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Stochastic Semistability for Nonlinear Dynamical
Systems With Application to Consensus on
Networks With Communication Uncertainty

Wassim M. Haddad , Tanmay Rajpurohit , and Xu Jin

Abstract—This article focuses on semistability and finite
time semistability analysis and synthesis of stochastic dy-
namical systems having a continuum of equilibria. Stochas-
tic semistability is the property whereby the solutions of
a stochastic dynamical system almost surely converge to
Lyapunov stable in probability equilibrium points deter-
mined by the system initial conditions. In this article, we
extend the theories of semistability and finite-time semista-
bility for deterministic dynamical systems to develop a
rigorous framework for stochastic semistability and
stochastic finite-time semistability. Specifically, Lyapunov
and converse Lyapunov theorems for stochastic semistabil-
ity are developed for dynamical systems driven by Markov
diffusion processes. These results are then used to develop
a general framework for designing semistable consensus
protocols for dynamical networks in the face of stochas-
tic communication uncertainty for achieving multiagent co-
ordination tasks in finite time. The proposed controller
architectures involve the exchange of generalized charge
or energy state information between agents guaranteeing
that the closed-loop dynamical network is stochastically
semistable to an equipartitioned equilibrium representing a
state of almost sure consensus consistent with basic ther-
modynamic principles.

Index Terms—Communication uncertainty, consensus
protocols, distributed control, Markov processes, nonlin-
ear networks, stochastic finite time semistability, stochastic
semistability, thermodynamic protocols.

I. INTRODUCTION

FOR deterministic dynamical systems the authors in [1]–[4]
developed a unified stability analysis framework for sys-

tems having a continuum of equilibria. Since every neighbor-
hood of a nonisolated equilibrium contains another equilibrium,
a nonisolated equilibrium cannot be asymptotically stable nor
finite time stable. Hence, asymptotic and finite time stability
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are not the appropriate notions of stability for systems having
a continuum of equilibria. Two notions that are of particular
relevance to such systems are convergence and semistability.
Convergence is the property whereby every system solution
converges (asymptotically or in finite time) to a limit point that
may depend on the system initial condition. Semistability (resp.,
finite time semistability) is the additional requirement that all
solutions converge asymptotically (resp., in finite time) to limit
points that are Lyapunov stable. Semistability (resp., finite time
semistability) for an equilibrium thus implies Lyapunov stabil-
ity, and is implied by asymptotic (resp., finite time) stability.

It is important to note that semistability is not merely equiv-
alent to asymptotic stability of the set of equilibria. Indeed, it is
possible for a trajectory to converge to the set of equilibria with-
out converging to any one equilibrium point [1]. Conversely,
semistability does not imply that the equilibrium set is asymp-
totically stable in any accepted sense. This is because stability
of sets is defined in terms of distance (especially in case of
noncompact sets), and it is possible to construct examples in
which the dynamical system is semistable, but the domain of
semistability contains no ε-neighborhood (defined in terms of
the distance) of the (noncompact) equilibrium set, thus ruling
out asymptotic stability of the equilibrium set. Hence, semista-
bility and set stability of the equilibrium set are independent
notions.

In this article, we extend the theories of semistability and
finite-time semistability for deterministic dynamical systems de-
veloped in [1]–[4] to develop a rigorous framework for stochas-
tic semistability and stochastic finite-time semistability. First,
in Section III, we extend the theory of stochastic semistability
given in [5] by presenting new Lyapunov theorems as well as
the first converse Lyapunov theorem for stochastic semistabil-
ity, which holds with a continuous Lyapunov function whose
infinitesimal generator decreases along the stochastic dynami-
cal system trajectories and is such that the Lyapunov function
satisfies inequalities involving the average distance to the set of
equilibria. It is important to note here that stochastic semistabil-
ity theory as developed in [5] involves a stronger set of stability
in probability definitions that do not allow for a small probability
of escape of the system sample trajectories for small deviations
from the system equilibrium. While our stochastic semistabil-
ity results developed in this article resemble the results in [5],
the proofs of our results are rendered more difficult by the fact
that the results in this article are predicated on a weaker set of
stability in probability definitions, and hence, provide a stronger
set of stochastic semistability results.

Next, in Section IV, we establish stochastic finite time
semistability theory. In particular, we present the notions of
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finite time convergence in probability and finite time semista-
bility in probability for nonlinear stochastic dynamical systems
driven by Markov diffusion processes. Furthermore, we estab-
lish the continuity of a settling time operator and develop a
sufficient Lyapunov stability theorem for finite time semista-
bility in probability. Specifically, we develop almost sure finite
time convergence and stochastic Lyapunov stability properties
to address almost sure finite time semistability requiring that the
sample trajectories of a nonlinear stochastic dynamical system
converge almost surely in finite time to a set of equilibrium so-
lutions, wherein every equilibrium solution in the set is almost
surely Lyapunov stable.

Next, in Sections V and VI, we use the results of Sections III
and IV to develop a general, thermodynamically motivated
framework for designing semistable and finite-time semistable
protocols for stochastic dynamical networks for achieving co-
ordination tasks asymptotically and in finite time. Network sys-
tems involve distributed decision-making for coordination of
networks of dynamic agents and address a broad area of ap-
plications including cooperative control of unmanned air vehi-
cles (UAV’s) and autonomous underwater vehicles (AUV’s) for
combat, surveillance, and reconnaissance [6], distributed recon-
figurable sensor networks for managing power levels of wireless
networks [7], air and ground transportation systems for air traf-
fic control and payload transport and traffic management [8],
swarms of air and space vehicle formations for command and
control between heterogeneous air and space vehicles [9], [10],
and congestion control in communication networks for routing
the flow of information through a network [11].

Even though convergence, semistability, finite time semista-
bility, and optimality for deterministic multiagent network sys-
tems involving cooperative control tasks, such as formation con-
trol, rendezvous, flocking, cyclic pursuit, and consensus have
received considerable attention in the literature (see, for ex-
ample, [4], [6]–[36]), stochastic multiagent networks have not
been as plethorically developed; notable contributions include
[37]–[41]. These contributions address asymptotic convergence
[39], time-varying network topologies [38], communication de-
lays [41], asynchronous switchings [40], and optimality [37];
however, none of the aforementioned references address the
problems of stochastic semistability and stochastic finite time
semistability.

A unique feature of the closed-loop dynamics under any con-
trol algorithm that achieves consensus in a dynamical network is
the existence of a continuum of equilibria representing a state of
consensus. Under such dynamics, the limiting consensus state
achieved is not determined completely by the dynamics, but de-
pends on the initial system state as well. Thus, from a practical
viewpoint, it is not sufficient for a nonlinear control protocol to
only guarantee that a network converges to a state of consen-
sus since steady state convergence is not sufficient to guarantee
that small perturbations from the limiting state will lead to only
small transient excursions from a state of consensus. It is also
necessary to guarantee that the equilibrium states representing
consensus are Lyapunov stable, and consequently, semistable.

To capture network system uncertainty and communication
uncertainty between the agents in a network, wherein the evo-
lution of each link of the network communication topology fol-
lows a Markov process for modeling unknown communication
noise and attenuations, we use the results of Sections III and IV
to develop almost sure consensus protocols for multiagent sys-
tems with nonlinear stochastic dynamics. Specifically, we use

our stochastic semistability and stochastic finite time semista-
bility frameworks to design distributed asymptotic and finite
time consensus control protocols for nonlinear bidirectional dy-
namical networks with stochastic communication uncertainty.
The proposed controller architectures are predicated on the re-
cently developed notion of stochastic dynamical thermodynam-
ics [42], [43] resulting in controller architectures involving the
exchange of generalized charge or energy state information be-
tween agents that guarantee that the closed-loop dynamical net-
work is consistent with basic thermodynamic principles. Finally,
we note that a preliminary conference version of this article ap-
peared in [44]. The present article considerably expands on [44]
by providing detailed proofs of all of the results in [44], a con-
verse Lyapunov theorem for stochastic semistability, stochastic
finite time Lyapunov semistability theorems, additional discus-
sion, and several numerical examples.

We begin by establishing notation, definitions, and mathe-
matical preliminaries in Section II.

II. MATHEMATICAL PRELIMINARIES

In this section, we establish notation, definitions, and review
some basic results on stability of nonlinear stochastic dynamical
systems [45]–[49]. Specifically, R denotes the set of real num-
bers, R+ denotes the set of positive real numbers, R+ denotes
the set of nonnegative numbers, Rn denotes the set of n × 1
real column vectors, and Rn×m denotes the set of n × m real
matrices. We write Bε(x) for the open ball centered at x with
radius ε, ‖ · ‖ for the Euclidean vector norm or an induced ma-
trix norm (depending on context), ||·||F for the Frobenius matrix
norm, AT for the transpose of the matrix A, and In or I for the
n × n identity matrix. Furthermore, Bn denotes the σ-algebra
of Borel sets in D ⊆ Rn and S denotes a σ-algebra generated
on a set S ⊆ Rn .

We define a complete probability space as (Ω,F , P ), where
Ω denotes the sample space, F denotes a σ-algebra, and P
defines a probability measure on the σ-algebra F ; that is, P is
a nonnegative countably additive set function on F such that
P (Ω) = 1 [47]. Furthermore, we assume that w(·) is a standard
d-dimensional Wiener process defined by (w(·),Ω,F , Pw 0 ),
where Pw 0 is the classical Wiener measure [48, p. 10], with
a continuous-time filtration {Ft}t≥0 generated by the Wiener
process w(t) up to time t. We denote byG a stochastic dynamical
system generating a filtration {Ft}t≥0 adapted to the stochastic
process x : R+ × Ω → D on (Ω,F , Px0 ) satisfying Fτ ⊂ Ft ,
0 ≤ τ < t, such that {ω ∈ Ω | x(t, ω) ∈ B} ∈ Ft , t ≥ 0, for all
Borel sets B ⊂ Rn contained in the Borel σ-algebra Bn . Here
we use the notation x(t) to represent the stochastic process
x(t, ω) omitting its dependence on ω.

