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Abstract

With advances in biochemistry, molecular biology, and neurochemistry there has been impressive
progress in the understanding of the molecular properties of anesthetic agents. However, despite these
advances, we still do not understand how anesthetic agents affect the properties of neurons that translate into
the induction of general anesthesia at the macroscopic level. There is extensive experimental verification
that collections of neurons may function as oscillators and the synchronization of oscillators may play a key
role in the transmission of information within the central nervous system. This may be particularly relevant
to understand the mechanism of action for general anesthesia. In this paper, we develop a stochastic synaptic
drive firing rate model for an excitatory and inhibitory cortical neuronal network in the face of system time
delays and stochastic input disturbances. In addition, we provide sufficient conditions for global asymptotic
and exponential mean-square synchronization for this model.
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1. Introduction

Numerous complex large-scale dynamical networks often demonstrate a degree of
synchronization. System synchronization typically involves coordination of events that allows
a dynamical system to operate in unison resulting in system self-organization. The onset of
synchronization in populations of coupled dynamical networks has been studied for various
complex networks including network models for mathematical biology, statistical physics,
kinetic theory, bifurcation theory, as well as plasma physics [1]. Synchronization of firing neural
oscillator populations using probabilistic analysis has also been addressed in the neuroscience
literature [2]. One of the most important questions in neuroscience is how do neurons, or
collections of neurons, communicate. In other words, what is the neural code? There is extensive
experimental verification that collections of neurons may function as oscillators [3–5] and the
synchronization of oscillators may play a key role in the transmission of information within the
central nervous system. This may be particularly relevant to understand the mechanism of action
for general anesthesia [6].
It has been known for a long time that general anesthesia has profound effects on the spectrum

of oscillations in the electroencephalograph [7,8]. More recently, the authors in [9] have
suggested that thalamocortical circuits function as neural pacemakers and that alterations in the
thalamic oscillations are associated with the induction of general anesthesia. Furthermore, it is
well known that anesthetic drugs frequently induce epileptiform activity as part of the
progression to the state of unconsciousness [10].
Multiple lines of evidence indicate that anesthetic agents impact neural oscillators. In addition,

epileptiform activity implies synchronization of oscillators. This leads to the possibility that
synchronization of these oscillators is involved in the transition to the anesthetic state. In this
paper, we extend the synaptic drive model of a network of biological neurons developed in [6] to
investigate the conditions that would lead to synchronization of neural oscillators. In particular,
we develop an excitatory and inhibitory synaptic drive firing rate model with time-varying delays
and stochastic input uncertainty, and its global synchronization is investigated. The system
uncertainty model involves a Markov process wherein stochastic integration is interpreted in the
sense of Itô.
The notation used in this paper is fairly standard. Specifically, Rn denotes the set of n� 1

real column vectors, Rn�m denotes the set of n� m real matrices, ð�ÞT denotes transpose, ð�Þ�1

denotes inverse, J � J denotes the Euclidean vector norm, and Cð½�τ; 0�;RnÞ with τ40
denotes a family of continuous vector-valued functions mapping the interval ½�τ; 0� into Rn

with topology of uniform convergence and designated operator norm
:ψ:¼ sup� τrθr0 JψðθÞJ for ψACð½�τ; 0�;RnÞ. We write I or In for the n� n identity
matrix, 1n for the n� 1 ones vector, trð�Þ for the trace operator, rank A for the rank of the
matrix A, λminðAÞ (resp., λmaxðAÞ) for the minimum (resp., maximum) eigenvalue of a
Hermitian matrix A, kerðAÞ for the kernel (nullspace) of the matrix A, spanð1nÞ for the span of
1n, E½�� for the expectation operator for a given probability space, and E½XjY � for the
conditional expectation of X with respect to Y.

2. Biological neural networks

The fundamental building block of the central nervous system, the neuron, can be divided
into three functionally distinct parts, namely, the dendrites, soma (or cell body), and axon.
The dendrites play the role of input devices that collect signals from other neurons and
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transmit them to the soma; whereas the soma generates a signal that is transmitted to other
neurons by the axon. The axons of other neurons connect to the dendrites and soma surfaces
by means of connectors called synapses. The behavior of the neuron is best described in
terms of the electrochemical potential gradient across the cell membrane. If the voltage
gradient across the membrane increases to a critical threshold value, then there is a
subsequent abrupt step-like increase in the potential gradient, the action potential. This
action potential is transmitted from the soma along the axon to a dendrite of a receiving
neuron. The action potential elicits the release of neurotransmitter molecules that diffuse to
the dendrite of a “receiving” neuron. This alters the voltage gradient across the receiving
neuron.

The electrochemical potential for a neuron can be described by a nonlinear four-state
system [11]. Coupling these system equations for each neuron in a large neural population is
computationally prohibitive. To simplify the mathematical modeling, it has been common to
use phenomenological firing rate models for studying neural coding, memory, and network
dynamics [11]. Firing rate models involve the averaged behavior of the spiking rates of
groups of neurons rather than tracking the spike rate of each individual neuron cell. In such
population models, the activity of a neuron, that is, the rate at which the neuron generates an
action potential (fires) is modeled as a function of the voltage (across the membrane). The
“firing” of a neuron evokes voltage changes, postsynaptic potentials on receiving neurons;
that is, neurons electrically connected to the firing neurons via axon–dendrite connections. In
general, neurons are either excitatory or inhibitory depending on whether the postsynaptic
potential increases or decreases the potential of the receiving neuron. In particular, excitatory
neurotransmitters depolarize postsynaptic membranes by increasing membrane potentials
and can collectively generate an action potential. Inhibitory neurotransmitters hyperpolarize
the postsynaptic membrane by decreasing membrane potentials, thereby nullifying the
actions of excitatory neurotransmitters and in certain cases prevent the generation of action
potentials.

Biological neural network models predict a voltage in the receiving or postsynaptic neuron
given by

VðtÞ ¼ ∑
nE

i ¼ 1
∑
j
αEi ðt� tjÞ þ ∑

nI

i′ ¼ 1
∑
j′
αIi′ðt� tj′Þ; ð1Þ

where iAf1;…; nEg and i′Af1;…; nIg enumerate the action potential or firings of the excitatory
and inhibitory transmitting (presynaptic) neurons at firing times tj and tj′, respectively, nE and nI
denote the number of the excitatory and inhibitory transmitting neurons, respectively, and αEi ð�Þ
and αIi′ð�Þ are the functions (in volts) describing the evolution of the excitatory and inhibitory
postsynaptic potentials, respectively.

Using a (possibly discontinuous) function f ið�Þ to represent the firing rate (in Hz) of the ith
neuron and assuming that the firing rate is a function of the voltage vEi ð�Þ (resp., vIið�Þ) across the
membrane of the ith neuron given by f iðvEi Þ (resp., f iðvIiÞ), it follows that

vEi ðtÞ ¼ ∑
nE

j ¼ 1; ja i
AEE
ij

Z t

�1
αEj ðt�τÞf jðvEj ðτÞÞ dτ

þ ∑
nI

j′ ¼ 1
AEI
ij′

Z t

�1
αIj′ðt�τÞf j′ðvIj′ðτÞÞ dτ þ vth

E
i ðtÞ; i¼ 1;…; nE; ð2Þ
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vIiðtÞ ¼ ∑
nE

j ¼ 1
AIE
ij

Z t

�1
αEj ðt�τÞf jðvEj ðτÞÞ dτ

þ ∑
nI

j′ ¼ 1; j′a i
AII
ij′

Z t

�1
αIj′ðt�τÞf j′ðvIj′ðτÞÞ dτ þ vth

I
iðtÞ; i¼ 1;…; nI; ð3Þ

where the neuronal connectivity matrix AXY, with units of volts� synapse, contains entries
AXY
ij ; X;YAfE; Ig, representing the coupling strength of the jth neuron on the ith neuron such

that either AXE
ij 40 or AXI

ij o0, XAfE; Ig, if the jth neuron is connected (i.e., contributes a
postsynaptic potential) to the ith neuron, and AXY

ij ¼ 0, otherwise. Furthermore, vEthið�Þ and vIthið�Þ
are continuous threshold input voltages. Note that AEE

ii 9AII
ii 90 by definition.

