for ailments in renal, hepatic, or cardiac function is 2.8 	
1.1 mg kg�1 h�1 of propofol. Likewise, for a patient with respiratory ailments, the

recommended drug dose titration rate of propofol is 1.25 	 0.87 mg kg�1 h�1. The
recommended remifentanil infusion rate for the combined administration of prop-

ofol and remifentanil is 0.6�15 μg kg�1 h�1 (Mehta et al., 2006). For an 80-kg

patient, this range is equivalent to 0.008�0.02 mg min�1. Hence, the efficacy of

the Q-learning-based controller with respect to two different drug infusion rates;

0.05 and 0.1 mg min�1 are tested. Figs. 8 and 9 show the controlled variable

(BIS) for the two different infusion rates of remifentanil. For both cases, first the

drug propofol alone during the time interval t 2 [0, 60) min is administered and then
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Fig. 9 Simulation results with remifentanil infusion rate of uA(t) ¼ 0.05 mg min�1 during t ¼
[60, 120]. (A) BIS index versus time for BIStarget ¼ 65. (B) Control input uS(t) versus time

(Padmanabhan et al., April, 2017a).
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Fig. 8 Simulation results with remifentanil infusion rate of uA(t) ¼ 0.1 mg min�1 during t ¼
[60, 120]. (A) BIS index versus time for BIStarget ¼ 65. (B) Control input uS(t) versus time
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Table 6 Performance metrics for 25 patients for the controlled variable BIS for uA(t) ¼
0.1mgmin�1 (Padmanabhan et al., April, 2017a)

Performance metrics

Drugs

Propofol Propofol and remifentanil

MPE (%) 1.4657 	 0.3110 0.499 	 4.865

MDPE (%) 1.4349 	 0.3127 � 1.678 to 0

MDAPE (%) 1.4349 	 0.9479 0�1.678

Table 7 Performance metrics for 25 patients for the controlled variable BIS for uA(t) ¼
0.05mgmin�1 (Padmanabhan et al., April, 2017a)

Performance metrics

Drugs

Propofol Propofol and remifentanil

MPE (%) 1.2675 	 0.3535 0.6111 	 0.4006

MDPE (%) 1.4349 	 0.3125 0.1182 	 1.5518

MDAPE (%) 1.4349 	 0.9479 0.2698 	 1.4079
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during t 2 [60, 120] remifentanil along with propofol is infused. Since the two drugs

have synergistic interactive effects, the desired drug effect of BIStarget ¼ 65 can be

achieved using lower doses of propofol when administered along with remifentanil.

It can be seen from Figs. 8 and 9 that the target anesthetic effect is achieved and

maintained using a lower dose of propofol when both drugs are administered

together.

As mentioned earlier, for our simulations two different drug infusion rates of the

analgesic drug remifentanil are considered. Tables 6 and 7 show the statistical perfor-

mance indices such as mean performance error (MPE), MDPE, and MDAPE used to

evaluate the RL-based controller for the two different values of uA used (Moore et al.,

2014; Padmanabhan et al., 2015). It can be seen from Figs. 8 and 9, and Tables 6 and 7

that the performance of the RL-based controller is within the acceptable clinical

ranges (Moore et al., 2014).

Simulations are conducted to generate the 25 simulated patients using the

pharmacological parameters given in Table 5. Our simulation results (see

Tables 6 and 7) show comparable performance with the recent in silico trial

conducted on 24 virtually generated patients using model-based predictive control

algorithm for automatic induction and regulation of depth of anesthesia (Nascu

et al., 2011). In this in silico trial, the range of the percentage value of PE is

�2.12 	 15.13, value of MDPE is 0.8664, and the value of MDAPE is 1.114 for

the 24 patients.
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4 Control of cancer chemotherapy treatment

In this section, an RL-based controller design approach for the closed-loop control of

cancer chemotherapy is developed. Specifically, a multiobjective RL-based controller

to eradicate tumor cells by simultaneously accounting for the damage of normal cells

and immune cells in a patient is discussed. The Q-learning-based approach presented

in this section follows the general framework discussed in Section 2.1 to implement a

similar controller for the control drug dosing pertaining to chemotherapy. The efficacy

of the RL-based controller is evaluated using a nonlinear model of cancer chemother-

apy controller. In the following section, a pharmacological model for cancer chemo-

therapy treatment is presented.
4.1 Mathematical model of cancer chemotherapy

Recently, there have been considerable efforts to develop various mathematical

models to depict cancer dynamics. This is mainly to support research activities asso-

ciated with the prediction of cancer incidence, drug development and its validation,

and evaluation of novel drug-dosing approaches (De Pillis and Radunskaya, 2003;

Sbeity and Younes, 2015). A mathematical model of cancer chemotherapy essentially

accounts for the growth, death, mutation, PK, and PD in the tumor microenvironment.