We denote the set of equivalence classes of measurable, in-
tegrable, and square-integrable Rn or Rn×m (depending on
context) valued random processes on (Ω,F , P ) over the semi-
infinite parameter space [0,∞) by L0(Ω,F , P ), L1(Ω,F , P ),
and L2(Ω,F , P ), respectively, where the equivalence relation
is the one induced by P -almost-sure equality. In particular, ele-
ments of L0(Ω,F , P ) take finite values P -almost surely (a.s.).
Hence, depending on the context, Rn will denote either the set
of n × 1 real variables or the subspace of L0(Ω,F , P ) com-
prising of Rn random processes that are constant almost surely.
All inequalities and equalities involving random processes on
(Ω,F , P ) are to be understood to hold P -almost surely. Further-
more, E[ · ] and Ex0 [ · ] denote, respectively, the expectation
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with respect to the probability measure P and with respect to
the classical Wiener measure Px0 .

Finally, we write tr(·) for the trace operator, (·)−1 for the
inverse operator, V ′(x) � ∂V (x)

∂x for the Fréchet derivative of V

at x, V ′′(x) � ∂ 2 V (x)
∂x2 for the Hessian of V at x, and Hn for

the Hilbert space of random vectors x ∈ Rn with finite average
power, that is,Hn � {x : Ω → Rn |E[xTx] < ∞}. For an open
set D ⊆ Rn , HD

n
�= {x ∈ Hn | x : Ω → D} denotes the set

of all the random vectors in Hn induced by D. Similarly, for
every x0 ∈ Rn , Hx0

n
�= {x ∈ Hn | x

a.s.= x0}. Furthermore, C2

denotes the space of real-valued functions V : D → R that are
two-times continuously differentiable with respect to x ∈ D ⊆
Rn . Finally, we write x(t) a.s.→ M as t → ∞ to denote that x(t)
approaches the setM almost surely, that is, for every ε > 0 there
exists finite stopping time T > 0 such that dist(x(t),M) < ε

for all t > T , where dist(p,M) � infx∈M ||p − x||.
Consider the nonlinear stochastic dynamical system G given

by

dx(t) = f(x(t))dt + D(x(t))dw(t) x(t0)
a.s.= x0 t ≥ t0

(1)
where, for every t ≥ t0 , x(t) ∈ HD

n is a Ft-measurable ran-
dom state vector, x(t0) ∈ Hx0

n , D ⊆ Rn is an open set with
0 ∈ D, w(t) is a d-dimensional independent standard Wiener
process (i.e., Brownian motion) defined on a complete filtered
probability space (Ω, {Ft}t≥t0 , P ), x(t0) is independent of
(w(t) − w(t0)), t ≥ t0 , and f : D → Rn and D : D → Rn×d

are continuous functions and satisfy f(xe) = 0 and D(xe) = 0
for some xe ∈ D. An equilibrium point of (1) is a point xe ∈ D
such that f(xe) = 0 and D(xe) = 0. It is easy to see that xe is
an equilibrium point of (1) if and only if the constant stochastic
process x(·) a.s.= xe is a solution of (1). We denote the set of equi-
librium points of (1) by E � {ω ∈ Ω | x(t, ω) = xe} = {xe ∈
D | f(xe) = 0 and D(xe) = 0}.

The filtered probability space (Ω, {Ft}t≥t0 , P ) is clearly a
real vector space with addition and scalar multiplication de-
fined componentwise and pointwise. A Rn -valued stochastic
process x : [t0 , τ ] × Ω → D is said to be a solution of (1) on the
time interval [t0 , τ ] with initial condition x(t0)

a.s.= x0 if x(·) is
progressively measurable (i.e., x(·) is nonanticipating and mea-
surable in t and ω) with respect to {Ft}t≥t0 , f ∈ L1(Ω,F , P ),
D ∈ L2(Ω,F , P ), and

x(t) = x0 +
∫ t

t0

f(x(s))ds +
∫ t

t0

D(x(s))dw(s) a.s.

t ∈ [t0 , τ ] (2)

where the integrals in (2) are Itô integrals.
Note that for each fixed t ≥ t0 , the random variable ω �→

x(t, ω) assigns a vector x(ω) to every outcome ω ∈ Ω of an
experiment, and for each fixed ω ∈ Ω, the mapping t �→ x(t, ω)
is the sample path of the stochastic process x(t), t ≥ t0 . A
pathwise solution t �→ x(t) of (1) in (Ω, {Ft}t≥t0 , P x0 ) is said
to be right maximally defined if x cannot be extended (either
uniquely or nonuniquely) forward in time. We assume that all
right maximal pathwise solutions to (1) (Ω, {Ft}t≥t0 , P x0 ) exist
on [t0 ,∞), and hence, we assume (1) is forward complete. Suf-
ficient conditions for forward completeness or global solutions
of (1) are given in [47, Corollary 6.3.5].

Furthermore, we assume that f : D → Rn and D : D →
Rn×d satisfy the uniform Lipschitz continuity condition

‖f(x) − f(y)‖ + ‖D(x) − D(y)‖F ≤ L‖x − y‖ x, y ∈ D
(3)

and the growth restriction condition

‖f(x)‖2 + ‖D(x)‖2
F ≤ L2(1 + ‖x‖2) x ∈ D (4)

for some Lipschitz constant L > 0, and hence, since x(t0) ∈
HD

n and x(t0) is independent of (w(t) − w(t0)), t ≥ t0 , it fol-
lows that there exists a unique solution x ∈ L2(Ω,F , P ) to (1) in
the following sense. For every x ∈ HD

n \ {0} there exists τx > 0
such that if x1 : [t0 , τ1 ] × Ω → D and x2 : [t0 , τ2 ] × Ω → D
are two solutions of (1); that is, if x1 , x2 ∈ L2(Ω,F , P ) with
continuous sample paths almost surely solve (1), then τx ≤
min{τ1 , τ2} and P

(
x1(t) = x2(t), t0 ≤ t ≤ τx

)
= 1.

A weaker sufficient condition for the existence of a unique so-
lution to (1) using a notion of (finite or infinite) escape time under
the local Lipschitz continuity condition (3) without the growth
condition (4) is given in [50]. Moreover, the unique solution
determines a Rn -valued, time-homogeneous Feller continuous
Markov process x(·), and hence, its stationary Feller transition
probability function is given by ([49, Th. 3.4], [47, Th. 9.2.8])

P (x(t) ∈ B|x(t0)
a.s.= x0) = P (t − t0 , x0 , 0,B) x0 ∈ Rn

(5)
for all t ≥ t0 and all Borel subsets B of Rn , where
P (s, x, t,B), t ≥ s, denotes the probability of transition of the
point x ∈ Rn at time instant s into the set B ⊂ Rn at time in-
stant t. Finally, recall that every continuous process with Feller
transition probability function is also a strong Markov process
[49, p.101].

Definition 2.1 ([48, Def. 7.7]): Let x(·) be a time-
homogeneous Markov process in HD

n and let V : D → R. Then
the infinitesimal generator L of x(t), t ≥ 0, with x(0) a.s.= x0 , is
defined by

LV (x0)
�= lim

t→0+

Ex0 [V (x(t))] − V (x0)
t

x0 ∈ D. (6)

If V ∈ C2 and has a compact support, and x(t), t ≥ t0 , sat-
isfies (1), then the limit in (6) exists for all x ∈ D and the in-
finitesimal generator L of x(t), t ≥ t0 , can be characterized
by the system drift and diffusion functions f(x) and D(x)
defining the stochastic dynamical system (1) and is given by
[48, Th. 7.9]

LV (x) �=
∂V (x)

∂x
f(x) +

1
2
tr DT(x)

∂2V (x)
∂x2 D(x) x ∈ D.

(7)
The following definition introduces the notions of Lyapunov

and asymptotic stability in probability.
Definition 2.2 ([49]):

i) The equilibrium solution x(t)
a.s.≡ xe to (1) is Lyapunov

stable in probability if, for every ε > 0 and ρ ∈ (0, 1),
there exist δ = δ(ρ, ε) > 0 such that, for all x0 ∈ Bδ (xe)

P x0

(
sup
t≥t0

‖x(t) − xe‖ > ε

)
≤ ρ. (8)

ii) The equilibrium solution x(t)
a.s.≡ xe to (1) is asymp-

totically stable in probability if it is Lyapunov stable
in probability and there exists δ > 0 such that, for all
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x0 ∈ Bδ (xe)

lim
x0 →xe

P x0

(
lim
t→∞‖x(t) − xe‖ = 0

)
= 1. (9)

iii) The equilibrium solution x(t)
a.s.≡ xe to (1) is globally

asymptotically stable in probability if it is Lyapunov
stable in probability and, for all x0 ∈ Rn

P x0

(
lim
t→∞‖x(t) − xe‖ = 0

)
= 1. (10)

Next, we provide sufficient conditions for local and global
asymptotic stability in probability for the nonlinear stochastic
dynamical system (1).

Theorem 2.1 ([49, Th. 5.3 and Th. 5.11, Corollary 5.1]):
Consider the nonlinear stochastic dynamical system (1) and
assume that there exists a two-times continuously differentiable
function V : D → R such that

V (xe) = 0 (11)

V (x) > 0, x ∈ D, x �= xe (12)

∂V (x)
∂x

f(x) +
1
2
tr DT(x)

∂2V (x)
∂x2 D(x) ≤ 0, x ∈ D.

(13)

Then the equilibrium solution x(t)
a.s.≡ xe to (1) is Lyapunov

stable in probability. If, in addition

∂V (x)
∂x

f(x) +
1
2
tr DT(x)

∂2V (x)
∂x2 D(x) < 0, x ∈ D

x �= xe (14)

then the equilibrium solution x(t)
a.s.≡ xe to (1) is asymptotically

stable in probability. Moreover, if D = Rn and V (·) is radially

unbounded, then the equilibrium solution x(t)
a.s.≡ xe to (1) is

globally asymptotically stable in probability.

III. STOCHASTIC SEMISTABILITY

In this section, we develop a stability analysis framework for
stochastic systems having a continuum of equilibria. Specifi-
cally, we present necessary and sufficient conditions for stochas-
tic semistability. To develop stochastic semistability theory, we
need some additional notation and definitions.