Next, defining the synaptic drive—a dimensionless quantity per synapse—of each (excitatory
or inhibitory) neuron by

SðE;IÞi ðtÞ9
Z t

�1
αðE;IÞi ðt�τÞf iðvðE;IÞi ðτÞÞ dτ; ð4Þ

and assuming

αðE;IÞi ðtÞ ¼ BðE;IÞe� t=λðE;IÞi ; ð5Þ
where the dimensionless gain BðE;IÞ is equal to BE if the ith neuron is excitatory and BI if the ith neuron
is inhibitory, and similarly for SðE;IÞi , vðE;IÞi , αðE;IÞi , and λðE;IÞi , it follows from Eqs. (4) and (5) that

dSðE;IÞi ðtÞ
dt

¼ � 1

λðE;IÞi

SðE;IÞi tð Þ þ BðE;IÞf i vðE;IÞi tð Þ
� �

: ð6Þ

Now, using the expressions for the excitatory and inhibitory voltage given by Eqs. (2) and (3),
respectively, it follows that

dSEi ðtÞ
dt

¼ � 1

λEi
SEi tð Þ þ BEf i ∑

nE

j ¼ 1; ja i
AEE
ij S

E
j ðtÞ þ ∑

nI

j′ ¼ 1
AEI
ij′S

I
j′ðtÞ þ vth

E
i ðtÞ

 !
; i¼ 1;…; nE; ð7Þ

dSIiðtÞ
dt

¼ � 1

λIi
SIi tð Þ þ BIf i ∑

nE

j ¼ 1
AIE
ij S

E
j ðtÞ þ ∑

nI

j′ ¼ 1; j′a i
AII
ij′S

I
j′ðtÞ þ vth

I
iðtÞ

 !
; i¼ 1;…; nI: ð8Þ

The above analysis reveals that a form for capturing the neuroelectronic behavior of biological
excitatory or inhibitory neuronal networks can be written as

dSiðtÞ
dt

¼ �τiSi tð Þ þ Bif i ∑
n

j ¼ 1; ja i
AijSjðtÞ þ vthi ðtÞ

 !
; Si 0ð Þ ¼ Si0; tZ0; i¼ 1;…; n; ð9Þ

where SiðtÞADDR, tZ0, is the ith synaptic drive, vthiðtÞAR, tZ0, denotes the threshold input
voltage of the ith neuron, Aij is a constant representing the coupling strength of the jth neuron on
the ith neuron, τi91=λi is a time constant, Bi is a constant gain for the firing rate of the ith
neuron, and f ið�Þ is a nonlinear activation function describing the relationship between the
synaptic drive and the firing rate of the ith neuron.
In this paper, we assume that f ið�Þ is a continuous function such as a half-wave rectification

function. Specifically, for a typical neuron [12]

f iðxÞ ¼ ½x�þ; ð10Þ
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where iAf1;…; ng and ½x�þ ¼ x if xZ0, and ½x�þ ¼ 0 otherwise. Alternatively, we can
approximate fi(x) by the smooth (i.e., infinitely differentiable) half-wave rectification
function

f i xð Þ ¼ xeγx

1þ eγx
; ð11Þ

where iAf1;…; ng and γ≫0. Note that f ′iðxÞ � 1 for x40 and f ″i ðxÞ � 0, xa0. In addition, note
that Eqs. (10) and (11) reflect the fact that as the voltage increases across the membrane of
the ith neuron, the firing rate increases as well. Often, the membrane potential-firing rate
curve exhibits a linear characteristic for a given range of voltages. At higher voltages,
however, a saturation phenomenon appears, indicating that the full effect of the firing rate
has been reached. To capture this effect, f ið�Þ can be modeled as

f i xð Þ ¼ fmaxe
γx

1þ eγx
; ð12Þ

where iAf1;…; ng, γ≫0, and fmax ¼ limγ-1 f iðxÞ; x40, denotes the maximum firing rate.
3. Synaptic drive firing model with time-varying delay and stochastic multiplicative
uncertainty

Let StACðð�1;þ1Þ;RnÞ, where St ¼ Sðt þ θÞ; θA ð�1; 0�; tZ0, and assume
vthiðtÞ � 0. To capture communication delays in our biological neural network model (9),
define SðtÞ9 ½S1ðtÞ; S2ðtÞ;…; SnðtÞ�T, f ðSÞ9 ½f 1ðS1Þ; f 2ðS2Þ;…; f nðSnÞ�T, where f ið�Þ is defined
by Eq. (11) or Eq. (12), L9diag½τ1; τ2;…; τn� and B9diag½B1;B2;…;Bn�. Furthermore,
define

ŜðtÞ9

∑n
j ¼ 2A1jSjðt�δ1jðtÞÞ

0

⋮
0

2
6666664

3
7777775
þ

0

∑n
j ¼ 1; ja2A2jSjðt�δ2jðtÞÞ

⋮
0

2
6666664

3
7777775
þ⋯

þ

0

⋮
0

∑n�1
j ¼ 1AnjSjðt�δnjðtÞÞ

2
66664

3
77775; ð13Þ

where δijðtÞ denotes the continuous or discontinuous, time-varying time delay of the transmission
signal from the jth neuron to the ith neuron at time t, δijðtÞZ0; tZ0, and Sj(t) denotes the jth
component of S(t). The system delays δijðtÞ correspond to the times of the spike hitting the
synapse and t is the time after the spike, and hence, these delays account for the distance traveled
by the voltage spikes down the axon.

We modify the biological neural network system (9) to include the effects of stochastic
perturbations as well as time delays. Specifically, we consider the model

dSðtÞ ¼ ð�LSðtÞ þ Bf ðŜðtÞÞÞ dt þ sðSðtÞÞ dwðtÞ;
SðθÞ ¼ ϕðθÞ; �1oθr0; t40; ð14Þ
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where ϕð�ÞAC9Cðð�1; 0�;RnÞ is a continuous vector-valued function specifying the initial
state of the system (14), wðtÞ ¼ ½w1ðtÞ;w2ðtÞ;…;wnðtÞ�T captures noise in the input voltage and is
represented as Brownian motion, that is, an n-dimensional mutually independent standard
Wiener process, and sðSÞ ¼ diag½s1ðSÞ;s2ðSÞ;…;snðSÞ� represents the state-dependent noise
intensity matrix for the Gaussian white noise process dwðtÞ. Henceforth, we consider Eq. (14) as
the model of the perturbed biological neural network.
Next, since ŜðtÞ defined by Eq. (13) contains nðn�1Þ terms with different time delays, each

term can be written as the product of an n� n�dimensional matrix and an n-dimensional vector.
Specifically, for i′¼ 1; 2;…; n; j¼ 1; 2;…; n; i′a j, define i9 i′ðn�1Þ þ j; i′4j, and
i9 i′ðn�1Þ þ j�1; i′oj, where i¼ 1; 2;…; nðn�1Þ, define δiðtÞ9δi′jðtÞ, and define the matrix
AiARn�n whose ði′; jÞ th entry is Ai′j and all the other entries are 0. Thus, the ith term in Eq. (13)
can be replaced by AiSðt�δiðtÞÞ; iAf1; 2;…; nðn�1Þg. Hence, setting N ¼ nðn�1Þ, ŜðtÞ can be
written as

ŜðtÞ ¼ ∑
N

i ¼ 1
AiSðt�δiðtÞÞ: ð15Þ

For the statement of the results in this paper, we require some additional notation and
definitions. Specifically, let ðΩ;F ;PÞ be the probability space associated with Eq. (14), where Ω
denotes the sample space, F denotes a s-algebra, and P defines a probability measure on the
s-algebra F , that is, P is a nonnegative countably additive set function on F such that PðΩÞ ¼ 1
[13]. Note that Eq. (14) is a Markov process, and hence, there exists a filtration fF tg satisfying
F τ �F t �F , 0rτot, such that fωAΩ : SðtÞABgAF t, tZ0, for all Borel sets B�Rn

contained in the Borel s-algebra B. The infinitesimal operator L : ½0;1Þ � Cðð�1; 0�;RnÞ-R

associated with the stochastic process (14), acting on the functional V : R� C-R, is defined by