Typically, tumor microenvironment involves many types of cells, extracellular

matrix, proteins, blood vessels, lymph vessels, etc. However, for the studies related

to cancer chemotherapy, the three main cell types identified are tumor cells, immune

cells, and host (normal) cells. All these cell types share common habitat (tumor micro-

environment) and resources (nutrition and oxygen), resulting in nonlinear and

interdependent cell dynamics. In general, a tumor without blood vessels and with

blood vessels are referred as benign cancer and malignant cancer, respectively. Malig-

nant cancers are capable of spreading (metastasize) from a tumor microenvironment

to a healthy new site (ACS, 2015). Metastatic cancer is potentially lethal and hence it

is often recommended to eradicate the tumor in the initial stage itself to avoid

metastases.

Similar to the previous section concerning the RL-based control of anesthesia

administration, in this section, a nonlinear model representing the cancer dynamics

as given by Batmani and Khaloozadeh (2013) and De Pillis and Radunskaya

(2003) is used to train the RL agent. In this model, the cell dynamics involved in

the tumor microenvironment is explained by using the number of tumor cells, immune

cells, normal cells, and drug concentration denoted by T(t), t� 0, I(t), t� 0,N(t), t� 0,

C(t), t � 0, respectively. The model is given by
_x1ðtÞ ¼ r2x1ðtÞ 1�b2x1ðtÞ½ �� c4x1ðtÞx2ðtÞ�a3x1ðtÞx4ðtÞ, x1ð0Þ¼ x10, t� 0,

(37)

_x2ðtÞ¼ r1x2ðtÞ 1�b1x2ðtÞ½ �� c2x3ðtÞx2ðtÞ� c3x2ðtÞx1ðtÞ�a2x2ðtÞx4ðtÞ,
x2ð0Þ¼ x20,

(38)
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_x3ðtÞ ¼ s+
ρx3ðtÞx2ðtÞ
αc + x2ðtÞ � c1x3ðtÞx2ðtÞ�d1x3ðtÞ�a1x3ðtÞx4ðtÞ, x3ð0Þ¼ x30,

(39)

_x4ðtÞ ¼ �d2x4ðtÞ+ uðtÞ, x4ð0Þ¼ x40, (40)

e x (t)¼ N(t), t� 0, x (t)¼ T(t), t� 0, x (t)¼ I(t), t� 0, and x (t)¼ C(t), t� 0,
wher 1 2 3 4

u(t), t� 0, is the drug infusion rate, s denotes the (constant) influx rate of immune cells

to the site of the tumor, r1 and r2 represent the per capita growth rate of the tumor cells

and normal cells, respectively, b1 and b2 represent the reciprocal carrying capacities of
both the cells, d1 is the death rate of immune cells, d2 denotes the per capita decay rate
of the injected drug, and a1, a2, and a3 denote the fractional cell kill rates of the

immune cells, tumor cells, and normal cells, respectively (Batmani and

Khaloozadeh, 2013; De Pillis and Radunskaya, 2003; Pillis and Radunskaya, 2001).

The common response of the immune system of our body toward any identified

harmful infection or disease is to increase the number of immune cells. This happens

whenever the body’s immunosurveillance identifies a tumor cell and is modeled in

Eq. (39) using the term
ρx3ðtÞx2ðtÞ
αc + x2ðtÞ , where ρ and αc represent the immune response rate

and immune threshold rate, respectively (De Pillis and Radunskaya, 2003; Pillis and

Radunskaya, 2001). As mentioned earlier, since all the three main cell types share com-

mon habitat and resources the increase in the survival rate of one cell type adversely

effects the existence of the other type of cell. These interaction between the cell types

are modeled in Eqs. (37)–(39) using the terms �c1x3(t)x2(t), �c2x3(t)x2(t), c3x2(t)x1(t),
and c4x1(t)x2(t), where ci, i¼ 1, 2,…, 4, represent the competition terms (De Pillis and

Radunskaya, 2003). Similarly, the effect of the chemotherapeutic drug on all the three

cell types is modeled in Eqs. (37)–(39) using the terms aix4(t), i ¼ 1, 2, …, 3.