The measurable map s : [0, τx) ×D × Ω → D denotes the
dynamic or flow of the stochastic dynamical system (1) and, for
all t, τ ∈ [0, τx), satisfies the cocycle property s(τ, s(t, x), ω) =
s(t + τ, x, ω) and the identity (on D) property s(0, x, ω) = x

for all x ∈ D and ω ∈ Ω. The measurable map st
�= s(t, ·, ω) :

D → D is continuously differentiable for all t ∈ [0, τx) out-
side a P -nullset and the sample path trajectory sx �= s(·, x, ω) :
[0, τx) → D is continuous in D for all t ∈ [0, τx). Thus, for
every x ∈ D, there exists a trajectory of measures defined for
all t ∈ [0, τx) satisfying the dynamical processes (1) with ini-
tial condition x(0) a.s.= x0 . For simplicity of exposition we write
s(t, x) for s(t, x, ω) omitting its dependence on ω.

Next, the following definitions for limit sets and stochastic
invariance are needed.

Definition 3.1: A point p ∈ D is a limit point of the tra-
jectory s(·, x) of (1) if there exists a monotonic sequence
{tn}∞n=0 of positive numbers, with tn → ∞ as n → ∞ , such

that s(tn , x) a.s.→ p as n → ∞. The set of all limit points of
s(t, x), t ≥ 0, is the limit set ω(x) of s(·, x) of (1).

Definition 3.2 ( [51]): An open set D ⊂ Rn is said to be
positively invariant with respect to (1) if D is Borel and, for all
x0 ∈ D, P x0 (x(t) ∈ D) = 1, t ≥ t0 .

It is important to note that the ω-limit set of a stochastic
dynamical system is a ω-limit set of a trajectory of measures,
that is, p ∈ ω(x) is a weak limit of a sequence of measures
taken along every sample continuous bounded trajectory of (1).
It can be shown that the ω-limit set of a stationary stochastic
dynamical system attracts bounded sets and is measurable with
respect to the σ-algebra of invariant sets. Thus, the measures of
the stochastic process x(·) tend to an invariant set of measures
and x(t) asymptotically tends to the closure of the support set
(i.e., kernel) of this set of measures almost surely.

However, unlike deterministic dynamical systems, wherein
ω-limit sets serve as global attractors, in stochastic dynamical
systems stochastic invariance (see Definition 3.2) leads to ω-
limit sets being defined for each fixed sample ω ∈ Ω of the
underlying probability space (Ω,F , P ), and hence, are path-
wise attractors. This is due to the fact that a cocycle property
rather than a semigroup property holds for stochastic dynamical
systems. For details, see [52]–[54].

The following proposition gives a sufficient condition for a
trajectory of (1) to converge almost surely to a limit point. For
this result, Dc ⊆ D ⊆ Rn denotes a positively invariant set with
respect to (1) and st(HDc

n ) denotes the image of HDc
n ⊂ HD

n

under the flow st : HDc
n → HD

n ; that is, st(HDc
n ) �= {y | y =

st(x0) for some x(0) a.s.= x0 ∈ HDc
n } .

Proposition 3.1: Consider the nonlinear stochastic dynam-
ical system (1) and let x ∈ Dc . If the limit set ω(x) of (1)
contains a Lyapunov stable in probability equilibrium point
y, then limx→y P x

(‖ limt→∞ s(t, x) − y‖ = 0
)

= 1, that is,

ω(x) a.s.= {y} as x → y.
Proof: Suppose y ∈ ω(x) is Lyapunov stable in probability

and let Nε ⊆ Dc be an open neighborhood of y. Since y is Lya-
punov stable in probability, there exists an open neighborhood
Nδ ⊂ Dc of y such that st(HNδ

n ) ⊆ HNε
n as x → y for every

t ≥ 0. Now, since y ∈ ω(x), it follows that there exists τ ≥ 0
such that s(τ, x) ∈ HNδ

n . Hence, s(t + τ, x) = st(s(τ, x)) ∈
st(HNδ

n ) ⊆ HNε
n for every t > 0. Since Nε ⊆ Dc is arbitrary,

it follows that y
a.s.= limt→∞ s(t, x). Thus, limn→∞ s(tn , x) a.s.= y

as x → y for every sequence {tn}∞n=1 , and hence, ω(x) a.s.= {y}
as x → y. �

The following definition introduces the notion of stochastic
semistability.

Definition 3.3: An equilibrium solution x(t)
a.s.≡ xe ∈ E of

(1) is stochastically semistable if the following statements hold.
i) For every ε > 0

lim
x0 →xe

P x0

(
sup

0≤t<∞
‖x(t) − xe‖ > ε

)
= 0.

Equivalently, for every ε > 0 and ρ ∈ (0, 1), there exists
δ = δ(ε, ρ) > 0 such that, for all x0 ∈ Bδ (xe)

P x0

(
sup

0≤t<∞
‖x(t) − xe‖ > ε

)
≤ ρ.

ii) limdist(x0 ,E)→0 P x0 (limt→∞ dist(x(t), E) = 0) = 1.
Equivalently, for every ρ ∈ (0, 1), there exists
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δ = δ(ρ) > 0 such that if dist(x0 , E) ≤ δ, then
Px0 (limt→∞ dist(x(t), E) = 0) ≥ 1 − ρ.
The dynamical system (1) is stochastically semistable
if every equilibrium solution of (1) is stochasti-
cally semistable. Finally, the dynamical system (1)
is globally stochastically semistable if i) holds and
P x0 (limt→∞ dist(x(t), E) = 0) = 1 for all x0 ∈ Rn .

Remark 3.1: Note that if x(t)
a.s.≡ xe ∈ E only satisfies i) in

Definition 3.3, then the equilibrium solution x(t)
a.s.≡ xe ∈ E of

(1) is Lyapunov stable in probability.
Next, we present sufficient conditions for stochastic semista-

bility.
Theorem 3.1: Consider the nonlinear stochastic dynamical

system (1). Let Q ⊆ Rn be an open neighborhood of E and
assume that there exists a two-times continuously differentiable
function V : Q → R+ such that

V ′(x)f(x) +
1
2
tr DT(x)V ′′(x)D(x) < 0, x ∈ Q\E . (15)

If every equilibrium point of (1) is Lyapunov stable in probabil-
ity, then (1) is stochastically semistable. Moreover, if Q = Rn

and V (x) → ∞ as ‖x‖ → ∞, then (1) is globally stochastically
semistable.

Proof: Since every equilibrium point of (1) is Lyapunov sta-
ble in probability by assumption, for every z ∈ E , there exists an
open neighborhood Vz of z such that s([0,∞) × Vz ∩ Bε(z)),
ε > 0, is bounded and contained in Q as ε → 0. The set
Vε �

⋃
z∈E Vz ∩ Bε(z), ε > 0, is an open neighborhood of E

contained in Q. Consider x ∈ Vε so that there exists z ∈ E such
that x ∈ Vz ∩ Bε(z) and s(t, x) ∈ HVz ∩Bε (z )

n , t ≥ 0, as ε → 0.
SinceVz ∩ Bε(z) is bounded and invariant with respect to the so-
lution of (1) as ε → 0, it follows that Vε is invariant with respect
to the solution of (1) as ε → 0. Furthermore, it follows from (15)
that LV (s(t, x)) < 0, t ≥ 0, and hence, since Vε is bounded it
follows from [51, Corollary 4.1] that limt→∞ LV (s(t, x)) a.s.= 0
as ε → 0.

It is easy to see thatLV (x) �= 0 by assumption andLV (xe) =
0, xe ∈ E . Therefore, s(t, x) a.s.→ E as t → ∞ and ε → 0, which
implies that limdist(x,E)→0 P x(limt→∞ dist(s(t, x), E) = 0) =
1. Finally, since every point in E is Lyapunov stable in probabil-
ity, it follows from Proposition 3.1 that limt→∞ s(t, x) a.s.= x∗ as
x → x∗, where x∗ ∈ E is Lyapunov stable in probability. Hence,
by Definition 3.3, (1) is semistable.

Finally, for Q = Rn global stochastic semistability follows
from identical arguments using the radially unbounded condi-
tion on V (·). �

Finally, we provide a partial converse to Theorem 3.1. For
this result, recall that LV (xe) = 0 for every xe ∈ E . Also note
that it follows from (6) that LV (x) = LV (s(0, x)). In addition,
the following definition is required.

Definition 3.4: For a given ρ ∈ (0, 1), the ρ-domain of
semistability is the set of points x0 ∈ D ⊆ Rn such that if x(t),
t ≥ 0, is a solution to (1) with x(0) a.s.= x0 , then x(t) converges
to a Lyapunov stable in probability equilibrium point in D with
probability greater than or equal to 1 − ρ.

Theorem 3.2: Consider the nonlinear stochastic dynamical
system (1). Suppose (1) is stochastically semistable with a
ρ-domain of semistability D0 . Then there exist a continuous
nonnegative function V : D0 → R+ and a class K∞ function

α(·) such that i) V (x) = 0, x ∈ E , ii) V (x) ≥ α(dist(x, E)),
x ∈ D0 , and iii) LV (x) < 0, x ∈ D0\E .

Proof: Let Bx0 denote the set of all sample trajectories of
(1) for which limt→∞ dist(x(t, ω), E) = 0 and x({t ≥ 0}, ω) ∈
Bx0 , ω ∈ Ω, and let1Bx 0 (ω), ω ∈ Ω, denote the indicator func-
tion defined on the set Bx0 , that is

1Bx 0 (ω) �=

{
1, if x({t ≥ 0}, ω) ∈ Bx0

0, otherwise.

Note that by definition Px0 (Bx0 ) ≥ 1 − ρ for all x0 ∈ D0 .
Define the function V : D0 → R+ by

V (x) � sup
t≥0

{
1 + 2t
1 + t

E [dist(s(t, x), E)1Bx (ω)]
}

x ∈ D0 (16)

and note that V (·) is well defined since (1) is stochasti-
cally semistable. Clearly, (i) holds. Furthermore, since V (x) ≥
dist(x, E), x ∈ D0 , it follows that (ii) holds with α(r) = r.

To show that V (·) is continuous onD0\E , define T : D0\E →
[0,∞) by T (z) � inf{h : E [dist(s(h, z), E)1Bz (ω)] <
dist(z, E)/2 for all t ≥ h > 0}, and denote

Wε �
{

x ∈ D0 | P x

(
sup
t≥0

dist(s(t, x), E) ≤ ε

)
≥ 1 − ρ

}
.