LV t; Stð Þ9 lim sup
h-0þ

E½Vðt þ h; StþhÞjSt��Vðt; StÞ
h

: ð16Þ

For a two-times continuously differentiable function V : ½0;1Þ � Rn-R of the random variable
S, the infinitesimal operator LVðt; SÞ is defined as [14,15]

LV t; Sð Þ9 lim
h-0þ

E½Vðt þ h; Sðt þ hÞÞ��Vðt; SÞ
h

¼ ∂Vðt; SÞ
∂t

þ V ′ t; Sð Þ �LSþ Bf Ŝ
� �� �þ 1

2
sT Sð ÞV″ t; Sð Þs Sð Þ; ð17Þ

where V ′ðt; SÞ denotes the Fréchet derivative of V and V″ðt; SÞ denotes the Hessian matrix of V
with respect to S at (t,S). The following lemma provides an explicit formula for the infinitesimal
operator on two kinds of functionals using the ideas from [16, Lemma 3.1].

Lemma 3.1. Consider the biological neural network given by Eq. (14) and let

V1ðt;ψÞ ¼
Z 0

�dðtÞ
ψTðθÞHψðθÞ dθ; ð18Þ

V2ðt;ψÞ ¼
Z 0

�dðtÞ
eɛðtþθÞψTðθÞHψðθÞ dθ; ð19Þ
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where tZ0; ψACðð�1; 0�;RnÞ; ɛ40; HARn�n, d : R-R is differentiable, and dðtÞZ0;
tZ0. Then, the infinitesimal operator acting on V1 : ½0;1Þ � C-R and V2 : ½0;1Þ � C-R is
given by

LV1ðt; StÞ ¼ STðtÞHSðtÞ�ð1� _dðtÞÞSTðt�dðtÞÞHSðt�dðtÞÞ; ð20Þ

LV2ðt; StÞ ¼ eɛtSTðtÞHSðtÞ�eɛðt�dðtÞÞð1� _dðtÞÞSTðt�dðtÞÞHSðt�dðtÞÞ: ð21Þ
Proof. For sufficiently small h40

E½V1ðt þ h; StþhÞjSt� ¼ E

Z 0

�dðtþhÞ
STðt þ hþ θÞHSðt þ hþ θÞ dθ

���St
��

¼ E

Z h

h�dðtþhÞ
STðt þ θÞHSðt þ θÞ dθ

���St
��

¼ E

Z h

0
STðt þ θÞHSðt þ θÞ dθ

���St
�
þ
Z 0

�dðtÞ
STðt þ θÞHSðt þ θÞ dθ

�

þE

Z �dðtÞ

�dðtþhÞ
STðt þ θÞHSðt þ θÞ dθ

���St
�
þ E

Z �dðtþhÞ

h�dðtþhÞ
STðt þ θÞHSðt þ θÞ dθ

���St
���

¼ E

Z h

0
STðt þ θÞHSðt þ θÞ dθ

���St
�
þ
Z 0

�dðtÞ
STðt þ θÞHSðt þ θÞ dθ

�

�E

Z �ðdðtÞþh _d ðtÞþOðhÞÞ

�dðtÞ
STðt þ θÞHSðt þ θÞ dθ

���St
#"

�E

Z h�dðtþhÞ

�dðtþhÞ
STðt þ θÞHSðt þ θÞ dθ

���St
��

¼ hSTðtÞHSðtÞ þ V1ðt; StÞ�hð1� _dðtÞÞSTðt�dðtÞÞHSðt�dðtÞÞ þ OðhÞ; tZ0; ð22Þ
where O(h) denotes higher-order terms in h. Substituting Eq. (22) into Eq. (16) yields Eq. (20).
The proof of Eq. (21) is similar to the proof of Eq. (20) and, hence, is omitted. □

To develop a global synchronization property for the biological neural network system (14),
we introduce the notion of stochastic synchronization. Here, we focus on mean-square
synchronization.

Definition 3.1. The biological neural network given by Eq. (14) is said to be globally
asymptotically mean-square synchronized if

lim
t-1

E½:Sit�Sjt:
2� ¼ 0; ð23Þ

for all ϕð�ÞACðð�1; 0�;RnÞ and i; j¼ 1; 2;…; n; ia j, where Sit9Siðt þ θÞ; θA ð�1; 0�; tZ0,
and :Sit�Sjt:¼ sup� τrθr 0jSiðt þ θÞ�Sjðt þ θÞj; τ40.

Definition 3.2. The biological neural network given by Eq. (14) is said to be globally
exponentially mean-square synchronized if there exist constants ρ40 and p40 such that

E½:Sit�Sjt:
2�rρe�pt

Z 0

�1
jϕiðθÞ�ϕjðθÞj2 dθ; t40; p40; ð24Þ

for all ϕð�Þ ¼ ½ϕ1ð�Þ;…;ϕnð�Þ�TACðð�1; 0�;RnÞ and i; j¼ 1; 2;…; n; ia j.
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4. Synchronization of stochastic biological neural networks with differentiable delays

In this section, we develop sufficient conditions for global mean-square synchronization for
the biological neural network (14) with differentiable time delays using Barbalat's lemma and
linear matrix inequalities (LMIs). In this paper, we assume that the noise intensity matrix
function sðSÞ has a linear growth rate, that is, there exists r40 such that

tr½s2ðSÞ�rrSTMTMS; SARn; ð25Þ
where M is defined by

M9

1 �1 0 ⋯ 0

0 1 �1 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 0

0 ⋯ 0 1 �1

2
6664

3
7775ARðn�1Þ�n: ð26Þ

The following theorem provides a sufficient condition for global mean-square asymptotic
synchronization of the biological neural network system (14).

Theorem 4.1. Consider the biological neural network given by Eq. (14) with f ið�Þ; i¼ 1; 2;…; n,
given by either Eq. (11) or Eq. (12), and assume that _δiðtÞrh1o1, and
δiðtÞZ0; tZ0; i¼ 1; 2;…;N, hold. If there exist a positive-definite matrix PARn�n,
nonnegative-definite matrices QiARn�n; i¼ 1; 2;…;N, and RARn�n, and a nonnegative-
definite diagonal matrix ΛARn�n such that

R �PB

�BP Λ

� �
Z0; ð27Þ

Ω19

�ð1�h1ÞQ1 þ AT
1ΛA1 AT

1ΛA2 ⋯ AT
1ΛAN

AT
2ΛA1 �ð1�h1ÞQ2 þ AT

2ΛA2 ⋱ ⋮
⋮ ⋱ ⋱ AT

N�1ΛAN

AT
NΛA1 ⋯ AT

NΛAN�1 �ð1�h1ÞQN þ AT
NΛAN

2
66664

3
77775r0;

ð28Þ
and either Ω2o0 or both Ω2r0 and kerðΩ2Þ ¼ spanð1nÞ hold, where

Ω29�PL�LPþ k1rM
TM þ Rþ ∑

N

i ¼ 1
Qi; ð29Þ

k19λmaxðPÞ, r is such that Eq. (25) holds, M is given by Eq. (26), and Ai; i¼ 1;…;N, is defined
in Eq. (15), then Eq. (14) is globally asymptotically mean-square synchronized.