Note that, apart from annihilating the tumor cells, the chemotherapeutic agent can

also adversely affect the proliferation and survival of the normal cells and immune

cells. Other typical side effects of chemotherapeutic drugs include hair loss, nausea, fre-

quent infections due to the reduction in immune cell number, neuropathy, anemia, and

organ damage (ACS, 2015). Hence, the aim is to derive optimal control input u(t), t� 0,

for the control of drug infusion during chemotherapy so that the desired drug effect is

maximized and the drug-induced side effects are minimized.
4.2 RL-based optimal control for chemotherapic drug dosing

The model (37)�(40) is used along with the general framework discussed earlier in

this chapter to develop an RL-based control approach for the closed-loop control of

cancer chemotherapy. Similar to anesthesia administration discussed earlier, the prob-

lem of obtaining control solution for eradicating tumor cells using chemotherapeutic

agents requires sequential decision making and can be solved using RL-based

approaches. Here, the objective is to drive the system given by Eqs. (37)–(40) from
a nonzero initial condition to the final goal state such as x2(t) ¼ 0 at some time t.
This requires deriving the best sequence of actions in terms of the drug infusion rates
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so as to steer the cancer patient from the state x2(t)� 0, t� 0, to the desired state x2(t)¼
0. Toward this end, first rewrite Eqs. (37)–(40) in the state space form given by
Fig.

April
_xðtÞ ¼ f ðxðtÞ,uðtÞÞ, xð0Þ¼ x0, t� 0, (41)

yðtÞ ¼ hðxðtÞÞ, (42)

n n n l n
where f :  �! , h :  ! , xðtÞ 2 , t � 0, denotes the state vector,

uðtÞ 2, t � 0, represents the control input, and yðtÞ 2l, t � 0, denotes the system

output.

In this control problem, the number of tumor cells, given by x2(t), t� 0, is the feed-

back parameter used to derive the optimal amount of drug to be titrated to the patient.

In case of a peripheral tumor, the number of tumor cells can be measured employing a

caliper. However, for externally inaccessible tumors, such as that in the brain or lungs,

imaging techniques can be used to assess the volume of the tumor (Batmani and

Khaloozadeh, 2013; Gholami et al., 2011; Huang et al., 2011; Suzuki et al., 2008).

Fig. 10 shows the schematic diagram of the training steps that is used to obtain the

optimalQ function for cancer chemotherapy. Here, the objective is to derive the optimal

control sequence that results in aminimum tumor volume, ideally x2(t)¼ 0. As the train-

ing of the RL agent is predicated on the availability of the discrete states sk 2S, it is
straightforward to define the state sk of the patient in terms of measurable output

y(t), t � 0. Thus, sk ¼ g(y(t)), kT � t < (k + 1)T, is assigned, where g : l!S�
(Pachmann et al., 2001; Pillis and Radunskaya, 2001).

Sections 2.1 and 2.2 explain the use of RL-based approaches for the development

of algorithms for optimal decisions making (Padmanabhan et al., 2017; Sutton and
10 Schematic diagram of training sequence to obtain optimalQ table (Padmanabhan et al.,

, 2017b).
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Barto, 1998; Vrabie et al., 2013). In this section, the RL framework discussed in

Sections 2.1 and 2.2 is used to develop a closed-loop controller for regulating cancer

chemotherapy treatment. As shown in Fig. 1, the main elements include an agent and a

system. Note that here also, as the Q-learning algorithm does not use transition prob-

ability matrix denoted by P in order to derive the optimal control policy, it is assumed

to be unknown. A controller or an agent is developed to maximize the reward it

receives over an infinite horizon defined by Eq. (4). As explained in Section 2.2, a

Q function is progressively updated as per Eq. (6) using the available information with

respect to system (41) involving the current state, action taken, new state reached, and

reward received for the state transition.
4.3 Results and discussion

This section details the numerical examples that demonstrate the performance of the