(17)

Note that Wε ⊃ E is open and contains an open neighbor-
hood of E . Consider z ∈ D0\E and define λ � dist(z, E) > 0.
Then it follows from stochastic semistability of (1) that there
exists h > 0 such that P z

(
s(h, z) ∈ Wλ/2

) ≥ 1 − ρ. Conse-
quently, P z

(
s(h + t, z) ∈ Wλ/2

) ≥ 1 − ρ for all t ≥ 0, and
hence, it follows that T (z) is well defined. Since Wλ/2 is
open, there exists a neighborhood Bσ (s(T (z), z) such that
P z
(Bσ (s(T (z), z)) ⊂ Wλ/2

) ≥ 1 − ρ. Hence, N ⊂ D0 is a
neighborhood of z such that sT (z )(HN

n ) � Bσ (s(T (z), z)).
Next, choose η > 0 such that η < λ/2 andBη (z) ⊂ N . Then,

for every t > T (z) and y ∈ Bη (z)

[(1 + 2t)/(1 + t)]E [dist(s(t, y), E)1By (ω)]

≤ 2E [dist(s(t, y), E)1By (ω)] ≤ λ.

Therefore, for every y ∈ Bη (z)

V (z) − V (y)

= sup
t≥0

{
1 + 2t
1 + t

E [dist(s(t, z), E)1Bz (ω)]
}

− sup
t≥0

{
1 + 2t

1 + t
E [dist(s(t, y), E)1By (ω)]

}

= sup
0≤t≤T (z )

{
1 + 2t
1 + t

E [dist(s(t, z), E)1Bz (ω)]
}

− sup
0≤t≤T (z )

{
1 + 2t
1 + t

E [dist(s(t, y), E)1By (ω)]
}

. (18)
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Hence

|V (z) − V (y)|

≤ sup
0≤t≤T (z )

∣∣∣∣1 + 2t
1 + t

(
E [dist(s(t, z), E)1Bz (ω)]

− E [dist(s(t, y), E)1By (ω)]
)∣∣∣∣

≤ 2 sup
0≤t≤T (z )

∣∣∣E [dist(s(t, z), E)1Bz (ω)]

− E [dist(s(t, y), E)1By (ω)]
∣∣∣

≤ 2 sup
0≤t≤T (z )

E [dist(s(t, z), s(t, y))]

z ∈ D0\E , y ∈ Bη (z). (19)

Now, since f(·) and D(·) satisfy (3) and (4), it follows from
continuous dependence of solutions s(·, ·) on system initial con-
ditions [47, Th. 7.3.1] and (19) that V (·) is continuous on D0\E .

To show that V (·) is continuous on E , consider xe ∈ E . Let
{xn}∞n=1 be a sequence in D0\E that converges to xe . Since

xe is Lyapunov stable in probability, it follows that x(t)
a.s.≡ xe

is the unique solution to (1) with x(0) a.s.= xe . By continuous
dependence of solutions s(·, ·) on system initial conditions [47,
Th. 7.3.1], s(t, xn ) a.s.→ s(t, xe)

a.s.= xe as n → ∞, t ≥ 0.
Let ε > 0 and note that it follows from ii) of Proposition

2.2 in [5] that there exists δ = δ(xe) > 0 such that for every
solution of (1) in Bδ (xe) there exists T̂ = T̂ (xe , ε) > 0 such

that P
(
st(HBδ (xe )

n ) ⊂ Wε

)
≥ 1 − ρ for all t ≥ T̂ . Next, note

that there exists a positive integer N1 such that xn ∈ Bδ (xe) for
all n ≥ N1 . Now, it follows from (16) that:

V (xn ) ≤ 2 sup
0≤t≤T̂

E[dist(s(t, xn ), E)1Bx n (ω)] + 2ε

n ≥ N1 . (20)

Next, it follows from [47, Th. 7.3.1], that E[|s(·, xn )|] con-
verges to E[|s(·, xe)|] uniformly on [0, T̂ ]. Hence,

lim
n→∞ sup

0≤t≤T̂

E [dist(s(t, xn ), E)1Bx n (ω)]

= sup
0≤t≤T̂

E
[

lim
n→∞dist(s(t, xn ), E)1Bx n (ω)

]

≤ sup
0≤t≤T̂

dist(xe , E)

= 0 (21)

which implies that there exists a positive integer N2 =
N2(xe , ε) ≥ N1 such that

sup
0≤t≤T̂

E [dist(s(t, xn ), E)1Bx n (ω)] < ε

for all n ≥ N2 . Combining (20) with the above result
yields V (xn ) < 4ε for all n ≥ N2 , which implies that
limn→∞ V (xn ) = 0 = V (xe).

Finally, we show that LV (x(t)) is negative along the solution
of (1) on D0\E . Note that for every x ∈ D0\E and 0 < h ≤
1/2 such that P (s(h, x) ∈ D0\E) ≥ 1 − ρ, it follows from the

definition of T (·) that E [V (s(h, x))] is reached at some time
t̂ such that 0 ≤ t̂ ≤ T (x). Hence, it follows from the law of
iterated expectation that

E [V (s(h, x))]

= E

[
E
[
dist(s(t̂ + h, x), E)1Bs (h , x ) (ω)

] 1 + 2t̂

1 + t̂

]

= E
[
dist(s(t̂ + h, x), E)1Bx (ω)

] 1 + 2t̂ + 2h

1 + t̂ + h

·
[
1 − h

(1 + 2t̂ + 2h)(1 + t̂)

]

≤ V (x)
[
1 − h

2(1 + T (x))2

]
(22)

which implies that

LV (x) = lim
h→0+

E [V (s(h, x))] − V (x)
h

≤ −1
2
V (x)(1 + T (x))−2 < 0, x ∈ D0\E

and hence, (iii) holds. �

IV. STOCHASTIC FINITE TIME SEMISTABILITY

In this section, we extend the results of Section III to address
stochastic finite-time semistability. Here we assume that the uni-
form Lipschitz continuity condition (3) and the growth condition
(4) are satisfied for all x, y ∈ D\E . Furthermore, we assume that
for every initial condition x0 ∈ D\E , (1) has a unique solution
in forward time.

The notion of stochastic finite time semistability involves fi-
nite time almost sure convergence along with stochastic semista-
bility.

Definition 4.1: An equilibrium solution x(t)
a.s.≡ xe ∈ E of

(1) is (globally) stochastically finite-time semistable if there ex-
ists an operator T : Hn → H[0,∞)

1 , called the stochastic settling-
time operator, such that the following statements hold.

i) Finite-time convergence in probability: For every x(0) ∈
Hn/E , sx(0)(t) is defined on [0, T (x(0))), sx(0)(t) ∈
Hn/E for all t ∈ [0, T (x(0))), and

P x0

(
lim

t→T (x(0))
dist(sx(0)(t), E) = 0

)
= 1.

ii) Lyapunov stability in probability: For every ε > 0

lim
x0 →xe

P x0

(
sup

0≤t<∞
‖sx(0)(t) − xe‖ > ε

)
= 0.

Equivalently, for every ε > 0 and ρ ∈ (0, 1), there
exist δ = δ(ε, ρ) > 0 such that, for all x0 ∈ Bδ (xe),
Px0

(
sup0≤t<∞ ‖sx(0)(t) − xe‖ > ε

) ≤ ρ.
iii) Finiteness of the stochastic settling-time operator: For

every x ∈ Hn\E the stochastic settling-time operator
T (x) exists and is finite with probability one, that is,
Ex [T (x)] < ∞.

The dynamical system (1) is (globally) stochastically finite
time semistable if every equilibrium solution of (1) is globally
stochastically finite time semistable.
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It is easy to see from Definition 4.1 that

T (x(0)) = inf{t ∈ R+ : s(t, x(0)) = 0}, x(0) ∈ HRn \E
n .

Proposition 4.1: Suppose (1) is stochastically finite time
semistable. Let xe ∈ E be an equilibrium point of (1) and let
T : Hn → H[0,∞]

1 be the stochastic finite time operator. Then
the following statements hold.

i) If τ ≥ 0 and x(0) ∈ Hn , then T (s(τ, x(0))) a.s.=
max{T (x(0)) − τ, 0}.

ii) T (·) is sample continuous on Hn if and only if T (·) is
sample continuous at every ze ∈ Hn ∩ E .

Proof: The proof is similar to the proof of Proposition 3.2 of
[55] and, hence, is omitted. �

Next, we present a sufficient condition for global stochastic
finite time semistability.

Theorem 4.1: Consider the nonlinear stochastic dynamical
system G given by (1) with D = Rn and assume that there
exist a radially unbounded nonnegative function V : Rn → R+

and a function η : R+ → R+ such that V −1(0) = E , V (x) is
two-times continuously differentiable for all x ∈ Rn\E , η(·) is
continuously differentiable, and, for all x ∈ Rn\E

V ′(x)f(x) +
1
2
tr DT(x)V ′′(x)D(x) ≤ −η(V (x)) (23)

∫ ε

0

dv

η(v)
< ∞, ε ∈ [0,∞) (24)

η′(v) > 0, v ≥ 0. (25)

If every point in the set M �={x ∈ Q : η(V (x)) = 0} is Lya-
punov stable in probability, then G is globally stochastically
finite time semistable. Moreover, there exists a settling-time
operator T : Hn → H[0,∞)

1 such that

Ex0 [T (x0)] ≤
∫ V (x0 )

0

dv

η(v)
, x0 ∈ Rn . (26)

Proof: It follows from (23) and [51, Corollary 4.2]
that limt→∞ V (x(t)) exists and is finite almost surely, and
limt→∞ η(V (s(t, x))) a.s.= 0. Therefore, s(t, x) a.s.→ M as t →
∞, which implies that limdist(x,M)→0 P x(limt→∞ dist(s(t, x),
M) = 0) = 1. Now, since every point in M is Lyapunov
stable in probability, it follows from Proposition 3.1 that
limt→∞ s(t, x) a.s.= x∗ as x → x∗, where x∗ ∈ M is Lyapunov
stable in probability. Hence, by definition, (1) is globally
stochastically semistable. This further implies that the stochas-
tic settling time operator T (x) exists with probability one for
all x ∈ Hn\E .