Proof. Consider the functional V : ½0;1Þ � C-R given by Vðt;ψÞ ¼ V1ðψð0ÞÞ þ V2ðt;ψÞ,
where V1ðψð0ÞÞ ¼ ψTð0ÞPψð0Þ and V2ðt;ψÞ ¼∑N

i ¼ 1

R 0
� δiðtÞ ψ

TðθÞQiψðθÞ dθ. It follows from Eq.
(17) and Lemma 3.1 that the infinitesimal operator LVðt; StÞ associated with the stochastic
process (14) is given by

LVðt; StÞ ¼LV1ðSðtÞÞ þ LV2ðt; StÞ; tZ0; ð30Þ
where

LV1ðSðtÞÞ ¼ 2STðtÞPð�LSðtÞ þ Bf ðŜðtÞÞÞ þ tr½sðSðtÞÞPsðSðtÞÞ�; ð31Þ
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LV2ðt; StÞ ¼ ∑
N

i ¼ 1
½STðtÞQiSðtÞ�ð1� _δi ðtÞÞSTðt�δiðtÞÞQiSðt�δiðtÞÞ�; ð32Þ

and ŜðtÞARn is defined by Eq. (15). Next, since E½Vðt; StÞ� ¼ Vð0; S0Þ þ E½R t0 LVðu; SuÞ du�, it
follows that E½dVðt; StÞ� ¼ E½LV1ðSðtÞÞ þ LV2ðt; StÞ� dt.

To complete the proof, we show that LV1ðSðtÞÞ þ LV2ðt; StÞr0, tZ0, and LV1ðSðtÞÞ þ
LV2ðt; StÞ � 0 implies MSðtÞ � 0. To see this, note that Eq. (25) implies

tr½sðSÞPsðSÞ�rk1 tr½sðSÞsðSÞ�rk1rS
TMTMS; SARn: ð33Þ

Furthermore, note that for every diagonal matrix ΛARn�n such that ΛZ0, it follows that for
f ið�Þ; i¼ 1;…; n, given by Eq. (11) or Eq. (12)

f TðŜðtÞÞΛf ðŜðtÞÞr Ŝ
TðtÞΛŜðtÞ; tZ0: ð34Þ

Now, using Eqs. (27), (33), and (34), it follows from Eq. (31) that

LV1ðSðtÞÞr2STðtÞPð�LSðtÞ þ Bf ðŜðtÞÞÞ þ k1rS
TðtÞMTMSðtÞ

r�2STðtÞPLSðtÞ þ STðtÞRSðtÞ þ f TðŜðtÞÞΛf̂ ðSðtÞÞ þ k1rS
TðtÞMTMSðtÞ

rSTðtÞð�2PLþ k1rM
TM þ RÞSðtÞ þ Ŝ

TðtÞΛŜðtÞ; tZ0: ð35Þ
Hence, since _δiðtÞrh1o1, t40, it follows from Eqs. (32) and (35) that

LV1ðSðtÞÞ þ LV2ðt; StÞrSTðtÞ �2PLþ k1rM
TM þ Rþ ∑

N

i ¼ 1
Qi

	 

SðtÞ

þ ∑
N

i ¼ 1
∑
N

j ¼ 1
STðt�δiðtÞÞAT

i ΛAjSðt�δjðtÞÞ� ∑
N

i ¼ 1
ð1�h1ÞSTðt�δiðtÞÞQiSðt�δiðtÞÞ

¼ ηTðtÞΩ1ηðtÞ þ STðtÞΩ2SðtÞrSTðtÞΩ2SðtÞ; tZ0;

where ηðtÞ9 ½STðt�δ1ðtÞÞ;…; STðt�δNðtÞÞ�T, and Ω1 and Ω2 are defined by Eqs. (28) and (29).
Finally, if Ω1r0 and Ω2o0, it follows that E½dVðt; StÞ� ¼ E½LV1ðSðtÞÞ þ LV2ðt; StÞ� dtr0,

tZ0, and E½Vðt; StÞ�rE½Vð0; S0Þ�. Note that since P is positive-definite and E½Vðt; StÞ� is a non-
increasing function of time, it follows that E½‖SðtÞ‖2� is bounded for all tZ0. Since

L½STðtÞΩ2SðtÞ� ¼ 2STðtÞΩ2½�LSðtÞ þ Bf ðŜðtÞÞ� þ tr½sðSðtÞÞΩ2sðSðtÞÞ�; tZ0, and E½‖SðtÞ‖2�;
tZ0, is bounded, it follows that E½L½STðtÞΩ2SðtÞ��; tZ0, is bounded. Since E d½STðtÞΩ2

�
SðtÞ�� ¼ E½L½STðtÞΩ2SðtÞ�� dt; tZ0, and E½L½STðtÞΩ2SðtÞ�� is bounded, it follows that E½STðtÞΩ2

SðtÞ� is uniformly continuous in t. Note that since E½Vðt; StÞ�Z0; tZ0, and E½STðtÞΩ2SðtÞ� is
uniformly continuous in t, it follows from Barbalat's lemma [17, p. 221] that E½STðtÞΩ2SðtÞ�-0
as t-1. Since Ω2o0, it follows that E½‖SðtÞ‖2�-0 as t-1. Thus, E½‖MSðtÞ‖2�r
‖M‖2E½‖SðtÞ‖2�-0 as t-1. Hence, E½:MSt:

2�-0 as t-1, that is, Eq. (14) is globally
asymptotically mean-square synchronized.

Alternately, if Ω1r0, kerðΩ2Þ ¼ spanð1nÞ, and Ω2r0, then a similar argument shows that
E½STðtÞΩ2SðtÞ�-0 as t-1, which, since kerðΩ2Þ ¼ spanð1nÞ, implies that Eq. (14) is globally
asymptotically mean-square synchronized. □

The next theorem establishes a sufficient condition for global exponential mean-square
synchronization of the network system Eq. (14).
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Theorem 4.2. Consider the biological neural network given by Eq. (14) with f ið�Þ; i¼ 1; 2;…; n,
given by either Eq. (11) or Eq. (12), and assume that _δiðtÞrh1o1, and
h2ZδiðtÞZ0; tZ0; i¼ 1; 2;…;N, hold. If there exist a positive-definite matrix PARn�n,
nonnegative-definite matrices QiARn�n; i¼ 1; 2;…;N, and RARn�n, a nonnegative-definite
diagonal matrix ΛARn�n, and a scalar ɛ40 such that Eq. (27) holds

Ω39

�ð1�h1Þe�2ɛh2Q1 þ AT
1ΛA1 AT

1ΛA2 ⋯ AT
1ΛAN

AT
2ΛA1 �ð1�h1Þe�2ɛh2Q2 þ AT

2ΛA2 ⋱ ⋮
⋮ ⋱ ⋱ AT

N� 1ΛAN

AT
NΛA1 ⋯ ⋯ �ð1�h1Þe�2ɛh2QN þ AT

NΛAN

2
66664

3
77775r0;

ð36Þ
and either Ω4o0 or both Ω4r0 and kerðΩ4Þ ¼ spanð1nÞ hold, where

Ω49�PL�LPþ k1rM
TM þ Rþ ∑

N

i ¼ 1
Qi þ 2ɛP; ð37Þ

k19λmaxðPÞ, r is such that Eq. (25) holds, M is given by Eq. (26), and Ai; i¼ 1;…;N, is defined
in Eq. (15), then Eq. (14) is globally exponentially mean-square synchronized.

Proof. The proof is similar to the proof of Theorem 4.1 using the functional V : ½0;1Þ � C-R

given by

Vðt;ψÞ ¼ e2ɛtψTð0ÞPψð0Þ þ ∑
N

i ¼ 1

Z 0

� δiðtÞ
e2ɛðtþθÞψTðθÞQiψðθÞ dθ

and, hence, is omitted. □

The following corollary to Theorem 4.2 is immediate.

Corollary 4.1. Consider the biological neural network given by Eq. (14) with
f ið�Þ; i¼ 1; 2;…; n, given by either Eq. (11) or Eq. (12), and assume that _δiðtÞrh1o1, and
h2ZδiðtÞZ0; tZ0; i¼ 1; 2;…;N, hold. If there exist a positive-definite matrix PARn�n,
nonnegative-definite matrices QiARn�n; i¼ 1; 2;…;N, and RARn�n, and a nonnegative-
definite diagonal matrix ΛARn�n such that Eq. (27) holds, and Ω1o0 and Ω2o0, where Ω1

and Ω2 are given by Eqs. (28) and (29) with k19λmaxðPÞ, r is such that Eq. (25) holds, M is
given by Eq. (26), Ai; i¼ 1;…;N, is defined in Eq. (15), then Eq. (14) is globally exponentially
mean-square synchronized.