Q-learning-based approach for the closed-loop control of drug dosing related to che-

motherapy. To account for real-time situations, three different clinical scenarios were

used to train the RL-based controller. Specifically, the case of an adult patient with

cancer, a pregnant woman with cancer, and a critically ill elderly patient with cancer

is considered. Here, different RL agents are developed to address the drug-dosing con-

trol in each of these cases. It is apparent that the ability of the human body to grow,

repair, and defend disease is different for different age groups (Batmani and

Khaloozadeh, 2013). The reason behind choosing these three case studies is to dem-

onstrate the changes required in the RL algorithm to implement clinically relevant

treatment strategies.

For instance, in case of a young cancer patient, the first preference of an oncologist

will be to eradicate tumor cells to prevent metastasis. As young patients have a good

growth ability, even if some of the normal cells are damaged as a side effect of che-

motherapy that will be easily compensated by the body. However, this is not the case

with an elderly patient who suffers from cancer as well as other diseases. For an

elderly patient with cancer, the oncologist will try to eradicate cancer while preserving

normal cells as well. Similarly, if the patient is suffering from brain cancer or cancer in

any of vital organ, then also it is important to restrict damage of normal cells. These

conditions are accounted for by selecting appropriate reward function (19). Moreover,

for specific patient population like infants, children, and pregnant women, the oncol-

ogist needs to restrict the upper limits of the drug dose. This can be achieved by appro-

priately choosing the maximum value of the drug infusion rate umax in IRk¼ ak� umax

while training the RL agent.

The parameters listed in Table 8 are used in Eqs. (37)�(40) to generate simulated

patients for the training and testing of the RL-based control algorithm. In the simula-

tion, the maximum number of iteration is assigned as 50,000 scenarios. Here, a sce-

nario is the series of state transitions from a random initial state to the desired final

state sk. The value of ηk(sk, ak) ¼ 0.2 is assigned initially for the first 499 scenarios

and then the value of ηk(sk, ak) is subsequently halved after every 500th scenario. After
convergence of the Q table to the optimal Q function, for every state sk, the agent



Table 8 Parameter values used to generate simulated patient (Batmani and Khaloozadeh,

2013; De Pillis and Radunskaya, 2003) (Padmanabhan et al., April, 2017b)

Parameter Parameter description Value Unit

a1 Fractional immune cell kill rate 0.2 mg�1Lday�1

a2 Fractional tumor cell kill rate 0.3 mg�1Lday�1

a3 Fractional normal cell kill rate 0.1 mg�1Lday�1

b1 Reciprocal carrying capacity of tumor cells 1 cell�1

b2 Reciprocal carrying capacity of normal cells 1 cell�1

c1 Immune cell competition term (between

T and I cells)

1 cell�1day�1

c2 Tumor cell competition term (between T and

I cells)

0.5 cell�1day�1

c3 Tumor cell competition term (between N and

T cells)

1 cell�1day�1

c4 Normal cell competition term (between

N and T cells)

1 cell�1day�1

d1 Immune cell death rate 0.2 day�1

d2 Decay rate of injected drug 1 day�1

r1 Per unit growth rate of tumor cells 1.5 day�1

r2 Per unit growth rate of normal cells 1 day�1

s Immune cell influx rate 0.33 cellday�1

αc Immune threshold rate 0.3 cell

ρ Immune response rate 0.01 day�1
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chooses an action ak ¼ arg maxa2AQðsk,aÞ. Next, the changes required in the devel-

opment of the RL-based agent for three clinical situations are discussed.

Case 1. First, the case of a young patient with cancer is considered. In this case,

since the patient has a good growth ability, the patient’s body can more easily com-

pensate for the loss of normal cells and immune cells as the side effect of chemother-

apy. In such a situation, the oncologist typically tries to eradicate the cancer cells x2(t),
t� 0, completely. Thus, here the objective is to annihilate the tumor cells to attain the

desired state x2d ¼ 0. Therefore, the error e(t), t � 0, is defined as e(t) ¼ x2(t) � x2d.
The criteria used for the state assignment based on the error e(t), kT � t < (k + 1)T is

shown in Table 9. In this case, the reward rk+1 is calculated by setting e(t)¼ x2(t). For
this case, an RL agent trained with umax ¼ 10mgL�1day�1 is used.
Fig. 11 shows the response of the patient when a chemotherapeutic drug is admin-

istered using an RL-based controller and includes the plots of the number of normal

cells, the number of tumor cells, the number of immune cells, and the concentration

of chemotherapeutic drug in blood. The number of normal cells and tumor cells given

in Fig. 11 are normalized values. Note that with treatment, the number of tumor cells

have reduced and the normal cells have increased. However, see that initially the