Next, we show that T (x(0)) is finite with probability one
and satisfies (26), and hence, Ex0 [T (x(0))] < ∞. Define T0

�=
T (x(0)) and α(V ) �=

∫ V

0
dv

η (v ) , V ∈ R+ . Now, using Itô’s (chain
rule) formula the stochastic differential of V (x(t)) along the
system sample trajectories x(t), t ≥ 0, is given by

dV (x(t)) = LV (x(t))dt +
∂V

∂x
D(x(t))dw(t).

Next, using (23) it follows that:

T0 =
∫ T0

0

η(V (x(τ)))
η(V (x(τ)))

dτ

≤
∫ T0

0
− LV (x(τ))

η(V (x(τ)))
dτ

≤
∫ T0

0
− dV (x(t))

η(V (x(τ)))

+
∫ T0

0

1
η(V (x(τ)))

∂V

∂x
D(x(τ))dw(τ)

=
∫ T0

0
−dα(V ))

dV
dV (x(t))

+
∫ T0

0

1
η(V (x(τ)))

∂V

∂x
D(x(τ))dw(τ). (27)

Once again, using Ito’s (chain rule) formula it follows that:

dα(V (x(t)))

=
[
∂α(V (x))

∂x
f(x(t)) +

1
2
tr DT(x(t))

∂2α(V (x))
∂x2

· D(x(t))
]
dt +

∂α(V (x))
∂x

dw(t)

=
[
dα(V )

dV

∂V (x)
∂x

f(x(t)) +
1
2
tr DT(x(t))

· ∂

∂x

(
dα(V )

dV

∂V (x)
∂x

)
D(x(t))

]
dt+

dα(V )
dV

∂V (x)
∂x

dw(t)

=
dα(V )

dV

[(∂V (x)
∂x

f(x(t)) +
1
2
tr DT(x(t))

∂2(V (x))
∂x2

· D(x(t))
)
dt +

∂V (x)
∂x

dw(t)
]

+
1
2
tr DT(x(t))

·
(

∂V (x)
∂x

)T d2α(V )
dV 2

(
∂V (x)

∂x

)
D(x(t))dt

=
dα(V )

dV
dV (x(t)) +

1
2
tr DT(x(t))

(
∂V (x)

∂x

)T d2α(V )
dV 2

·
(

∂V (x)
∂x

)
D(x(t))dt. (28)

Hence, it follows from (27) and (25) that:

T0 ≤
∫ T0

0
−dα(V (x(τ)))

+
∫ T0

0

1
η(V (x(τ)))

∂V

∂x
D(x(τ))dw(τ)

+
∫ T0

0

1
2
tr DT(x(τ))

(
∂V (x)

∂x

)T d2α(V )
dV 2

·
(

∂V (x)
∂x

)
D(x(τ))dτ
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= α(V (x(0))) − α(V (x(T0)))

+
∫ T0

0

1
η(V (x(τ)))

∂V

∂x
D(x(τ))dw(τ)

−
∫ T0

0

η′(V )
η2(V )

1
2
tr
(

∂V (x)
∂x

DT(x(τ))
)T

·
(

∂V (x)
∂x

D(x(τ))
)

dτ

≤
∫ V (x(0))

0

dv

η(v)
−
∫ V (x(T0 ))

0

dv

η(v)

+
∫ T0

0

1
η(V (x(τ)))

∂V

∂x
D(x(τ))dw(τ). (29)

Taking the expectation on both sides of (29) and using the fact
that x(0) a.s.= x0 and P x0 (x(T0) ∈ E) = 1 implies V (x(T0))

a.s.=
0, (26) follows. �

Remark 4.1: If η(V ) = cV θ , where c > 0 and θ ∈ (0, 1),
then η(·) satisfies (24) and (25). In this case, (26) becomes

Ex0 [T (x(0))] ≤ V (x0)
1−θ

c(1 − θ)
.

V. ALMOST SURE ASYMPTOTIC CONSENSUS FOR

STOCHASTIC DYNAMICAL NETWORKS

In this section, we use the results of Section III to de-
velop a thermodynamically motivated consensus framework for
multiagent nonlinear stochastic systems that achieve stochastic
semistability and almost sure state equipartition. Here we use
graph-theoretic notions to represent a dynamical network and
present solutions to the consensus problem for networks with
undirected graph topologies (or information flows).

We begin by establishing some notion and definitions. Specif-
ically, let G(C) = (V, E) be a directed graph (or digraph) denot-
ing the dynamical network (or dynamic graph) with the set of
nodes (or vertices) V = {1, . . . , q} involving a finite nonempty
set denoting the agents, the set of edges E ⊆ V × V involv-
ing a set of ordered pairs denoting the direction of information
flow, and a connectivity matrix C ∈ Rq×q such that C(i,j ) = 1,
i, j = 1, . . . , q, if (j, i) ∈ E , while C(i,j ) = 0 if (j, i) �∈ E . The
edge (j, i) ∈ E denotes that agent j can obtain information from
agent i, but not necessarily vice versa. Moreover, we assume
C(i,i) = 0 for all i ∈ V . A graph or undirected graph G associ-
ated with the connectivity matrix C ∈ Rq×q is a directed graph
for which the arc set is symmetric, that is, C = CT . Weighted
graphs can also be considered here; however, since this exten-
sion does not alter any of the conceptual results in the article we
do not consider this extension for simplicity of exposition.

To address the consensus problem, consider q continuous-
time agents with dynamics

dxi(t) = ui(t)dt + rowi(D(x(t)))dw(t)

i = 1, . . . , q, xi(0) a.s.= xi0 , t ≥ 0 (30)

where q ≥ 2 is the number of agents in the network with a
communication graph topology G(C), D(x)dw, where D(x) =
[row1(D(x)), . . . , rowq (D(x))]T : Rq → Rq × Rd , captures
probabilistic variations in the information transfer rates between

agents, and, for every i ∈ {1, . . . , q}, xi(t) ∈ H1 denotes the
information state of the ith agent and ui(t) ∈ H1 denotes the
control input of the ith agent. For a general distributed control
architecture resulting in a network consensus action correspond-
ing to an underlying conservation law, we assume eT

q D(x) = 0,

x ∈ Rq , where eq � [1, . . . , 1]T ∈ Rq , and where the agent state
xi(t) ∈ H1 denotes the generalized charge (i.e., Nöether charge
or simply charge) state and the control input ui(t) ∈ H1 denotes
the conserved current input for all t ≥ 0.

The nonlinear consensus protocol is given by

ui(t) =
q∑

j=1,j �=i

C(i,j ) [σij (xj (t)) − σji(xi(t))] (31)

where σij (·), i, j ∈ {1, . . . , q}, i �= j, are Lipschitz continuous.
Here we assume that the control process ui(·) in (31) is re-
stricted to a class of admissible control protocols consisting of
measurable functions adapted to the filtration {Ft}t≥0 such that,
for every i ∈ {1, . . . , q}, ui(·) ∈ H1 , t ≥ 0, and, for all t ≥ s,
wi(t) − wi(s) is independent of ui(τ), wi(τ), τ ≤ s, and xi(0),
and hence, ui(·) is nonanticipative. Furthermore, we assume
ui(·) takes values in a compact metrizable set, and hence, it
follows from Theorem 2.2.4 of [56] that there exists a unique
pathwise solution to (30) and (31) in (Ω, {Ft}t≥0 , P xi 0 ) for
every i ∈ {1, . . . , q}. Finally, note that the closed-loop system
(30) and (31) is given by

dxi(t) =
q∑

j=1,j �=i

C(i,j ) [σij (xj (t)) − σji(xi(t))]dt

+ rowi(D(x(t)))dw(t)

i = 1, . . . , q, xi(0) a.s.= xi0 , t ≥ 0. (32)

Equation (32) represents the collective dynamics of q agents
which interact by exchanging charge. The coefficients scaling
the functions σij (·), i, j ∈ {1, . . . , q}, i �= j, appearing in (32)
represent the topology of the charge exchange between the
agents. More specifically, given i, j ∈ {1, . . . , q}, i �= j, a co-
efficient of C(i,j ) = 1 denotes that subsystem j receives charge
from subsystem i, and a coefficient of zero denotes that sub-
system i and j are disconnected, and hence, cannot share any
charge.

Remark 5.1: Although our results can be directly extended
to the case where (30) and (31) describe the dynamics of
an aggregate multiagent system with an aggregate state vec-
tor x(t) = [xT

1 (t), . . . , xT
q (t)]T ∈ HN q , where xi(t) ∈ HN and

ui(t) ∈ HN , i = 1, . . . , q, by using Kronecker algebra, for sim-
plicity of exposition we focus on individual agent states evolving
in H1 (i.e., N = 1).

Next, note that since

eT
q dx(t) = eT

q f(x(t))dt + eT
q D(x(t))dw(t) = 0

x(0) a.s.= x0 , t ≥ 0 (33)

it follows that
∑q

i=1 dxi(t)
a.s.= 0, t ≥ 0, which implies that the

total system charge is conserved, and hence, the controlled net-
work satisfies an underlying conservation law. Now, it follows
from Nöether’s theorem [57] that to every conservation law
there corresponds a symmetry. To show this for our multiagent
network, the following definition and assumptions are needed.
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Definition 5.1 ([58]): A directed graph G(C) is strongly con-
nected if for every ordered pair of vertices (i, j), i �= j, there
exists a path (i.e., a sequence of arcs) leading from i to j.

Recall that the connectivity matrix C ∈ Rq×q is irreducible,
that is, there does not exist a permutation matrix such that C
is cogredient to a lower-block triangular matrix, if and only if
G(C) is strongly connected (see [58, Th. 2.7]).

Assumption 5.1: For the connectivity matrix C ∈ Rq×q as-
sociated with the multiagent stochastic dynamical system G
defined by

C(i,j ) �
{

0, if σij (xj ) − σji(xi) ≡ 0

1, otherwise

i �= j, i, j = 1, . . . , q (34)

and

C(i,i) � −
q∑

k=1, k �=i

C(k,i) , i = j, i = 1, . . . , q (35)

rank C = q − 1, and for C(i,j ) = 1, i �= j, σij (xj ) − σji(xi) =
0 if and only if xi = xj .