Proof. The result is a direct consequence of Theorem 4.2 by noting that if Ω1o0 and Ω2o0
hold, then there exists a sufficiently small ɛ40 such that Ω3r0 and Ω4o0 hold, where Ω3 and
Ω4 are given by Eqs. (36) and (37). □

Remark 4.1. Note that Theorem 4.1 does not require that the time delays be bounded, whereas
Theorem 4.2 and Corollary 4.1 hold for the case where the time delays are bounded.

Remark 4.2. It is important to note that if f ið�Þ; i¼ 1; 2;…; n, in Eq. (14) is replaced by Eq.
(10), then the results of Theorems 4.1 and 4.2 as well as Corollary 4.1 still hold.
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5. Synchronization of stochastic biological neural network systems with limiting delay
systems

Theorems 4.1 and 4.2, as well as Corollary 4.1, require that the system time delays be
differentiable with respect to time t, which can be a limiting assumption in practice. In this
section, we relax the differentiability assumption on δið�Þ, i¼1,…,N. Here, we assume that Eq.
(14) converges to a constant time-delay system and show that, under certain conditions, if the
constant time-delay system is globally uniformly asymptotically mean-square synchronized, then
the original system with time-varying delay is globally asymptotically mean-square
synchronized.

To proceed, we rewrite the biological neural network (14) with bounded time delays as

dSðtÞ ¼ ð�LSðtÞ þ BgðSðt�δ1ðtÞÞ;…; Sðt�δNðtÞÞÞÞ dt þ sðSðtÞÞ dwðtÞ;
SðθÞ ¼ ϕðθÞ; �rprθr0; t40; rp40; ð38Þ

where gðX1;X2;…;XNÞ9 ½f 1ðX1Þ; f 2ðX2Þ;…; f nðXnÞ�T, X9∑N
i ¼ 1AiXi, X ;XiARn; iAf1; 2;…;

Ng, X ¼ ½X1;X2;…;Xn�T, Ai is defined in Eq. (15), and f ið�Þ is given by either Eq. (11) or Eq.
(12). Clearly, gðX1;X2;…;XNÞ is globally Lipschitz continuous in ½XT

1 ;X
T
2 ;…;XT

N �T on RnN , and
hence, there exists m40 such that

JgðX1;X2;…;XNÞ�gðY1;Y2;…; YNÞJrmJ ½XT
1 ;X

T
2 ;…;XT

N �T�½YT
1 ; Y

T
2 ;…;YT

N �T J ;
that is,

‖gðX1;X2;…;XNÞ�gðY1; Y2;…;YNÞ‖2
rm2ð‖X1�Y1‖2 þ ‖X2�Y2‖2 þ⋯þ ‖XN�YN‖2Þ; ð39Þ

where Xi;YiARn; iAf1; 2;…;Ng. Next, define X ðtÞ9gðSðt�δ1ðtÞÞ;…; Sðt�δNðtÞÞÞ�
gðSðt�d1Þ;…; Sðt�dNÞÞ, where 0rδiðtÞrrp; rp40, and di9 limt-1δiðtÞ; i¼ 1; 2;…;N, so
that Eq. (38) can be rewritten as

dSðtÞ ¼ ð�LSðtÞ þ BgðSðt�d1Þ;…; Sðt�dNÞÞ þ BX ðtÞÞ dt þ sðSðtÞÞ dwðtÞ;
SðθÞ ¼ ϕðθÞ; �rprθr0; t40; rp40: ð40Þ

Definition 5.1 (Hui [18]). If for every initial condition SðθÞ ¼ ϕðθÞACð½�rp; 0�;RnÞ of Eq. (40)
there exists an unbounded sequence ftng1n ¼ 1, with tn-þ1 as n-1, such that
limn-1E½JX ðt þ tnÞJ � ¼ 0 uniformly in t on every compact subset of ½0;1Þ, then the system

dZðtÞ ¼ ð�LZðtÞ þ BgðZðt�d1Þ;…;Zðt�dNÞÞÞ dt þ sðZðtÞÞ dwðtÞ;
Zðt0 þ θÞ ¼ ψðt0 þ θÞ; �rprθr0; t4t0Z0; ψACð½�rp; t0�;RnÞ; ð41Þ

is called a limiting delay system of Eq. (40).

Definition 5.2. The limiting delay system (41) is said to be uniformly mean-square synchronized

if for every ɛ40, there exists δ¼ δðɛÞ, independent of t0, such that E½:MZt:
2�oɛ for all

E½:ψ:2�oδ, where Zt ¼ Zðt þ θÞ; θA ½�rp; 0�; tZ t0, and M is given by Eq. (26). In addition,
the limiting delay system (41) is said to be globally uniformly asymptotically mean-square
synchronized if it is uniformly mean-square synchronized and for every c40 and η40, there

exists T ¼ Tðη; cÞ such that E½:MZt:
2�oη for all t4t0 þ T and E½:ψ:2�oc.

Lemma 5.1. Consider the biological neural network (14) or, equivalently, Eq. (40), and assume
that f ið�Þ given by Eq. (11) or Eq. (12) is such that 0r f iðxÞr fmax for all xAR and i¼ 1;…; n.
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If there exist r40, positive-definite matrices P;QARn�n such that Eq. (25) holds, and

P �B

�B Q

" #
Z0; ð42Þ

Ω9�2Lþ Pþ rMTMo0; ð43Þ
then E½:St:2� is bounded for all t40.

Proof. Consider the function V : Rn-R given by VðSÞ ¼ STS; SARn. It follows from Eqs. (17)
and (25) that the infinitesimal operator LVðSðtÞÞ associated with the stochastic process (14) (or
Eq. (40)) is given by

LVðSðtÞÞ ¼ 2STðtÞð�LSðtÞ þ Bf ðŜðtÞÞÞ þ tr½s2ðSðtÞÞ�
r�2STðtÞLSðtÞ þ 2STðtÞBf ðŜðtÞÞ þ rSTðtÞMTMSðtÞ; tZ0;

which, using Eq. (42), implies that

LVðSðtÞÞr�2STðtÞLSðtÞ þ STðtÞPSðtÞ þ f TðŜðtÞÞQf ðŜðtÞÞ þ rSTðtÞMTMSðtÞ
¼ STðtÞð�2Lþ Pþ rMTMÞSðtÞ þ f TðŜðtÞÞQf ðŜðtÞÞ
rSTðtÞΩSðtÞ þ λmaxðQÞf TðŜðtÞÞf ðŜðtÞÞ; tZ0;

where Ω is defined by Eq. (43).
Next, since 0r f iðxÞr fmax for all xAR and i¼ 1;…; n, it follows that

LVðSðtÞÞrSTðtÞΩSðtÞ þ nλmaxðQÞf 2max; tZ0: ð44Þ
Now, by Eq. (43), STðtÞΩSðtÞrλmaxðΩÞSTðtÞSðtÞr0; tZ0, and hence,

LVðSðtÞÞrλmaxðΩÞSTðtÞSðtÞ þ nλmaxðQÞf 2max; tZ0: ð45Þ
Let m9�nλmaxðQÞf 2max=λmaxðΩÞ. Next, we show that if :ϕ:2 ¼ com, then E½VðSðtÞÞ�rm

for all t40. To see this, assume, ad absurdum, that E½VðSðtÞÞ�4m for some t40, which holds
since E½VðSðtÞÞ� is continuous in t, and note that there exists some τA ð0; tÞ such that
E½VðSðτÞÞ� ¼m, and E½dVðSðτÞÞ�40. Now, note that by Eq. (45), E½dVðSðτÞÞ� ¼
E½LVðSðτÞÞ� dtr0 for some τ40 such that E½VðSðτÞÞ� ¼m, which contradicts E½dVðSðτÞÞ�40.
Hence, E½VðSðtÞÞ�rm for all t40. Alternately, if :ϕ:2 ¼ cZm, then using a similar argument it
can be shown that E½VðSðtÞÞ�rc for all t&0. Hence, E½VðSðtÞÞ� is bounded for all t40, that is,
E½:St:2� is bounded for all t40.