Table 9 State assignment for Cases 1–3 based on e(t) (Padmanabhan et al.,

April, 2017b)

Cases 1 and 2 Case 3

State sk e(kT) State sk e(kT)

1 [0, 0.0063] 1 [0, 0.03]

2 [0.0063, 0.0125] 2 [0.03, 0.1]

3 [0.0125, 0.025] 3 [0.1, 0.2]

4 [0.025, 0.01] 4 [0.2, 0.3]

5 [0.01, 0.05] 5 [0.3, 0.4]

6 [0.05, 0.1] 6 [0.4, 0.5]

7 [0.1, 0.2] 7 [0.5, 0.6]

8 [0.2, 0.25] 8 [0.6, 0.7]

9 [0.25, 0.3] 9 [0.7, 0.8]

10 [0.3, 0.35] 10 [0.8, 0.9]

11 [0.35, 0.4] 11 [0.9, 1]

12 [0.4, 0.45] 12 [1, 1.2]

13 [0.45, 0.5] 13 [1.2, 1.4]

14 [0.5, 0.55] 14 [1.4, 1.6]

15 [0.55, 0.6] 15 [1.6, 1.8]

16 [0.6, 0.65] 16 [1.8, 2]

17 [0.65, 0.7] 17 [2, 2.2]

18 [0.7, 0.8] 18 [2.2, 2.5]

19 [0.8, 0.9] 19 [2.5, 3]

20 [0.9, ∞] 20 [3, ∞]

Notes: Case 1: young cancer patient, Case 2: pregnant woman with cancer, and Case 3: an elderly
patient who has cancer along with other critical illnesses.
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number of immune cells decreases as an adverse effect of chemotherapy, and later their

number improves. The amount of drug administered for Case 1 is shown in Fig. 12.

Case 2. For this case, a young pregnant woman with cancer is considered. Here, the

aim is to keep the amount of the chemotherapeutic drug used to a minimum level and

thus not harm the fetus. After child birth, the use of the chemotherapeutic drug can be

increased to the required level to eradicate tumor. In similar situations, the oncologist

often resorts to a two-stage chemotherapy. Here, for our simulations, it is assumed that

the patient 7 months pregnant. In the first stage, the maximum amount of the drug

infused is restricted by setting umax ¼ 0.5mgL�1day�1. However, after child birth,

the maximum amount of the drug infused is increased to umax ¼ 10mgL�1day�1

(Batmani and Khaloozadeh, 2013).

For training the RL agent to derive drug infusion rates during the first stage, the

value of umax was set to 0.5 mgL�1day�1. Similarly, for the second state, the value

of umax was set to 10 mgL�1day�1. Figs. 13 and 14 show the simulation results for

the two-stage chemotherapy for the young pregnant woman using RL-based control-

lers. Note that during the initial 90 days, the drug concentration in the plasma is
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Fig. 11 Response of young patient with cancer (Case 1), umax ¼ 10mg L�1day�1

(Padmanabhan et al., 2017b).
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Fig. 12 Amount of drug administered (Case 1), umax ¼ 10mg L�1day�1 (Padmanabhan et al.,