Assumption 5.2: For i, j = 1, . . . , q,
∑q

j=1,j �=i C(i,j )(xi −
xj ) [σij (xj ) − σji(xi)] ≤ −rowi(D(x))rowT

i (D(x)).
The information connectivity between the agents can be rep-

resented by the network communication graph topology G(C)
having q nodes such that G(C) has an undirected edge from
node i to node j if and only if agent j can receive charge from
agent i. Since the coefficients scaling σij (·), i, j ∈ {1, . . . , q},
i �= j, are constants, the communication graph topology of the
network G(C) is fixed. Furthermore, note that the graph G is
weakly connected since the underlying undirected graph is con-
nected; that is, every agent receives charge from, or delivers
charge to, at least one other agent.

The fact that σij (xj ) − σji(xi) = 0 if and only if xi = xj ,
i �= j, implies that agent i and j are connected, and hence, can
share information; alternatively, σij (xj ) − σji(xi) ≡ 0 implies
that agent i and j are disconnected, and hence, cannot share
information. Assumption 5.1 thus implies that if the charge
(or generalized energies) in the connected agents i and j are
equal, then charge exchange between the agents is not possi-
ble. This statement is reminiscent of the zeroth law of ther-
modynamics, which postulates that temperature equality is a
necessary and sufficient condition for thermal equilibrium. Fur-
thermore, if C = CT and rank C = q − 1, then it follows that
the connectivity matrix C is irreducible, which implies that for
any pair of i and j, i �= j, of G there exists a sequence infor-
mation connectors (information arcs) of G that connect agents
i and j.

Assumption 5.2 implies that charge flows from charge rich
agents to charge poor agents and is reminiscent of the sec-
ond law of thermodynamics, which states that heat (i.e., en-
ergy in transition) must flow in the direction of lower temper-
atures. It is important to note here that due to the stochastic
term D(x)dw capturing probabilistic variations in the charge
transfer (i.e., generalized current) between the agents, the
second assumption requires that the scaled net charge flow
C(i,j )(xi − xj )[σij (xj ) − σji(xi)] is bounded by the negative
intensity of the diffusion coefficient given by 1

2 tr D(x)DT(x).
For further details on Assumptions 5.1 and 5.2, see [42], [43].

The intensity D(x) of the general probabilistic variations
D(x)dw in the agent communication can take different forms
to capture communication measurement noise or errors in the
information transfer rates between agents. For example, we can
consider D(x) = MD̂(x), where

M � [m(1,2) , . . . ,m(1,q) ,m(2,3) , . . . ,m(2,q) , . . . ,

m(q−1,q) ] ∈ Rq× 1
2 q(q−1)

D̂(x) � diag[d(1,2)(x), . . . , d(1,q)(x), d(2,3)(x), . . .

d(2,q)(x), . . . , d(q−1,q)(x)] ∈ R
1
2 q(q−1)× 1

2 q(q−1)

and m(i,j )d(i,j )(xi, xj )dwi represents stochastic variations in
the information flow between the ith and jth agent. Furthermore,
considering

d(i,j )(xi, xj ) = C(i,j )(xj − xi)p (36)

where p > 0 and m(i,j ) ∈ Rq satisfies m(i,j )i
≥ 0, m(i,j )j

≤ 0,
m(i,j )j

= −m(i,j )i
, m(i,j )k

= 0, k �= i, k �= j, where m(i,j )i

denotes the ith component of m(i,j ) , it follows that eT
q m(i,j ) =

0, and hence, it can be shown that (33) holds. Note that (36)
captures nonlinear relative uncertainty between interagent com-
munication. Of course, more general nonlinear uncertainties can
also be considered.

For simplicity of exposition, in the reminder of the article we
let d = 1 and p = 1, and consider q continuous-time agents with
dynamics

dxi(t) = ui(t)dt +
q∑

j=1,j �=i

γC(i,j ) [xj (t) − xi(t)]dw(t)

i = 1, . . . , q, xi(0) a.s.= xi0 , t ≥ 0 (37)

where γ ∈ R, so that the closed-loop system (37) and (31) is
given by

dxi(t) =
q∑

j=1,j �=i

C(i,j ) [σij (xj (t)) − σji(xi(t))]dt

+
q∑

j=1,j �=i

γC(i,j ) [xj (t) − xi(t)]dw(t)

i = 1, . . . , q, xi(0) a.s.= xi0 , t ≥ 0. (38)

In this case, (32) can be cast in the form of (1) with

f(x) =

⎡
⎢⎢⎣

∑q
j=1,j �=1 C(1,j ) [σ1j (xj ) − σj1(x1)]

...∑q
j=1,j �=q C(q ,j ) [σqj (xj ) − σjq (xq )]

⎤
⎥⎥⎦ (39)

D(x) =

⎡
⎢⎢⎣

∑q
j=1,j �=1 γC(1,j ) [xj (t) − x1(t)]

...∑q
j=1,j �=q γC(q ,j ) [xj (t) − xq (t)]

⎤
⎥⎥⎦ (40)

where the stochastic term D(x)dw represents probabilistic vari-
ations in the charge transfer rate (i.e., generalized currents) be-
tween the agents. Furthermore, Assumption 5.2 now takes the
following form.
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Assumption 5.2′. For i, j = 1, . . . , q, C(i,j )(xi −
xj )[σij (xj ) − σji(xi)] ≤ −(q − 1)γ2C2

(i,j )(xi − xj )2 .
Theorem 5.1: Consider the nonlinear stochastic multiagent

system given by (38) and assume that Assumptions 5.1 and 5.2′
hold. Then, for every α ∈ R, αeq is a stochastically semistable
equilibrium state of (38). Furthermore, x(t) a.s.→ 1

q eqeT
q x(0) as

t → ∞ and 1
q eqeT

q x(0) is a stochastically semistable equilib-
rium state.

Proof: To show that (32) is stochastically semistable, first
note that if xi = xj , i, j ∈ {1, . . . , q}, then fi(x) = 0 and
Di(x) = 0 for all i = 1, . . . , q is immediate from Assump-
tion 5.1. Next, we show that fi(x) = 0 and Di(x) = 0 for
all i = 1, . . . , q implies x1 = · · · = xq . If fi(x) = 0 for all
i = 1, . . . , q, then it follows from Assumption 5.2′ that:

0 =
q∑

i=1

xifi(x)

=
q∑

i=1

xi

⎛
⎝ q∑

j=1,j �=i

C(i,j ) [σij (xj ) − σji(xi)]

⎞
⎠

=
q∑

i=1

q∑
j=1,j �=i

1
2
C(i,j )(xi − xj )[σij (xj ) − σji(xi)]

≤
q∑

i=1

q∑
j=1,j �=i

−q − 1
2

γ2C2
(i,j )(xi − xj )2

≤ 0 (41)

and, by Assumption 5.2′, C(i,j )(xi − xj )[σij (xj ) − σji(xi)] ≤
−(q − 1)γ2C2

(i,j )(xi − xj )2 ≤ 0 for i, j = 1, . . . , q. Hence,
C(i,j )(xi − xj )[σij (xj ) − σji(xi)] = 0 for i, j = 1, . . . , q,
which implies xi = xj , i, j = 1, . . . , q. Therefore,

E �= f−1(0) ∩ D−1(0) = {(x1 , . . . , xq ) ∈ Rq : x1 = · · · = xq

= α, α ∈ R}.
Next, consider the Lyapunov function candidate

V (x1 , . . . , xq ) =
q∑

i=1

1
2
(xi − α)2 , (x1 , . . . , xq ) ∈ Rq (42)

where α ∈ R. Now, the infinitesimal generator of the closed-
loop system (32) is given by

LV (x1 , . . . , xq )

=
q∑

i=1

(xi − α)

⎛
⎝ q∑

j=1,j �=i

C(i,j ) [σij (xj ) − σji(xi)]

⎞
⎠

+
1
2

q∑
i=1

⎛
⎝ q∑

j=1,j �=i

γC(i,j )(xj − xi)

⎞
⎠

2

,

(x1 , . . . , xq ) ∈ Rq . (43)

Note that since C(i,j ) = C(j,i) , i, j ∈ {1, . . . , q}, i �= j, and
C(i,i) = 0, i ∈ {1, . . . , q}, it follows that:

−α

q∑
i=1

q∑
j=1,j �=i

C(i,j ) [σij (xj ) − σji(xi)] = 0 (44)

and hence

q∑
i=1

(xi − α)

⎛
⎝ q∑

j=1,j �=i

C(i,j ) [σij (xj ) − σji(xi)]

⎞
⎠

=
q∑

i=1

xi

⎛
⎝ q∑

j=1,j �=i

C(i,j ) [σij (xj ) − σji(xi)]

⎞
⎠

=
q∑

i=1

q∑
j=1,j �=i

1
2
C(i,j )(xi − xj )[σij (xj ) − σji(xi)]. (45)

Next, note that

q∑
i=1

⎛
⎝ q∑

j=1,j �=i

γC(i,j )(xj − xi)

⎞
⎠

2

≤
q∑

i=1

(q − 1)
q∑

j=1,j �=i

γ2C2
(i,j )(xj − xi)2 ,

(x1 , . . . , xq ) ∈ Rq

and hence, it follows from (43) that:

LV (x1 , . . . , xq )

≤
q∑

i=1

q∑
j=1,j �=i

1
2
C(i,j )(xi − xj )[σij (xj ) − σji(xi)]

+
q − 1

2

q∑
i=1

q∑
j=1,j �=i

γ2C2
(i,j )(xj − xi)2

=
q∑

i=1

q∑
j=1,j �=i

1
2
C(i,j )(xi − xj )

(
[σij (xj ) − σji(xi)]

+ (q − 1)γ2C(i,j )(xi − xj )
)

≤ 0, (x1 , . . . , xq ) ∈ Rq (46)

which, by Theorem 2.1, implies that x1 = · · · = xq = α is Lya-
punov stable in probability.