The following result gives a sufficient condition for stochastic synchronization of the
biological neural network Eq. (14) using the limiting delay system (41).

Theorem 5.1. Consider the biological neural network given by Eq. (40) with bounded time-
varying delays and its corresponding limiting delay system (41) with constant delays such that
0rδiðtÞrrp and 0rdirrp; i¼ 1; 2;…;N, and assume that f ið�Þ is given by Eq. (11) or Eq.
(12) and is such that 0r f iðxÞr fmax for all xAR and i¼ 1;…; n. If there exist r40 and
positive-definite matrices P;QARn�n such that Eqs. (25), (42), and (43) hold, siðSÞ is globally
Lipschitz continuous in S on Rn, and the limiting delay system Eq. (41) is globally uniformly
asymptotically mean-square synchronized, then Eq. (40) is globally asymptotically mean-square
synchronized.
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Proof. To prove that Eq. (40) with bounded time-varying delays is globally asymptotically
mean-square synchronized, we show that for every ɛ40 and δ40, there exists T ¼ Tðɛ; δÞ40
such that E½‖MSðtÞ‖2�oɛ for all t4T ; :ϕ:2oδ, where M is given by Eq. (26). To see this, note
that

E½‖MSðtÞ‖2� ¼ E½‖MZðtÞ þMSðtÞ�MZðtÞ‖2�
r2E½‖MZðtÞ‖2� þ 2E½‖MSðtÞ�MZðtÞ‖2�
r2E½‖MZðtÞ‖2� þ 2‖M‖2E½‖SðtÞ�ZðtÞ‖2�; t40; ð46Þ

where Zð�Þ is the solution to Eq. (41) with initial condition Zðt0 þ θÞ ¼ Sðt0 þ θÞ; θA
½�rp; 0�; t0A ð0; tÞ.

Define HðXtÞ9gðXðt�d1Þ;Xðt�d2Þ;…;Xðt�dNÞÞ, where XtACð½�rp;1Þ;RnÞ, and note
that the infinitesimal operator L½‖SðtÞ�ZðtÞ‖2� is given by

L½‖SðtÞ�ZðtÞ‖2� ¼ 2ðSðtÞ�ZðtÞÞTðð�LSðtÞ þ BHðStÞÞ
�ð�LZðtÞ þ BHðZtÞÞ þ BX ðtÞÞ þ ∑

n

i ¼ 1
½siðSðtÞÞ�siðZðtÞÞ�2:

Next, since Sðt0 þ θÞ ¼ Zðt0 þ θÞ; θA ½�rp; 0�, it follows that

E½‖SðtÞ�ZðtÞ‖2� ¼ E½‖Sðt0Þ�Zðt0Þ‖2� þ E

Z t

t0

L½‖SðuÞ�ZðuÞ‖2� du
� �

¼ E

Z t

t0

L½‖SðuÞ�ZðuÞ‖2� du
� �

;

and hence,

E½‖SðtÞ�ZðtÞ‖2� ¼ E

Z t

t0

2ðSðuÞ�ZðuÞÞTðð�LSðuÞ þ BHðSuÞÞ
�

�ð�LZðuÞ þ BHðZuÞÞ þ BX ðuÞÞþ ∑
n

i ¼ 1
ðsiðSðuÞÞ�siðZðuÞÞÞ2 du

�

rE

Z t

t0

2jðSðuÞ�ZðuÞÞTðð�LSðuÞ þ BHðSuÞÞ�ð�LZðuÞ þ BHðZuÞÞÞj du�
�

þE

Z t

t0

2jðSðuÞ�ZðuÞÞTBX ðuÞj du
� �

þ E

Z t

t0

∑
n

i ¼ 1
ðsiðSðuÞÞ�siðZðuÞÞÞ2 du

� �
;

tZ t0Z0: ð47Þ
Now, since, for t0rur t,

2jðSðuÞ�ZðuÞÞTðð�LSðuÞ þ BHðSuÞÞ�ð�LZðuÞ þ BHðZuÞÞÞj
r‖SðuÞ�ZðuÞ‖2 þ ‖ð�LSðuÞ þ BHðSuÞÞ�ð�LZðuÞ þ BHðZuÞÞ‖2; ð48Þ

it follows from the definition ofHðSuÞ and Eq. (39) that there exists L1Z2‖L‖2 þ 2m2‖B‖2 such
that

‖ð�LSðuÞ þ BHðSuÞÞ�ð�LZðuÞ þ BHðZuÞÞ‖2
r2‖LSðuÞ�LZðuÞ‖2 þ 2‖BHðSuÞ�BHðZuÞ‖2
r2‖L‖2‖SðuÞ�ZðuÞ‖2 þ 2‖B‖2‖HðSuÞ�HðZuÞ‖2
rL1‖ðSðuÞ�ZðuÞÞ‖2 þ L1‖ðSðu�d1Þ�Zðu�d1ÞÞ‖2

þ⋯þ L1‖ðSðu�dNÞ�Zðu�dNÞÞ‖2; t0rur t; ð49Þ
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and hence, it follows from Eqs. (48) and (49) that, for t0rur t

2jðSðuÞ�ZðuÞÞT½ð�LSðuÞ þ BHðSuÞÞ�ð�LZðuÞ þ BHðZuÞÞ�j
r‖ðSðuÞ�ZðuÞÞ‖2 þ L1‖ðSðuÞ�ZðuÞÞ‖2

þL1‖ðSðu�d1Þ�Zðu�d1ÞÞ‖2 þ⋯þ L1‖ðSðu�dNÞ�Zðu�dNÞÞ‖2: ð50Þ
Since siðSÞ is globally Lipschitz continuous in S on Rn, it follows that

∑
n

i ¼ 1
½siðSðuÞÞ�siðZðuÞÞ�2rL2‖ðSðuÞ�ZðuÞÞ‖2; t0rur t; ð51Þ

where
ffiffiffiffiffiffiffiffiffiffi
L2=n

p
is the Lipschitz constant for all siðSÞ; i¼ 1;…; n. Now, it follows from Eqs. (47),

(50), and (51) that

E½‖SðtÞ�ZðtÞ‖2�r ð1þ L1ÞE
Z t

t0

‖ðSðuÞ�ZðuÞÞ‖2 du
� �

þL1E

Z t

t0

∑
N

i ¼ 1
‖ðSðu�diÞ�Zðu�diÞÞ‖2 du

� �

þ2E
Z t

t0

jðSðuÞ�ZðuÞÞTBX ðuÞj du
� �

þL2E

Z t

t0

‖ðSðuÞ�ZðuÞÞ‖2 du
� �

; tZ t0Z0: ð52Þ

Next, since E½2jðSðuð�ZðuÞÞTBX ðuÞj�rE½‖BðSðuÞ�ZðuÞÞ‖2� þ E½‖X ðuÞ‖2� for t0rur t, it
follows from Definition 5.1 that for every ɛ140, there exists T1 ¼ T1ðɛ1Þ40 such that
E½‖X ðtÞ‖2�oɛ1 for t4T1. Now, choose t04T1 and note that

E½2jðSðuÞ�ZðuÞÞTBX ðuÞj�o‖B‖2E½‖ðSðuÞ�ZðuÞÞ‖2� þ ɛ1; T1r t0rur t: ð53Þ
Furthermore, since Sðt0 þ θÞ ¼ Zðt0 þ θÞ, θA ½�rp; 0�, it follows that