2017b).
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Fig. 13 Response of young pregnant woman with cancer (Case 2), umax ¼ 0:5mg L�1day�1

until delivery (90 days) and then umax ¼ 10mg L�1day�1 (Padmanabhan et al., 2017b).
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restricted to 0.5 mgL�1, however, after child birth the amount of drug used to erad-

icate the tumor completely has increased.
Case 3. For this case, an elderly patient with cancer and other illnesses is consid-

ered. This scenario represents the clinical situations wherein it is essential to minimize

the damage to the normal cells while annihilating maximum number of tumor cells. In

order to account for this requirement while training the RL agent, the parameter βw
which denotes a weighing factor is used to prioritize between the normal cells and

cancer cells. The objective is to attain x1d¼ 1 and x2d¼ 0, where x1d and x2d represent
the target values of x1(t), t � 0, and x2(t), t � 0, respectively. Here, an RL agent is

trained using a reward function defined based on the deviation of the number of nor-

mal cells and tumor cells from the respective desired values. Specifically, the state sk,
kT � t < (k + 1)T, is defined in terms of the error
eðtÞ¼ βwx2ðtÞ+ ð1�βwÞ½1� x1ðtÞ�: (43)
The reward is calculated using the value of error e(t), kT� t< (k + 1)T in Eq. (19).

For our simulation, the parameter values used are θ ¼ 0.7, η ¼ 0.2, and βw ¼ 0.9.

Simulation results showing the response of the closed-loop control of the chemother-

apeutic drug for Case 3 is shown in Figs. 15 and 16. Here the RL agent is trained with

respect to the error defined by Eq. (43). Note that, compared to Case 1 that is shown in
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Fig. 14 Amount of drug administered (Case 2), umax ¼ 0:5mg L�1day�1 until delivery
(90 days) and then umax ¼ 10mg L�1day�1 (Padmanabhan et al., 2017b).
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Figs. 11 and 12, the amount of drug used in this case is lesser (see Figs. 15 and 16).

This is to minimize the damage to the healthy normal cells.

Table 9 shows the criteria used for the state assignment for Cases 1–3. For Cases 1
and 3, and the second stage of Case 2, the finite action set A¼f0,0:01,0:02,0:03,
0.04, 0.06, 0.08, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} is used.

However, for the first stage of Case 2, with umax ¼ 0.5mgL�1day�1, the finite action
set A¼f0:5,0:55,0:6,0:65,0:7,0:75,0:78,0:80,0:82,0:85,0:87,0:9,0:91,0:92,0:93,
0:94,0:95, 0.97, 0.98, 1} is used. Moreover, for Cases 1 and 3, and the second

stage of Case 2 during the training of RL agent, the goal state as s ¼ 1 is used to

eradicate the tumor completely. However, for the first stage of Case 2, during the

training of RL agent, the goal state is set as s ¼ 7, which represents a limited

tumor size.

In order to demonstrate the robustness of the controller, the trained optimal

RL-based controller is used for the drug dosing of three different simulated patients.

In Case (i), we consider the simulated patient with a nominal model generated using

the parameters given in Table 8. In Cases (ii) and (iii), simulated patients with �10%
and +15% parameter variations with respect to the values given in Table 8 are used.

Figs. 17 and 18 show the corresponding simulation results. It can be seen that the con-

troller is able to impart patient-specific infusion rates in accordance with the param-

eter variations. This is mainly due to the fact that the drug-dosing decision is made

using the optimal Q table with respect to the state sk. Recall that the state sk is defined
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Fig. 15 Response of an elderly patient who has cancer along with other critical illnesses (Case

2), umax ¼ 10mg L�1day�1 (Padmanabhan et al., 2017b).
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Fig. 16 Amount of drug administered (Case 2), umax ¼ 10mg L�1day�1 (Padmanabhan

et al., 2017b).
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Table 10 Statistical analysis for 15 simulated patients (Padmanabhan et al., April, 2017b)

Parameter Ndev Tper

Percent value; before chemotherapy Min 40 100

Max 40 100

Mean 40 100

Percent value; after 1 week of chemotherapy Min 10.17 19.34

Max 87.75 0.0096

Mean 45.05 2.50

Percent value; after 4 weeks of chemotherapy Min 0 0.5324

Max 3.47 0

Mean 0.4271 0.1708

Percent value; after 7 weeks of chemotherapy Min 0 0.0634

Max 0.0560 0

Mean 0.0059 0.0064
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Fig. 17 Response for three different patient models: Case (i) with nominal model, Case (ii) with

�10% parameter variation, and Case (iii) with +15% parameter variation (Padmanabhan

et al., 2017b).
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based on the error e(t), t � 0, which reflects the patient-specific response to drug

intake. Thus, the value of the error e(t), t � 0, varies according to the patient

characteristics.