Finally, note that LV (x1 , . . . , xq ) �= 0 when xi �= xj ,
i, j ∈ {1, . . . , q}, i �= j, and hence, LV (x1 , . . . , xq ) < 0,
(x1 , . . . , xq ) ∈ Rq \ E . Therefore, it follows from Theo-
rem 3.1 that x1 = · · · = xq = α is stochastically semistable for
all α ∈ R. Furthermore, note that eT

q dx(t) a.s.= 0, t ≥ 0, implies
that

x(t) a.s.→ 1
q
eqeT

q x(0) a.s.=
1
q
[x1(0) + · · · + xq (0)]eq as t → ∞

which proves the result. �
Example 5.1: Consider the five mobile agents with the com-

munication topology shown in Fig. 1 and dynamics on H5 given
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Fig. 1. Communication topology for the five mobile agents.

by

dx1(t) = u1(t)dt + γ[x2(t) − x1(t)]dw(t),

x1(0) a.s.= x10 , t ≥ 0 (47)

dx2(t) = u2(t)dt + γ[x1(t) − x2(t) + x3(t) − x2(t)

+ x5(t) − x2(t)]dw(t), x2(0) a.s.= x20 (48)

dx3(t) = u3(t)dt + γ[x2(t) − x3(t) + x4(t) − x3(t)]dw(t)

x3(0) a.s.= x30 (49)

dx4(t) = u4(t)dt + γ[x3(t) − x4(t)]dw(t), x4(0) a.s.= x40
(50)

dx5(t) = u5(t)dt + γ[x2(t) − x5(t)]dw(t), x5(0) a.s.= x50
(51)

with controls

u1(t) = x2(t) − x1(t) (52)

u2(t) = x1(t) − x2(t) + x3(t) − x2(t) + x5(t) − x2(t)
(53)

u3(t) = x2(t) − x3(t) + x4(t) − x3(t) (54)

u4(t) = x3(t) − x4(t) (55)

u5(t) = x2(t) − x5(t). (56)

Note that (52)–(56) are of the form of (31) with σij (xj ) = xj ,
i, j ∈ {1, 2, 3, 4, 5}, i �= j. For our simulation we take x10 = 0,
x20 = 10, x30 = 20, x40 = 30, x50 = 40, and γ = 0.2. Fig. 2
shows the sample trajectories along with the standard deviation
of the states of each agent versus time for 10 sample paths. The
mean control profile is also plotted in Fig. 2. �

VI. FINITE TIME CONSENSUS FOR STOCHASTIC

DYNAMICAL NETWORKS

Since in many consensus control protocol applications it is
desirable for the closed-loop dynamical system that exhibits
semistability to also possess the property that the system tra-
jectories that almost surely converge to a Lyapunov stable in
probability system state do so in finite time rather than merely
asymptotically, in this section we build on the deterministic
results of [4], [59] and use Theorem 4.1 to develop a ther-
modynamically motivated finite time consensus framework for
multiagent nonlinear stochastic systems that achieve finite time
stochastic semistability and almost sure state equipartition.

Fig. 2. Sample average along with the sample standard deviation of
the closed-loop system trajectories versus time; x1 (t) in blue, x2 (t) in
red, x3 (t) in green, x4 (t) in magenta, and x5 (t) in black. The control
profile is plotted as the mean of the ten sample runs. (See color figure
online.)

Specifically, let d = 1 and consider the q continuous-time
agents with dynamics given by (37) with the nonlinear consensus
protocol

ui(t) =
q∑

j=1,j �=i

C(i,j ) [σij (xj (t)) − σji(xi(t))]

+ c

q∑
j=1,j �=i

C(i,j )sign(xj (t) − xi(t))|xj (t) − xi(t)|θ

(57)

where c > 0 is a design constant, 0 < θ < 1, sign(y) � y/|y|,
y �= 0, with sign(0) � 0, and σij (·), i, j ∈ {1, . . . , q}, i �= j,
are as in (31). Note that the closed-loop system (37) and (57) is
given by

dxi(t) =
q∑

j=1,j �=i

C(i,j ) [σij (xj (t)) − σji(xi(t))]dt

+ c

q∑
j=1,j �=i

C(i,j )sign(xj (t) − xi(t))|xj (t)−xi(t)|θ

+
q∑

j=1,j �=i

γC(i,j ) [xj (t) − xi(t)]dw(t)

i = 1, . . . , q, xi(0) a.s.= xi0 , t ≥ 0. (58)

Note that with n = q and d = 1, (58) can be cast in the form
of (1) with

f(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑q
j=1,j �=1 C(1,j ) [σ1j (xj ) − σj1(x1)]

+c
∑q

j=1,j �=1 C(1,j )sign(xj − x1)|xj − x1 |θ
...∑q

j=1,j �=q C(q ,j ) [σqj (xj ) − σjq (xq )]

+c
∑q

j=1,j �=q C(q ,j )sign(xj − xq )|xj − xq |θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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and D(x) given by (40). Furthermore, note that since

eT
q dx(t) = eT

q f(x(t))dt + eT
q D(x(t))dw(t) = 0

x(0) a.s.= x0 , t ≥ 0

it follows that
∑q

i=1 dxi(t)
a.s.= 0, t ≥ 0, which implies that the

total system charge is conserved, and hence, the controlled net-
work satisfies an underlying conservation law.

The following proposition is necessary for the main result in
this section. For the statement of this result and the main result
of this section, let L(C) = [L(i,j ) ] denote the graph Laplacian
of G(C), where C = [C(i,j ) ] and

L(i,j ) �
{∑q

k=1,k �=i C(i,k) , j = i

−C(i,j ) , j �= i
. (59)

Furthermore, let λi(L(C)), i ∈ {1, . . . , q}, denote the ith eigen-
value of L(C) with λmin(L(C)) � λ1(L(C)) ≤ λ2(L(C)) ≤
· · · ≤ λq (L(C)) � λmax(L(C)).

Proposition 6.1 ([15]): Consider the nonlinear stochastic
multiagent system (58) with communication graph topology
G(C). Then the following statements hold.

i) λ1(L(C)) = 0 with associated eigenvector eq .
ii) xTL(C)x = 1

2

∑q
i=1
∑q

j=1,j �=i(xj − xi)2 for every x =
[x1 , . . . , xq ]T , and hence, L(C) is nonnegative definite.

iii) λ2(L(C)) > 0 and

λ2(L(C)) = min
x �=0, eT

q x=0

xTL(C)x
xTx

. (60)

Hence, if eT
q x = 0, then

xTL(C)x ≥ λ2(L(C))xTx, x ∈ Rq . (61)

Theorem 6.1: Consider the nonlinear stochastic multiagent
system given by (58) with c > 0 and θ ∈ (0, 1), and assume that
Assumptions 5.1 and 5.2′ hold. Then, for every α ∈ R, αeq is
a stochastically finite time semistable equilibrium state of (58).
Moreover, x(t) = 1

q eqeT
q x(0) for all t ≥ T (x(0)), where

Ex0 [T (x(0))] ≤ 4V (x0)
1−θ

2

c(1 − θ)(4λ2(L(C)))
1 + θ

2

and

V (x0) =
1
2

(
x0 − 1

q
eqeT

q x0

)T (
x0 − 1

q
eqeT

q x0

)
.

Proof: To show that (58) is stochastically semistable, first
note that if xi = xj , i, j ∈ {1, . . . , q}, then fi(x) = 0 and
Di(x) = 0 for all i = 1, . . . , q is immediate from Assump-
tion 5.1. Next, we show that fi(x) = 0 and Di(x) = 0 for
all i = 1, . . . , q implies x1 = · · · = xq . If fi(x) = 0 for all

i = 1, . . . , q, then it follows that from Assumption 5.2′ that

0 =
q∑

i=1

xifi(x)

=
q∑

i=1

xi

⎛
⎝ q∑

j=1,j �=i

C(i,j ) [σij (xj ) − σji(xi)]

⎞
⎠

+ c

q∑
i=1

xi

⎛
⎝ q∑

j=1,j �=i

C(i,j )sign(xj − xi)|xj − xi |θ
⎞
⎠

≤
q∑

i=1

xi

⎛
⎝ q∑

j=1,j �=i

C(i,j ) [σij (xj ) − σji(xi)]

⎞
⎠

=
q∑

i=1

q∑
j=1,j �=i

1
2
C(i,j )(xi − xj )[σij (xj ) − σji(xi)]

≤
q∑

i=1

q∑
j=1,j �=i

−q − 1
2

γ2C2
(i,j )(xi − xj )2

≤ 0 (62)

and, by Assumption 5.2′ , C(i,j )(xi − xj )[σij (xj ) −
σji(xi)] ≤ −(q − 1)γ2C2

(i,j )(xi − xj )2 ≤ 0 for i, j = 1, . . . , q.
Hence, C(i,j )(xi − xj )[σij (xj ) − σji(xi)] = 0 for i, j =
1, . . . , q, which implies xi = xj , i, j = 1, . . . , q. There-

fore, E �=f−1(0) ∩ D−1(0)={(x1 , . . . , xq )∈Rq : x1 = · · · =
xq = α, α ∈ R}. Furthermore, since

∑q
i=1 dxi(t)

a.s.= 0, t ≥ 0,
it follows that

∑q
i=1 xi(t)

a.s.=
∑q

i=1 xi(0), t ≥ 0, and hence,
α = 1

q e
T
q x(0).