E

Z t

t0

‖Sðu�diÞ�Zðu�diÞ‖2 du
� �

¼ E

Z t�di

t0 �di

E½‖SðuÞ�ZðuÞ‖2 du
� �

¼ E

Z t�di

t0

‖SðuÞ�ZðuÞ‖2 du
� �

rE

Z t

t0

‖SðuÞ�ZðuÞ‖2 du
� �

; t4t040; ð54Þ

and hence, it follows from Eqs. (52)–(54) that

E½‖SðtÞ�ZðtÞ‖2�oð1þ ‖B‖2 þ L1ðN þ 1Þ þ L2ÞE
Z t

t0

‖ðSðuÞ�ZðuÞÞ‖2 du
� �

þ ɛ1ðt� t0Þ

¼ ð1þ ‖B‖2 þ L1ðN þ 1Þ þ L2Þ
Z t

t0

E½‖ðSðuÞ�ZðuÞÞ‖2� duþ ɛ1ðt� t0Þ; t4t04T1:

Now, using the Gronwall–Bellman lemma [17, p. 125], it follows that

E½‖SðtÞ�ZðtÞ‖2�oɛ1ðt� t0Þ exp½ð1þ ‖B‖2 þ ð1þ NÞL1 þ L2Þðt� t0Þ�; t4t04T1:
ð55Þ

Next, it follows from Lemma 5.1 that there exists c¼ cðδÞ40 for every δ40 such that
E½:St0:

2�oc; t040, for :ϕ:2oδ. Note that if Eq. (41) is globally uniformly asymptotically
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mean-square synchronized, then it follows that for every ɛ240, there exists T2 ¼ T2ðɛ2; cÞ40
such that E½‖MZðtÞ‖2�oɛ2 for t� t04T2 and Zðt0 þ θÞ ¼ Sðt0 þ θÞ; θA ½�rp; 0�; E½:St0:

2�oc.
Hence, it follows from Eqs. (46) and (55) that

E½‖MSðtÞ‖2�o2ɛ2 þ 2ɛ1‖M‖2ðt� t0Þ exp½ð1þ ‖B‖2 þ ð1þ NÞL1 þ L2Þðt� t0Þ�; t04T1; t4T2 þ t0:

Finally, define

eðɛ1; ɛ2; t� t0Þ92ɛ2 þ 2ɛ1‖M‖2ðt� t0Þ exp½ð1þ ‖B‖2 þ ð1þ NÞL1 þ L2Þðt� t0Þ�; ð56Þ
where t04T1; t� t04T2, so that

E½‖MSðtÞ‖2�oeðɛ1; ɛ2; t� t0Þ; t04T1; t� t04T2: ð57Þ

In this case, it follows that for every ɛ40 and δ40, there exists T ¼ Tðɛ; δÞ40 such that

E½‖MSðtÞ‖2�oɛ; t4T ; :ϕ:2oδ. To see this, note that since ɛ1 and ɛ2 are arbitrary, to construct
ɛ40 such that previous inequality holds we first choose ɛ2A ð0; ɛ=2Þ and T2 ¼ T2ðɛ2; cÞ, such
that E½:St:2�oc; t40, for :ϕ:2oδ, where c¼ cðδÞ. Next, choose some Δ40 and obtain ɛ1 by
solving eðɛ1; ɛ2;T2 þ ΔÞ ¼ ɛ. Note that t04T1. Now, choose a value for t0 to obtain T ¼ Tðɛ; δÞ
with T9 t0 þ T2 þ Δ. Since t04T1 and T� t04T2, it follows from Eq. (57) that
E½‖MSðTÞ‖2�oeðɛ1; ɛ2; T� t0Þ ¼ eðɛ1; ɛ2; T2 þ ΔÞ ¼ ɛ. For t4T , let t′09 t0 þ t�T . Since
t′04T1 and t� t′0 ¼ T� t04T2, it follows from Eq. (57) that E½‖MSðtÞ‖2�oeðɛ1; ɛ2;
t� t′0Þ ¼ eðɛ1; ɛ2; T2 þ ΔÞ ¼ ɛ. Hence, E½‖MSðtÞ‖2�oɛ for all t4T , which implies that Eq. (40)
is globally asymptotically mean-square synchronized. □

Remark 5.1. Note that Lemma 5.1 and Theorem 5.1 still hold in the case where
f ið�Þ; i¼ 1; 2;…; n, in Eq. (14) (or Eq. (40)) is replaced by

f iðxÞ ¼
½x�þ; xr fmax;

fmax; x4fmax;

(
ð58Þ

where ½þ� is defined by ½x�þ ¼ x if xZ0, and ½x�þ ¼ 0 otherwise.

Remark 5.2. It is important to note that Lyapunov–Krasovskii-based approaches for analyzing
stability and synthesizing controllers for stochastic nonlinear time delay systems with state and
disturbance-dependent noise have been addressed in the literature (see [19,20], and the numerous
references therein). Specifically, Ref. [19] considers a state-feedback H1 control problem for
stochastic nonlinear system with state and disturbance-dependent noise, and time-varying state
delays. Alternatively, Ref. [20] addresses partially known nonlinear systems with input and state
time-varying delays approximated by fuzzy-based linear state space subsystems. An interesting
feature of the results of [20] is that the authors do not assume differentiability or boundedness of
the system time-delays. This would suggest that the boundedness assumption invoked in this
section may be relaxed resulting in a stronger version of Theorem 5.1.
6. Illustrative numerical examples

In this section, we present two numerical examples to demonstrate the concepts presented in
the paper.
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Example 6.1. Consider the stochastic network system characterized by

dS1ðtÞ ¼ ð�S1ðtÞ þ 0:2f 1ð0:3S2ðt�δ1ðtÞÞ�0:5S3ðt�δ2ðtÞÞÞÞ dt
þ0:1ðS1ðtÞ�S2ðtÞÞ dw1ðtÞ; S1ðθÞ ¼ 2þ sin θ; ð59Þ

dS2ðtÞ ¼ ð�1:1S2ðtÞ þ 0:3f 2ð0:4S1ðt�δ3ðtÞÞ�0:3S3ðt�δ4ðtÞÞÞÞ dt
þ0:1ðS2ðtÞ�S3ðtÞÞ dw2ðtÞ; S2ðθÞ ¼ �3þ cos θ; ð60Þ

dS3ðtÞ ¼ ð�1:4S3ðtÞ þ 0:5f 3ð0:4S1ðt�δ5ðtÞÞ þ 0:3S2ðt�δ6ðtÞÞÞÞ dt
þ0:1ðS3ðtÞ�S1ðtÞÞ dw3ðtÞ; S3ðθÞ ¼ 1�θ; ð61Þ

where θA ½�1; 0�, δ1ðtÞ ¼ 1þ 0:1 sin t; δ2ðtÞ ¼ 1 þ0:1t; δ3ðtÞ ¼ 0:5; δ4ðtÞ ¼ 0:1t; δ5ðtÞ ¼
0:3; δ6ðtÞ ¼ 0:4; tZ0, f ið�Þ; i¼ 1; 2; 3, is defined by either Eq. (11) or Eq. (12), and
dwi; i¼ 1; 2; 3, is the standard Gaussian white noise process.
Using the MATLAB LMI Toolboxs, it can be shown that

P¼
205 �2:69 0:13

�2:69 169 �1:96

0:13 �1:96 122

2
64

3
75; R¼

101 �1:85 0:12

�1:85 107 �2:00

0:12 �2:00 118

2
64

3
75; Λ¼

81:2 0 0

0 114 0

0 0 144

2
64

3
75;

Q1 ¼
34:3 0:37 0:02

0:37 49:7 0:49

0:02 0:49 25:8

2
64

3
75; Q2 ¼

34:3 0:33 0:02

0:33 30:7 0:52

0:02 0:52 54:0

2
64

3
75; Q3 ¼

66:3 0:37 0:03

0:37 30:7 0:46

0:03 0:46 25:8

2
64

3
75;

Q4 ¼
34:3 0:33 0:02

0:3 30:7 0:52

0:02 0:52 45:9

2
64

3
75; Q5 ¼

76:9 0:38 0:03

0:38 30:7 0:46

0:03 0:46 25:8

2
64

3
75; Q6 ¼

34:3 0:39 0:02

0:39 60:8 0:52

0:02 0:52 25:8

2
64

3
75;

satisfy Eqs. (27)–(29), with r¼0.03 and Ai; iA1; 2;…; 6, defined as in Eq. (15), and hence, the
conditions of Theorem 4.1 are satisfied. Next, define the synchronization error eðtÞ9 ½ðS1ðtÞ�
S2ðtÞÞ2 þ ðS2ðtÞ�S3ðtÞÞ2�1=2. The trajectories of the state variables and the synchronization error
with respect to time are shown in Figs. 1 and 2, respectively. Note that even though some of the
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Fig. 1. State trajectories versus time for Example 6.1.
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Fig. 2. Synchronization error versus time for Example 6.1.
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delays in this example are not bounded, that is, δiðtÞ-1 as t-1 for iAf2; 4g, the system is
globally mean-square asymptotically synchronized.