Table 10 shows the statistical results of the simulations performed on 15 simulated

patients using the RL agent trained for Case 1. We generated 15 simulated patients
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Fig. 18 Control input for three different patient models: Case (i) with nominal model, Case
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with the parameter ranges of fraction cell kill ai, i¼ 1, 2, 3, 0< ai� 0.5, a3� a1� a2,

carrying capacities b�11 � b�12 ¼ 1, competition terms 0.3 � ci � 1, i ¼ 1,…, 4, death

rates 0.15 � d1 � 0.3, d2 ¼ 1, per unit growth rates, 1.2 � r1 � 1.6, r2 ¼ 1, immune

source rate 0.3� s� 0.5, immune threshold rate 0.3� αc� 0.5, and immune response

rate 0.01 � αc � 0.05. See De Pillis and Radunskaya (2003) for further details on the

parameter ranges of the cancer chemotherapy model.

The percent deviation of the number of normal cells from the target value (x1d¼ 1)

given in Table 10 is calculated as
Ndev¼ jMeasured value�Target valuej
Target value

�100¼ jx1ðt*Þ�1j�100,

e t* ¼ 0, 1, 4, or 7 weeks. The percent value of the number of tumor cells with
wher

respect to the initial value is calculated as
Tper¼ Measured value

Initial value
�100¼ x2ðt*Þ

x2ð0Þ �100:

n be seen from Table 10 that by week 7, the percent deviation of the number of
It ca

normal cells from the target value is 0.0059 and the percent value of the number of
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tumor cells with respect to the initial value is 0.0064 for the 15 simulated patients. The

minimum, maximum, and mean number of days for achieving the target values of

x1(t), t � 0, and x2(t), t � 0, are 13, 50, 28, and 6, 52, 27 days, respectively, for

the 15 simulated patients. Comparing our simulation results with those by Batmani

and Khaloozadeh (2013), it can be seen that both methods result in very similar

responses. In both cases the tumor is eradicated using optimal chemotherapy drug dos-

ing and the controllers are robust to parameter variations. However, the advantage of

the RL-based method is that it does not require a model of the system in order to

develop a controller.
5 Summary

First, in Section 2, an RL-based controller design approach for the simultaneous reg-

ulation of sedation and MAP using the controlled titration of the sedative drug prop-

ofol is detailed. Simulation studies conducted using 30 simulated patients with

varying pharmacological parameters show that the RL-based controller design

approach is promising in developing closed-loop controllers for ICU sedation while

regulating multiple vital physiological parameters simultaneously.

Next, in Section 3, an RL-based controller that can account for the simultaneous

administration of drugs with synergistic interactive effect is presented. The RL agent

is trained using Q-learning algorithm with respect to the states defined in terms of the

error associated with the desired output. A similar method can be used for the case of

the drugs with inhibitive drug interactive effect. Moreover, our simulations demon-

strate that the RL-based methods can be used to implement closed-loop control sys-

tems which are robust to system uncertainties. Further experiments are warranted to

refine the optimal control agent and to extend it by including the simultaneous control

of additional vital physiological parameters such as heart rate, cardiac output, and

respiratory rate.

Finally, in Section 4, the efficacy of the RL-based method is investigated for dif-

ferent cases of cancer treatment. The method results in an optimal and robust control-

ler. In order to preserve normal cells while eradicating tumor cells, a scaled value of

the error is used in the reward function. The controller using the RL method can be

extended to account for different constraints in cancer treatment by appropriately

choosing the reward function. The main advantage of the RL-based control method

is that the algorithm does not require knowledge of the system dynamics. However,

different RL agents need to be trained to account for the patient characteristics of dif-

ferent patient groups.

It is apparent that the credibility of feedback information that is used to guide the

controller is one of the main factors that determines the closed-loop performance of

the controller. In case of biomedical applications, most of the monitoring systems has

to account for various errors in the measured signal which may arise due to the move-

ment of cables, electrodes, and patient, and also the noise and interferences from other

devices. Hence, modern biomedical monitors include intricate filtering algorithms to

improve signal-to-noise ratio of the measurement. This in turn increases the
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computation time and hence introduces time delay in measurement. Hence, studying

the scope for improvement in performance of the proposed Q-learning-based control-
ler design methodology by accounting for possible time delays during intravenous

drug administration is desirable.
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