Next, consider the Lyapunov function candidate

V (x1 , . . . , xq ) =
q∑

i=1

1
2
(xi − α)2 , (x1 , . . . , xq ) ∈ Rq (63)

where α = 1
q e

T
q x0 , and note that V −1(0) = E . Now, the in-

finitesimal generator of the closed-loop system (58) is given
by

LV (x1 , . . . , xq )

=
q∑

i=1

(xi − α)

⎛
⎝ q∑

j=1,j �=i

C(i,j ) [σij (xj ) − σji(xi)]

⎞
⎠

+ c

q∑
i=1

(xi − α)

⎛
⎝ q∑

j=1,j �=i

C(i,j )sign(xj − xi)|xj − xi |θ
⎞
⎠

+
1
2

q∑
i=1

⎛
⎝ q∑

j=1,j �=i

γC(i,j )(xj − xi)

⎞
⎠

2

,

(x1 , . . . , xq ) ∈ Rq . (64)
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Using identical arguments as in the proof of Theorem 5.1, the
first and last terms in (64) give

q∑
i=1

(xi − α)

⎛
⎝ q∑

j=1,j �=i

C(i,j ) [σij (xj ) − σji(xi)]

⎞
⎠

+
1
2

q∑
i=1

⎛
⎝ q∑

j=1,j �=i

γC(i,j )(xj − xi)

⎞
⎠

2

≤
q∑

i=1

q∑
j=1,j �=i

1
2
C(i,j )(xi − xj )

(
[σij (xj ) − σji(xi)]

+ (q − 1)γ2C(i,j )(xi − xj )
)

≤ 0, (x1 , . . . , xq ) ∈ Rq . (65)

Next, the second term in (64) gives

c

q∑
i=1

(xi − α)

⎛
⎝ q∑

j=1,j �=i

C(i,j )sign(xj − xi)|xj − xi |θ
⎞
⎠

= c

q∑
i=1

xi

⎛
⎝ q∑

j=1,j �=i

C(i,j )sign(xj − xi)|xj − xi |θ
⎞
⎠

=
c

2

q∑
i=1

q∑
j=1,j �=i

C(i,j )(xi − xj )sign(xj − xi)|xj − xi |θ

= − c

2

q∑
i=1

q∑
j=1,j �=i

(
C

2
1 + θ

(i,j )(xj − xi)2
) 1 + θ

2

≤ − c

2

(
q∑

i=1

q∑
j=1,j �=i

C
2

1 + θ

(i,j )(xj − xi)2

) 1 + θ
2

,

(x1 , . . . , xq ) ∈ Rq (66)

where the last inequality in (66) follows from [60, Fact
2.11.130]. Now, note that the last term in (66) satisfies

− c

2

(
q∑

i=1

q∑
j=1,j �=i

C
2

1 + θ

(i,j )(xj − xi)2

) 1 + θ
2

= − c

2

(∑q
i=1
∑q

j=1,j �=i C
2

1 + θ

(i,j )(xj − xi)2

V (x1 , . . . , xq )
V (x1 , . . . , xq )

) 1 + θ
2

.

(67)

Next, define xsi � xi − α and note that xsj − xsi = xj −
xi . Furthermore, note that eT

q xs(t)
a.s.= 0, t ≥ 0, where xs =

[xs1 , . . . , xsq ]T . Now, since C(i,j ) = 1 or 0, clearly C
2

1 + θ

(i,j ) =

C(i,j ) for every 0 < θ < 1. Thus, by Proposition 6.1

∑q
i=1
∑q

j=1,j �=i C
2

1 + θ

(i,j )(xj − xi)2

V (x1 , . . . , xq )

=

∑q
i=1
∑q

j=1,j �=i C(i,j )(xsj − xsi)2

V (x1 , . . . , xq )

=
2xT

s L(C)xs
1
2 xT

s xs

≥ 4λ2(L(C))

> 0, (x1 , . . . , xq ) ∈ Rq E . (68)

Hence, using (65)–(68) it follows from (64) that:

LV (x1 , . . . , xq ) ≤ − c

2

(
4λ2(L(C))

) 1 + θ
2

V (x1 , . . . , xq )
1 + θ

2 ,

(x1 , . . . , xq ) ∈ Rq\E . (69)

Now, by Theorem 4.1 and Remark 4.1, x(t) = 1
q eqeT

q x(0), t ≥
T (x(0)), where

Ex0 [T (x(0))] ≤ 4V (x0)
1−θ

2

c(1 − θ)(4λ2(L(C)))
1 + θ

2

.

�
Example 6.1: Consider the five mobile agents with the com-

munication topology shown in Fig. 1 and dynamics on H5 given
by (47)–(51). Furthermore, let

u1(t) = csign(x2(t) − x1(t))|x2(t) − x1(t)|0.5

+ x2(t) − x1(t) (70)

u2(t) = c
∑

j=1,3,5

sign(xj (t) − x2(t))|xj (t) − x2(t)|0.5

+
∑

j=1,3,5

(xj (t) − x2(t)) (71)

u3(t) = c
∑

j=2,4

sign(xj (t) − x3(t))|xj (t) − x3(t)|0.5

+
∑

j=2,4

(xj (t) − x3(t)) (72)

u4(t) = csign(x3(t) − x4(t))|x3(t) − x4(t)|0.5

+ x3(t) − x4(t) (73)

u5(t) = csign(x2(t) − x5(t))|x2(t) − x5(t)|0.5

+ x2(t) − x5(t) (74)

where c = 5. Note that (70)–(74) are of the form of (57) with
σij (xj ) = xj , i, j ∈ {1, 2, 3, 4, 5}, i �= j. Let x10 = 0, x20 =
10, x30 = 20, x40 = 30, x50 = 40, and γ = 0.2. Fig. 3 shows
the sample trajectories along with the standard deviation of the
states of each agent versus time for ten sample paths. The mean
control profile is also plotted in Fig. 3. �

VII. ILLUSTRATIVE NUMERICAL EXAMPLE

In this section, we demonstrate the proposed distributed
stochastic consensus framework on a set of control commanded
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Fig. 3. Sample average along with the sample standard deviation of
the closed-loop system trajectories versus time; x1 (t) in blue, x2 (t) in
red, x3 (t) in green, x4 (t) in magenta, and x5 (t) in black. The control
profile is plotted as the mean of the ten sample runs. (See color figure
online.)

aircrafts achieving asymptotic pitch rate consensus. Specifically,
consider the multiagent system comprised of the controlled lon-
gitudinal motion of three Boeing 747 aircrafts [61] linearized at
an altitude of 40 kft and a velocity of 774 ft/s given by

żi(t) = Azi(t) + Bδi(t), zi(0) = zi0 i = 1, 2, 3, t ≥ 0
(75)

where zi(t) = [vxi
(t), vzi

(t), qi(t), θei
(t)]T ∈ R4 , t ≥ 0, is

state vector of agent i ∈ {1, 2, 3}, with vxi
(t), t ≥ 0, represent-

ing the x–body–axis component of the velocity of the aircraft
center of mass with respect to the reference axes (in ft/s), vzi

(t),
t ≥ 0, representing the z–body–axis component of the velocity
of the aircraft center of mass with respect to the reference axes
(in ft/s), qi(t), t ≥ 0, representing the y–body–axis component
of the angular velocity of the aircraft (pitch rate) with respect
to the reference axes (in crad/s), θei

(t), t ≥ 0, representing the
pitch Euler angle of the aircraft body axes with respect to the
reference axes (in crad), δ(t), t ≥ 0, representing the elevator
control input (in crad), and

A =

⎡
⎢⎢⎢⎣

−0.003 0.039 0 −0.332

−0.065 −0.319 7.74 0

0.020 −0.101 −0.429 0

0 0 1 0

⎤
⎥⎥⎥⎦

B =

⎡
⎢⎢⎢⎣

0.010

−0.180

−1.16

0

⎤
⎥⎥⎥⎦ . (76)

We propose a two-level control hierarchy composed of a
lower-level controller for command following of the three air-
crafts and a higher-level consensus controller for pitch rate con-
sensus in the face of an uncertain triangular communication
topology between the aircrafts. To address the lower-level con-
troller design, let xi(t), i = 1, 2, 3, t ≥ 0, denote a command
generated by (32) (i.e., the guidance command) and let si(t),
i = 1, 2, 3, t ≥ 0, denote the integrator state satisfying

ṡi(t) = Ezi(t) − xi(t), si(0) = si0 i = 1, 2, 3, t ≥ 0
(77)

Fig. 4. Sample average along with the sample standard deviation ver-
sus time for agent guidance state (xi (t), t ≥ 0), guidance input (ui (t),
t ≥ 0), pitch rate (qi (t), t ≥ 0), and elevator control (δi (t), t ≥ 0) re-
sponses for the standard consensus protocol given by (31) with k1 = 1.
The control profile is plotted as the mean of the 10 sample runs. (See
color figure online.)

where E = [0, 0, 1, 0]. Now, defining the augmented state
ẑ(t) � [zT(t), si(t)]T , (75) and (77) give

˙̂zi(t) = Âẑi(t) + B̂1δi(t) + B̂2xi(t), ẑi(0) = ẑi0

i = 1, 2, 3, t ≥ 0 (78)

where

Â �
[

A 0
E 0

]
, B̂1 �

[
B
0

]
, B̂2 �

[
0
−1

]
. (79)

Furthermore, let the elevator control input be given by

δ(t) = −Kẑ(t)

K = [−0.0157, 0.0831,−4.7557,−0.1400,−9.8603] (80)

which is designed using an optimal linear-quadratic regulator.
For the higher level communication consensus controller de-

sign, we use (31) with σij (xj ) = xj and σji(xi) = xi to gen-
erate xi(t), t ≥ 0, that has a direct effect on the lower level
controller design to achieve pitch rate consensus. Fig. 4 presents
the sample trajectories along with the standard deviation of the
states of each agent versus time for ten sample paths for all
initial conditions set to zero and x1(0) a.s.= 8, x2(0) a.s.= 4, and
x3(0) a.s.= 2. The mean control profile is also plotted in Fig. 4.

VIII. CONCLUSION

This article extends the notions semistability and finite time
semistability to nonlinear stochastic dynamical systems having
a continuum of equilibria. In particular, Lyapunov and con-
verse Lyapunov theorems for stochastic semistability are es-
tablished, as well as sufficient conditions for stochastic finite
time semistability are presented. These results are then used
to develop a thermodynamic-based framework for addressing
consensus problems for multiagent dynamical systems with
stochastic communication uncertainty between agents in the
network. Specifically, nonlinear network protocols are designed
that guarantee almost sure asymptotic and finite time conver-
gence to Lyapunov stable in probability equilibria over a net-
work of dynamic agents in the face of uncertain information
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flows. Our analysis relies on several tools from algebraic graph
theory, stochastic semistability, stochastic finite time semista-
bility, and dynamical thermodynamics [42]. Future extensions
will focus on robustness properties of the proposed protocols,
as well as asynchronism, system time delays, and dynamic net-
work topologies for addressing possible information asynchro-
nizing between agents, message transmission and processing
delays, and communication link failures and communication
dropouts.
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