Example 6.2. Consider the stochastic network given by

dS1ðtÞ ¼ ð�S1ðtÞ þ f 1ð1:5S1ðt�δ1ðtÞÞ�0:5S2ðt�δ2ðtÞÞÞÞ dt þ 0:3ðS1ðtÞ�S2ðtÞÞ dw1ðtÞ; ð62Þ

dS2ðtÞ ¼ ð�S2ðtÞ þ f 2ðS1ðt�δ3ðtÞÞÞÞ dt þ 0:3ðS2ðtÞ�S1ðtÞÞ dw2ðtÞ; ð63Þ
where S1ðθÞ ¼ ϕ1ðθÞ, S2ðθÞ ¼ ϕ2ðθÞ, θA ½�1; 0�, δ1ðtÞ ¼ expð�jt�3jÞ, δ2ðtÞ ¼ 1=ðt þ 1Þ, and
δ3ðtÞ ¼ 1�j cos ðπ=ð1þ tÞÞj, f ið�Þ; i¼ 1; 2, is given by Eq. (58) and satisfies 0r f iðxÞr fmax for
all xAR and i¼1,2, and dwi; i¼ 1; 2, is the standard Gaussian white noise process. The network
of Eqs. (62) and (63) is the stochastic and time delayed mean field model of a simple biological
neural network given by (7.48) and (7.49) of [12, Chapter 7.5] in which all of the excitatory
neurons are described by a single firing rate, and all of the inhibitory neurons are described by a
second rate.

Since some time delays are not differentiable and limt-1δ1ðtÞ ¼ limt-1δ2ðtÞ ¼ limt-1
δ3ðtÞ ¼ 0, we consider the limiting delay system given by

dZ1ðtÞ ¼ ð�Z1ðtÞ þ f 1ð1:5Z1ðtÞ�0:5Z2ðtÞÞÞ dt þ 0:3ðZ1ðtÞ�Z2ðtÞÞ dw1ðtÞ; ð64Þ

dZ2ðtÞ ¼ ð�Z2ðtÞ þ f 2ðZ1ðtÞÞÞ dt þ 0:3ðZ2ðtÞ�Z1ðtÞÞ dw2ðtÞ; ð65Þ
where tZ t0, Z1ðt0 þ θÞ ¼ ϕ1ðt0 þ θÞ, and Z2ðt0 þ θÞ ¼ ϕ2ðt0 þ θÞ, θA ½�1; 0�. In addition,
consider the function V : R2-R given by V Zð Þ ¼ 1

2ðZ1�Z2Þ2. It follows that the infinitesimal
operator LVðZðtÞÞ associated with the stochastic process (64) and (65) is given by

LVðZðtÞÞ ¼ �ðZ1ðtÞ�Z2ðtÞÞ2�ðZ1ðtÞ�Z2ðtÞÞðf 2ðZ1ðtÞÞ
� f 1ð1:5Z1ðtÞ�0:5Z2ðtÞÞÞ þ 0:09ðZ1ðtÞ�Z2ðtÞÞ2

¼ �ðZ1ðtÞ�Z2ðtÞÞðf 2ðZ1ðtÞÞ� f 1ð1:5Z1ðtÞ�0:5Z2ðtÞÞÞ�0:91ðZ1ðtÞ�Z2ðtÞÞ2; tZ t0:
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Now, since �ðZ1ðtÞ�Z2ðtÞÞðf 2ðZ1ðtÞÞ� f 1ð1:5Z1ðtÞ�0:5Z2ðtÞÞÞr0:5ðZ1ðtÞ�Z2ðtÞÞ2 þ 0:5ðf 2
ðZ1ðtÞÞ� f 1ð1:5Z1ðtÞ�0:5Z2ðtÞÞÞ2 for all tZ t0, and ðf 2ðxÞ� f 1ðyÞÞ2r ðx�yÞ2 for all x; yAR

and f ið�Þ; i¼ 1; 2, given by Eq. (58), it follows that

LVðZðtÞÞr�0:91ðZ1ðtÞ�Z2ðtÞÞ2 þ 0:5ðZ1ðtÞ�Z2ðtÞÞ2 þ 0:5ð0:5Z1ðtÞ�0:5Z2ðtÞÞ2

¼ �0:285ðZ1ðtÞ�Z2ðtÞÞ2r0; tZ t0;

hence, E½dVðZðtÞÞ� ¼ E½LVðZðtÞÞ� dtr�E½0:57 VðZðtÞÞ� dtr0; tZ t0, and LVðZðtÞÞ ¼ 0 if and
only if Z1ðtÞ ¼ Z2ðtÞ. Now, it follows that E½VðZðtÞÞ� is a non-increasing function of time and
E 1

2ðZ1ðtÞ�Z2ðtÞÞ2
� 

-0 as t-1. Since Eqs. (64) and (65) are autonomous, the limiting delay
system given by Eqs. (64) and (65) is globally uniformly asymptotically mean-square
synchronized.
Next, it can be shown that with r¼0.18 and

P¼Q¼ B¼ L¼ 1 0
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Fig. 3. State trajectories versus time for Example 6.2 with different initial conditions.
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Eqs. (25), (42) and (43) hold. Hence, it follows from Theorem 5.1 that Eqs. (62) and (63) are
globally asymptotically mean-square synchronized. To illustrate this, we consider 6 different
cases for our simulation. Namely,

Case 1: ϕ1ðθÞ ¼ 5; ϕ2ðθÞ ¼ 1, where θA ½�1; 0�.
Case 2: ϕ1ðθÞ ¼ 3; ϕ2ðθÞ ¼ 1, where θA ½�1; 0�.
Case 3: ϕ1ðθÞ ¼ 1; ϕ2ðθÞ ¼ 0:5, where θA ½�1; 0�.
Case 4: ϕ1ðθÞ ¼ 1; ϕ2ðθÞ ¼ 2, where θA ½�1; 0�.
Case 5: ϕ1ðθÞ ¼ 1; ϕ2ðθÞ ¼ 4, where θA ½�1; 0�.
Case 6: ϕ1ðθÞ ¼ 1; ϕ2ðθÞ ¼ 6, where θA ½�1; 0�.
Figs. 3 and 4 show the state trajectories of Eqs. (62) and (63) and the synchronization error

jS1ðtÞ�S2ðtÞj versus time, respectively. The figures show that the system synchronizes for all the
six cases considered.
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Fig. 4. Synchronization error jS1ðtÞ�S2ðtÞj versus time for Example 6.2 with different initial conditions.
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7. Conclusion

There is a substantial literature about oscillators in the brain and even speculation about the
effects of anesthetic agents on these oscillators. In this paper, we developed a stochastic synaptic
drive firing rate model for an excitatory and inhibitory cortical neuronal network in the face of
system time delays and noisy inputs, and provided constructive sufficient conditions for global
asymptotic mean-square synchronization for this model. Although the conservatism of our
results is problem dependant, it is desirable to better understand the nature of the conservatism in
order to utilize our analysis results more effectively. In addition, the issue of necessity remains to
be addressed. That is, if the system is globally asymptotically mean-square synchronized with a
corresponding Lyapunov–Krasovskii-type functional, then is such a functional necessarily given
by one of the theorems in this paper? In future research, we will explore these questions along
with the utility of this model to explain the underlying mechanism of action for general
anesthesia and consciousness by examining synchronization mechanisms of inhibitory neurons at
the onset of anesthesia.
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